
Збiрник праць Iн-ту математики НАН України 2013, том 10, N 4–5, 320–351

UDC 517.9

Anatolij K. Prykarpatski, Emin Özçağ,
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Показано как функционально-аналитические градиентно-голономные
структуры могут быть использованы для анализа изоспектральной
интегрируемости нелинейных динамических систем на дискретных
многообразиях. Разработанный метод применен для получения по-
дробного доказательства интегрируемости дискретных нелинейных
динамических систем Шредингера, Рагниско–Ту и Римана–Бюргера.

It is shown how functional-analytic gradient-holonomic structures can be
used for an isospectral integrability analysis of nonlinear dynamical systems
on discrete manifolds. The approach developed is applied to obtain detailed
proofs of the integrability of the discrete nonlinear Schrödinger, Ragnisco–
Tu and Riemann–Burgers dynamical systems.

1. Introduction. With a fairly generous definition, a discrete nonlinear
Schredinger (DNLS) equation [28, 14] is any equation that can be obtained
from a nonlinear Schredinger (NLS) equation of general form
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i∂u/∂t+ ∆u + f( ūu )u = 0, (1.1)
−i∂ū/∂t+ ∆ū+ f(ūu)ū = 0,

by employing some finite-difference approximation to the differential oper-
ators acting on the space-time-dependent vector-function (u, ū)ᵀ ∈ C2(R×
×Rn;C2), n ∈ Z+, where the overbar denotes the complex conjugate. In
(1.1) ∆ :=< ∇,∇ >En is the Laplace operator acting in one, two, or more
spatial dimensions, and f : C→ R is a quite general function that, for
most purposes, is taken to be differentiable and with f(0) = 0. In the most
well-known case of cubic nonlinearity, f(ūu) := 2ξūu, where ξ ∈ R. Equa-
tion (1.1) is often referred to as the NLS equation, and is integrable with
the inverse scattering method [37], if the number of spatial dimensions is
one. Here we use the term DNLS equation to denote the set of coupled
ordinary differential equations resulting from discretizing all spatial vari-
ables in (1.1), while keeping the time-variable t ∈ R continuous. However,
one may also consider equations with discrete time (“fully discrete NLS
equations”), as well as equations with only some of the spatial dimensions
discretized (“discrete-continuum NLS equations”). The former are of in-
terest as algorithms for numerical solution of (1.1), while the latter may
describe pulse propagation in arrays of coupled nonlinear optical fibers
[3]. The simplest example of a DNLS equation can be formally obtained
by just replacing the Laplacian operator in (1.1) with the correspond-
ing discrete Laplacian. Thus, for the one-dimensional (1-D) case we let
un(t) := u(x = na; t), ūn(t) := ū(x = na; t), n ∈ Z, where a ∈ R+ is the
lattice parameter, so that for the particular case of cubic nonlinearity the
following equation is obtained:(

dun/dt
dūn/dt

)
=

(
δi(un+1 − 2un + un−1) − 2ξiūnu

2
n

−δi(2ūn − un+1 − un−1) + 2ξiū2nun

)
=: Kn[u, ū], (1.2)

where δ = 1/(2a) and the mapping K : M2 → T (M2) naturally defines
a nonlinear dynamical system on the "discrete"manifold M2 := l2(Z;C2).
This set of equations with purely diagonal (“on-site”) nonlinearity is some-
times called the diagonal DNLS equation, but since it is the by far most
studied example of a DNLS equation, it is most commonly referred to as
simply the DNLS equation. Extensions to higher dimensions are straight-
forward, so that, for example, for a 2-D lattice with x = ma, y = na,
m, n ∈ Z, the DNLS equation reads(

dum,n/dt
dūm,n/dt

)
=
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=

(
δi(um+1,n + um−1,n + um,n−1 + um,n−1 − 4um,n) − 2ξiūm,nu

2
m,n

−δi(ūm+1,n + ūm−1,n + ūm,n−1 + ūm,n−1 − 4ūm,n) + 2ξiū2m,num,n

)
=:

=: K[u, ū],

where K : M̃2 ∈ T (M̃2) is the corresponding nonlinear dynamical ssytem
on the "discrete"manifold M̃2 := l2(Z2;C2). The study of the DNLS equa-
tions has a long and fascinating history, beginning in the 1950-th within
solid state physics with Holstein’s model for polaron motion in molecular
crystals [26], reappearing in the 1970-th within biophysics with Davydov’s
model for energy transport in biomolecules (e.g., [45], Chapter 5.6), in the
1980-th within physical chemistry in the theory of local modes of small
molecules (e.g., [45], Chapter 5.4) and within nonlinear optics modeling
coupled nonlinear waveguides (e.g., [23], Chapter 1.4), and most recently
around the turn of the century within matter wave physics in the descrip-
tion of a dilute Bose–Einstein condensate trapped in a periodic potential
[46]. A brief account of experimental verifications of the validity of the
DNLS description in the two latter contexts available at the time of writ-
ing was given in [14]. In addition, the D-DNLS equation has played a
central role in the development of the general theory for intrinsic localized
modes (“discrete breathers”) in systems of coupled anharmonic oscillators
during the 1990-th [17]. The reader should also note that the DNLS equa-
tion is a particular example of the more general “discrete self-trapping”
(DST) systems (described under a separate entry), where the general DST
dispersion matrix describing interactions between lattice sites is restricted
to nearest-neighbor couplings. Thus, the general theory described for DST
systems is also applicable for the DNLS equation.

The reason for the ubiquity of the DNLS equation in nonlinear lattice
systems is analogous to that of the one-dimensional NLS equation for con-
tinuum systems: it takes into account dispersion as well (through the near-
est neighbor interaction terms) as nonlinearity (the term ξ(unūn)un, n ∈ Z,
at the lowest order of approximation. It can be derived, for example, from
a general system of coupled anharmonic oscillators using a “rotating wave
approximation”, where it is assumed that each oscillator approximately
can be described by a complex rotating-wave amplitude [17]. Thus, this
approximation assumes time-periodic solutions to have a purely harmonic
time dependence, neglecting the generation of all higher harmonics. This
approximation can be justified for small-amplitude oscillations in weakly
coupled oscillator chains, using perturbational techniques with expansions
on multiple time scales [17]. As for general DST systems, the D-DNLS
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equation has, in addition to the energy functional – Hamiltonian:

H = δ
∑
n∈Z

(un+1 − un)(ūn+1 − ūn) − ξu2nū
2
n),

A second conserved quantity, which is the excitation number N =

=
∑
n∈Z

unūn. The conservation of excitation number results (through

Noether’s theorem) from the invariance of the equation under infinitesimal
transformations of the overall phase (un → un exp(iε), un → un exp(−iε)
as ε → 0, n ∈ Z). As a consequence, the DNLS equation is integrable
for two degrees of freedom but non-integrable for larger systems. Still, the
existence of a second conserved quantity has some notable consequences,
which makes the DNLS equation nongeneric among general Hamiltonian
lattice systems, such as(

dun/dt
dūn/dt

)
= Kn[u, u∗] :=

=

(
δi(un+1 − 2un + un−1) − ξiūnun(un+1 + un−1)
−δi(2ūn − un+1 − un−1) + ξiūnun(ūn+1 + ūn−1)

)
. (1.3)

It has purely harmonic time-periodic solutions (un(t), ū(t))ᵀ =
= (An exp(−iωt), Ān exp(iωt))ᵀ ∈M2 with time-independent (An, Ān)ᵀ ∈
∈ C2, n ∈ Z, (“stationary solutions”). It also has continuous families of
time-quasi-periodic solutions, with two incommensurate frequencies, which
may be spatially exponentially localized also in infinite systems (“quasi-
periodic breathers”) (e.g. [14]). From a mathematical point of view, it is
highly interesting that there also exist discretizations of the integrable 1-D
cubic NLS equation that conserve its integrability. The most famous inte-
grable DNLS equation is the so-called Ablowitz–Ladik AL-DNLS equation,
the integrability of which was first proven by Ablowitz & Ladik [2]. The
dynamical system (1.3) appears to be a bi-Hamiltonian flow on the dis-
crete manifold M2 with respect to non-canonical Poisson brackets (see e.g.
[15]). There is, at this date, no known direct physical application of the
AL-DNLS equation; however, it is commonly used as a starting point for
perturbational studies of physically more relevant equations such as (1.2).
A particularly interesting model allowing interpolations between Equa-
tions (1.2) and (1.3) is the so-called “Salerno equation”, which is described
under a separate entry.
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Taking into account a rich analytical structure of solutions to the AL-
DNLS equation (1.3), it is naturally to explain this phenomenon by means
of its rich symmetry structure. Namely, in our work we study in detail the
related differential-geometric and symplectic stucture of these hidden sym-
metries responsible for the complete integrability by means of the symplec-
tic gradient-holonomic approach devised before in [39, 7] for the smooth
nonlinear dynmamical ssytems on functional manifolds.

2. Preliminary notions and definitions. Consider an infinite-
dimensional discrete manifold Mm ⊂ l2(Z;Cm) for some integer m ∈ Z+

and a nonlinear dynamical system of the form

dw/dt = K[w], (2.1)

where w ∈ Mm and K : Mm → T (Mm) is a Fréchet smooth nonlinear
local mapping of Mm into its tangent space T (Mm) and t ∈ R is the
evolution parameter. As examples of the dynamical system (2.1) at m = 2
on a discrete manifold M2 ⊂ l2(Z;C2), one can consider the well-known
[1, 34] discrete nonlinear Schrödinger equation (1.3) (also known as the
Ablowitz–Ladik AL-DNLS equation):(

dun/dt
dūn/dt

)
= Kn[u, ū] :=

:=

(
i(un+1 − 2un + un−1) − iūnun(un+1 + un−1)
−i(2ūn − un+1 − un−1) + iūnun(ūn+1 + ūn−1)

)
, (2.2)

where we put, for brevity, w = (u, u)ᵀ, δ = 1 = ξ, (the overbar denotes, as
before, the complex conjugate) and the so-called Ragnisco–Tu [42] equa-
tion: (

dun/dt
dvn/dt

)
= K̃n[u, v] :=

(
un+1 − u2nvn
−vn−1 + unv

2
n

)
(2.3)

on the funbctional manifold M2 ⊂ l2(Z;R2), where we put w = (u, v)ᵀ ∈
∈ M2, which have interesting applications [13, 28, 14] in a wide range of
plasma physics problems.

To analyze the integrability properties of the differential-difference dy-
namical system (2.1), we shall develop a gradient-holonomic scheme related
to those devised in [39, 25, 33, 7] for nonlinear dynamical systems defined
on spatially one-dimensional functional manifolds and extended in [40] to
include discrete manifolds.
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Denote by (·, ·) the standard bilinear form (or pairing) on the space
T ∗(Mm) × T (Mm) naturally induced by the inner product in the Hilbert
space l2(Z;Cm). We define D(Mm) to be the space of smooth functionals
on Mm, so for any γ ∈ D(Mm) one can define the gradient grad γ[w] ∈
∈ T ∗(Mm) as

grad γ[u, ū] := γ′,∗[w] · 1, (2.4)

where the prime denotes the Fréchet derivative and “∗” represents the
conjugation with respect to the standard bracket on T (Mm) × T ∗(Mm).

Definition 2.1. A linear smooth operator ϑ : T ∗(Mm) → T (Mm) is
called Poissonian on the manifold Mm, if the bilinear bracket

{·, ·}
ϑ

:= (grad (·), ϑgrad (·))

satisfies [4, 5, 39, 8, 18] the Jacobi identity on the space D(Mm) of all
smooth functionals on Mm.

This means, in particular, that the bracket (2.4) satisfies the standard
Jacobi identity on D(Mm).

Definition 2.2. A linear smooth operator ϑ : T ∗(Mm) → T (Mm) is
called Nötherian [8, 18, 39] with respect to the nonlinear dynamical system
(2.1) if

LKϑ = ϑ′K − ϑK ′,∗ −K ′ϑ = 0 (2.5)

holds identically on the manifold Mm, where LK is the Lie-derivative along
the vector field K : Mm → T (Mm).

If the mapping ϑ : T ∗(Mm) → T (Mm) is invertible with inverse map-
ping ϑ−1 := Ω : T (Mm) → T ∗(Mm), it is called symplectic. It then follows
easily from (2.5) that

LKΩ = Ω′K + ΩK ′ +K ′,∗Ω = 0 (2.6)

hold identically on Mm. Having now assumed that the manifold Mm ⊂
⊂ l2(Z;C2) is endowed with a smooth Poissonian structure ϑ : T ∗(Mm) →
T (Mm), one can define the Hamiltonian system

dw/dt := −ϑ grad H[w], (2.7)

corresponding to a Hamiltonian function H ∈ D(Mm). It follows directly
from the definition (2.7) that the dynamical system dw/dt = K[w] :=
:= −ϑ grad H[w] satisfies the Nötherian conditions (2.5). We are study-
ing the integrability [5, 37, 8, 7] of the discrete dynamical system (2.1).
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Accordingly we need to construct invariants with respect to it functions,
called conservation laws, which are mutually commuting with respect to
the Poisson bracket (2.4). The following Lax criterion [31, 39, 7] proves to
be very useful.

Lemma 2.3. Any smooth solution φ ∈ T ∗(Mm) to the Lax equation

LK φ = dφ/dt+K ′,∗φ = 0, (2.8)

satisfying the symmetry condition φ′ = φ′.∗, with respect to bracket (·, ·),
is related to the conservation law

γ :=

1∫
0

dλ(φ[wλ], w). (2.9)

Proof. The expression (2.9) follows easily from the well-known Volterra
homology equalities

γ =

1∫
0

dγ[wλ]

dλ
dλ =

1∫
0

dλ(1, γ′[wλ] · w) =

=

1∫
0

dλ(γ′,∗[wλ] · 1, w) =

1∫
0

dλ(grad γ[wλ], w)

and (grad γ[w])′ = (grad γ[w])′,∗, holding identically on Mm. Whence,
one finds that there exists a function γ ∈ D(Mm) such that LKγ = 0,
grad γ[w] = φ[w] for any w ∈Mm. Lemma is proved.

This result of Lax lemma is a direct consequence of the following gen-
eralized Nöther type result.

Lemma 2.4. Let a smooth element ψ ∈ T ∗(Mm) satisfy the Nöther
condition

LKψ = dψ/dt+K ′,∗ψ = grad Lψ (2.10)
for some smooth functional Lψ ∈ D(Mm). Then the following Hamiltonian
representation K = −ϑ grad Hϑ holds, where ϑ := ψ′ − ψ′,∗ and the
Hamiltonian function is Hϑ = (ψ,K) − Lψ.

It is easy to see that Lemma 2.3 follows from Lemma 2.4, if the condi-
tions ψ′ = ψ′,∗ and Lψ = 0 are imposed on (2.10).

Assume now that equation (2.10) allows an additional (non-symmetric)
smooth solution ϕ ∈ T ∗(Mm):

LKϕ = dϕ/dt+K ′,∗ϕ = grad Lϕ . (2.11)



The discrete Schredinger type hierarchies of dynamical system ... 327

This means that our system (2.1) is bi-Hamiltonian: −ϑ gradHϑ = K =
= −η grad Hη , where, by definition,

η := ϕ
′
− ϕ

′∗, Hη = (ϕ,K) − Lϕ . (2.12)

Definition 2.5. One says that two Poissonian structures ϑ, η :
T ∗(Mm) → T (Mm) on Mm are compatible [32, 18, 39, 8], if for any
λ, µ ∈ R the linear combination λϑ + µη : T ∗(Mm) → T (Mm) will be
also Poissonian on Mm.

It is easy to see that this condition is satisfied if, for instance, there
exists an inverse ϑ−1 : T (Mm) → T ∗(Mm) and the composite map
η(ϑ−1η) : T ∗(Mm) → T (Mm) is also Poissonian on Mm.

Concerning the complete integrability of the infinite-dimensional dy-
namical system (2.1) on the discrete manifold Mm it is, in general, nec-
essary, but not sufficient [37, 39, 7], to prove the existence of an infinite
hierarchy of mutually commuting conservation laws with respect to the
Poissonian structure (2.4).

Since in the case of Lax integrability of (2.1) there exist compatible
Poissonian structures and related hierarchies of conservation laws, we shall
focus our analysis by devising an integrability algorithm under the a priori
assumption that the nonlinear dynamical system (2.1) on the manifoldMm

is Lax integrable. This means that it possesses a Lax representation in the
following general form:

∆fn := fn+1 = ln[w;λ]fn , (2.13)

where f := {fn ∈ Cr : n ∈ Z} ⊂ l2(Z;Cr) for some integer r ∈ Z+ and
the matrices ln[w;λ] ∈ EndCr, n ∈ Z, in (2.13) are local matrix-valued
functionals onMm, depending on the “spectral” parameter λ ∈ C, invariant
with respect to our dynamical system (2.1).

As the Lax representation (2.13) is ‘local’ with respect to the discrete
variable n ∈ Z, we shall assume for convenience that our manifold Mm :=

:= M
(N)
m ⊂ l∞(Z/NZ;Cm) is periodic with respect to the discrete index

n ∈ ZN , that is for any n ∈ ZN := Z/NZ and λ ∈ C

ln[w;λ] = ln+N [w;λ] (2.14)

for some integer N ∈ Z+. In this case the smooth functionals on M
(N)
m

can be represented as γ :=
∑
n∈ZN

γn[w] for some local Fréchet smooth
densities γn : M

(N)
m → C, n ∈ ZN .
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3. Integrability analysis: the gradient-holonomic scheme. Con-
sider the representation (2.13) and define its fundamental solution
Fm,n(λ) ∈ Aut(Cr), m, n ∈ ZN , satisfying the equation

Fm+1,n(λ) = lm[w;λ]Fm,n(λ)

and the condition Fm,n(λ)|m=n = 1 for all λ ∈ C and n ∈ ZN . Then the
matrix function

Sn(λ) := Fn+N,n(λ) (3.1)

is called the monodromy matrix for the linear equation (2.14) and satisfies
for all n ∈ ZN the Novikov–Lax relationship

Sn+1(λ)ln = lnSn(λ). (3.2)

It easy to compute that Sn(λ) :=
∏N−1
k=0 ln+k[u;λ] owing to the periodicity

condition (2.14). Construct now the generating functional

γ̄(λ) := trSn(λ), (3.3)

where tr is the standard trace map, having the asymptotic expansion

γ̄(λ) ∼
∑
j∈Z+

γ̄jλ
j0−j (3.4)

as λ → ∞ for some fixed j0 ∈ Z+. Then, owing to the obvious condition
Dnγ(λ) = 0 for all n ∈ ZN , where we have introduced the ‘discrete’
derivative Dn := ∆−1, we find that all functionals γ̄j ∈ D(M

(N)
m ), j ∈ Z+,

are independent of the discrete index n ∈ ZN and are simultaneously
conservation laws for the dynamical system (2.1).

We now make an additional natural assumption, namely that the gra-
dient vector

φ̄(λ) := grad γ̄(λ)[w] = trl′,∗n (Sn(λ)l−1
n ), (3.5)

solving the Lax determining equation (2.8), satisfies, owing to (3.2), for all
λ ∈ C,

z(λ)ϑ φ̄(λ) = η φ̄(λ), (3.6)

where z : C → C is a meromorphic function, and ϑ and η : T ∗(M
(N)
m ) →

T (M
(N)
m ) are compatible Poissonian operators on the manifold M (N)

m that



The discrete Schredinger type hierarchies of dynamical system ... 329

are Nötherian with respect to the dynamical system (2.1). Then it fol-
lows at once that the generating functional γ(λ) ∈ D(M

(N)
m ) satisfies the

commutation relationships

{γ̄(λ), γ̄(µ)}ϑ = 0 = {γ̄(λ), γ̄(µ)}η (3.7)

for all λ, µ ∈ C. Consequently, if we define on M(N) a generating dynamical
system dw/dτ := −ϑ grad γ̄(λ)[w] as λ → ∞, it follows from (3.7) that
the hierarchy of functionals defined by the coefficients in (3.4) comprise its
conservation laws.

With the importance of invariants and Poissonian structures related
to the linear spectral problem (2.13) firmly in mind, we now describe its
main Lie-algebraic properties and connections with the whole hierarchy of
integrable differential-difference dynamical systems on the manifold Mm.
More precisely, we sketch the Lie-algebraic aspects [36, 15, 43, 44] of the
differential-difference dynamical systems associated with the Lax linear
difference spectral problem (2.13). In this process we shall assume that
ln := ln[w;λ] ∈ Gn := GL2(C) ⊗ C(λ, λ−1) for n ∈ ZN := Z/NZ as
λ → ∞. To describe the related Lax integrable dynamical systems, we
first define first the matrix product-group GN := ⊗Nj=1Gj and its action
GN ×M

(N)
G → M

(N)
G on the phase space M (N)

G := {ln ∈ Gn : n ∈ ZN},
given as {gn ∈ Gn : n ∈ ZN} × {ln ∈ Gn : n ∈ ZN} = {gnlng−1

n+1 ∈ Gn :

n ∈ ZN}. A functional γ ∈ D(M
(N)
G ) is invariant for this action iff the

following discrete relationship

gradγ(ln)ln = ln+1gradγ(ln+1) (3.8)

holds for all n ∈ ZN .
We assume further that the matrix group GN is identified with its

tangent spaces Tl(GN ), l ∈ GN , which is locally isomorphic to the Lie
algebra G(N), where G(N) is the corresponding Lie algebra of the Lie group
GN , which is isomorphic to the tangent space Te(GN ) at the group unity
e ∈ GN . With any element l ∈ GN there are associated, respectively, the
left ηl : G(N) → Tl(G

N ) and right ρl : G(N) → Tl(G
N ) differentials of the

left and right translations on the Lie group GN , and their adjoint mappings
ρ∗l : T ∗

l (GN ) → G(N),∗ and η∗l : T ∗
l (GN ) → G(N),∗, where

(ρ∗l gradγ(l), X) = (gradγ(l), Xl) = (l gradγ(l), X) := Tr(l gradγ(l)X),

(η∗l gradγ(l), X)=(gradγ(l), lX)=(gradγ(l)l,X) :=Tr(gradγ(l)lX) (3.9)
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for any X ∈ G(N) and smooth functional γ ∈ D(GN ). Here Tr : GN → C
is the trace operation on the group GN defined as

TrA := resλ=∞
∑
j∈ZN

SpAj [u, ū;λ]

for any A ∈ GN . By virtue of (3.8) and (3.9), we can define the set {Φn =
= gradγ(ln)ln ∈ G∗

n := T ∗
e (G), n ∈ ZN} belonging to the space G(N),∗ ≃

≃ T ∗
e (GN ) and satisfying the following invariance property:

Φn+1 = Ad∗lnΦn(λ) = l−1
n Φn(λ)ln (3.10)

for any n ∈ ZN . The relationship (3.10) allows to define a function
φ : GN → C invariant with respect to the adjoint action Gn × Gn ∋
(g, Sn(λ)) → adgSn(λ) = gSn(λ)g−1 ∈ Gn for any n ∈ ZN and such that

γ(l) = φ[SN (λ)], ΦN = gradφ[SN (λ)]SN (λ), (3.11)

where, by definition, the expression

SN (λ) =

N∏
j=1

lj [u, ū;λ] (3.12)

coincides exactly with the proper monodromy matrix for the linear spectral
problem (2.13). Owing to (3.10), the matrices Φn = gradφ[Sn(λ)]Sn(λ) ∈
∈ G∗

n, n ∈ ZN , can be reconstructed from (3.12). Therefore, we have [15, 44]
the following Poissonian flow on the matrices Sn(λ) ∈ Gn, n ∈ ZN :

dSn(λ)/dt = [R(gradφ[Sn(λ)]Sn(λ)), Sn(λ)] (3.13)

with respect to the invariant Casimir function φ ∈ I(G∗
n) and the quadratic

Poissonian structure

{γ1, γ2}:=(l, [gradγ1(l),R(l gradγ2(l))]+[R(l gradγ1(l)), gradγ2(l)]) (3.14)

for any functionals γ1, γ2 ∈ D(GN ), which is constructed by means of
a skew-symmetric R-structure R : G(N),∗ → G(N). In particular, the
equality [gradφ(Sn), Sn] = 0 holds for all n ∈ ZN .

Taking into account (3.11), one can rewrite (3.13) as dSn/dt =
= [R(gradγ(ln)ln), Sn] for all n ∈ ZN . This together with (3.10) makes
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it possible to retrieve [27, 43] the related evolution of elements ln ∈ Gn,
n ∈ ZN :

dln/dt = pn+1(l)ln − lnpn(l), (3.15)
pn(l) := R(gradγ(ln)ln)

from the relationships

Sn(λ) = ψn(l)SN (λ)ψ−1
n (l) , ψn(l) =

n∏
j=1

lj [u, v;λ] .

The solution f ∈ l∞(Z,C2) to the linear spectral problem (2.13) satisfies
the associated temporal evolution equation

dfn/dt = pn(l)fn (3.16)

for any n ∈ Z. It is easy to check that the compatibility condition for
the linear equations (2.13) and (3.16) is equivalent to the discrete Lax
representation (3.15), which upon reduction on the group manifold MG,
gives rise to the corresponding nonlinear Lax integrable dynamical system
on the discrete manifold M

(N)
m . Hence, all Casimir invariant functions,

when reduced on the manifold MG, are in involution [43, 44, 16] with
respect to the Poisson bracket (3.14).

Since the existence of an infinite hierarchy of mutually commuting con-
servation laws is a characteristic of the Lax integrability of the nonlinear
dynamical system (2.1), this property can be effectively implemented into
the scheme of our analysis. Namely, we have the following result.

Proposition 3.1. The determiming Lax equation (2.8) allows the fol-
lowing asymptotic (as λ→ ∞) periodic solution φ(λ) ∈ T ∗(M

(N)
m ) :

φn(λ) ∼ an(λ) exp[ω(t;λ)]

n∏
j=0

σj(λ), (3.17)

where for all n ∈ Z
an(λ) := (1, a(1),n[w;λ], a(2),n[w;λ], ..., a(m−1),n[w;λ])τ , (3.18)

a(k),n(λ) ∼
∑
s∈Z+

a
(s)
(k),n[w]λ−s+ã, σj(λ) ∼

∑
s∈Z+

a
(s)
j [w]λ−s+σ̃,

1 ≤ k ≤ m − 1 and ω(t; ·) : C → C, t ∈ R, is a dispersion function.
Moreover, the functional γ(λ) :=

∑
n∈ZN

ln(λ−σ̃σn[w;λ]) ∈ D(M
(N)
m ) is a

generating function of conservation laws for the dynamical system (2.1).
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Proof. Lemma 2.3 and relationship (3.5) imply that the functional
(3.3) is a conservation law for our dynamical system (2.1). Whence, expres-
sion (3.1) and equation (2.13) lead to the solution representation (3.17) for
the Lax equation (2.8). Now, making use of the periodicity of the manifold
M

(N)
m , it follows from the period translation of (3.17) that the functional

γ(λ) :=
∑
n∈ZN

ln(λ−σ̃σn[w;λ]) ∼
∑
j∈Z+

γjλ
−j (3.19)

generates an infinite hierarchy of conservation laws to (2.1), which com-
pletes the proof.

Thus, if we start the Lax integrability analysis of a given nonlinear
dynamical system (2.1), it is necessary, as the first step, to study the
asymptotic solutions (3.17) to the corresponding Lax equation (2.8). These
solutions are then used to construct a related hierarchy of conservation laws
in the functional form (3.19), taking into account expansions (3.18).

Remark 3.2. It is easy to observe that, owing to the arbitrariness of the
period N ∈ Z+ of the manifold M (N)

m , all of the finite-sum expressions ob-
tained above can be generalized to the corresponding infinite-dimensional
manifold Mm ⊂ l2(Z;Cm), if the associated infinite series are convergent.

Since our dynamical system (2.1) induces a bi-Hamiltonian flow on the
manifold M(N) under the above circumstances, the next step is to analyze
the related compatible Poissonian or symplectic structures, satisfying, re-
spectively, either equality (2.5) or equality (2.6). Before doing this, we shall
need the following useful result.

Lemma 3.3. All functionals γj ∈ D(M
(N)
m ) in the expansion (3.19)

are mutually with respect to both Poissonian structures ϑ, η : T ∗(M
(N)
m ) →

T (M
(N)
m ) satisfying the gradient relationship (3.20).

Proof. It follows from the representations (3.17) and (3.5) that the
followinf asymptotic (as λ→ ∞) relationship holds:

ln γ̄(λ) ≃ γ(λ). (3.20)

Since the generating function γ̄(λ) ∈ D(M
(N)
m ) satisfies the commutation

relationships (3.7), the same also holds, owing to (3.20), for the generating
function γ(λ) ∈ D(M

(N)
m ). Thus, the proof is complete.

We proceed now with the construction of the Poissonian structures
ϑ, η : T ∗(M

(N)
m ) → T (M

(N)
m ) for the dynamical system (2.1). Note that
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these Poissonian structures are also Nötherian for the whole hierarchy of
dynamical systems

dw/dtj := −ϑ grad γj [w], tj ∈ R, j ∈ Z+, (3.21)

are the corresponding evolution parameters, and which, owing to (3.7),
commute with each other on the manifold M (N)

m . Therefore, it possible to
apply Lemma 2.4 to any one of the dynamical systems (3.21) if the related
vector fields commuting with (2.1) are assumed known.

To solve equation (2.10) for an element φ ∈ T ∗(M
(N)
m ) one can, in

the case of a polynomial dynamical system (2.1), make use of the well-
known asymptotic small parameter method [39, 33]. When applying this
approach, it is necessary to take into account the following expansions at
zero — element (u, ū)ᵀ = 0 ∈ M

(N)
m with respect to the small parameter

µ→ 0:
w := µw(1), φ[w(1)] = φ(0) + µφ(1)[w(1)] + µ2φ(2)[w(1)] + . . . ,

d/dt = d/dt0 + µd/dt1 + µ2d/dt2 + . . . ,

K[w(1)] = µK(1)[w(1)] + µ(2)K(2)[w(1)] + . . . ,

K ′[w(1)] = K ′
0 + µK ′

1[w(1)] + µ2K ′
2[w(1)] + . . . ,

grad L[w(1)] = grad L(0) + µgrad L(1)[w(1)] + µ2grad L(2)[w(1)] + . . . .

After solving the corresponding set of linear nonuniform functional equa-
tions

dφ(0)/dt0 +K ′∗
0 φ

(0) = grad L(0),

dφ(1)/dt0 +K ′∗
0 φ

(1) = grad L(1) −K ′∗
0 φ

(0),

dφ(2)/dt0 +K ′∗
0 φ

(2) = grad L(2) −K ′∗
1 φ

(1) −K ′∗
2 φ

(0)

and so on, using Fourier transforms applied to the suitable N -periodic
functions, one can obtain the related Poissonian structure in the series
form ϑ−1 = φ(0),′−φ(0),′∗ +µ(φ(1),′−φ(1),′∗) + . . . and finally set µ = 1.

Another direct way of obtaining a Poissonian operator ϑ : T ∗(M
(N)
m ) →

T (M
(N)
m ) for (2.1) is the following: First reduce the Nötherian equation

(2.5) to the set of linear nonuniform equations

d

dt0
(ϑ0φ

(0)) = K ′
0(ϑ0φ

(0)) ,

d

dt0
(ϑ1φ

(0)) = K ′
0(ϑ1φ

(0)) + ϑ0K
′,∗
1 φ(0) +K ′

1ϑ0φ
(0),
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d

dt0
(ϑ2φ

(0)) = K ′
0(ϑ2φ

(0)) − φ(0)′K1 + ϑ0K
′,∗
2 φ(0)+

+ ϑ1K
′,∗
1 φ(0) + ϑ2K

′,∗
0 φ(0) +K ′

1ϑ1φ
(0) +K ′

2ϑ0φ
(0),

and then solve using the above small parameter asymptotics. The analyt-
ical expressions for actions ϑj : φ(0) → ϑjφ

(0), j ∈ Z+ can now be used to
retrieve them in operator form from the expansion ϑ = ϑ0 +µϑ1 +µ2ϑ2 +
+ . . . , by setting µ = 1 at the end of the calculations. Similarly one can
also construct the second Poissonian operator η : T ∗(M

(N)
m ) → T (M

(N)
m )

for the nonlinear dynamical system (2.1).
Now the next result follows directly from all of the above analysis.
Proposition 3.4. Let a nonlinear dynamical system (2.1) on a discrete

manifold M (N)
m admit both a nontrivial symmetric solution φ ∈ T ∗(M

(N)
m )

to the Lax equation (2.8) in the asymptotic as form (3.17) as λ → ∞,
generating an infinite hierarchy of nontrivial functionally independent
conservation laws (3.19), and compatible nonsymmetric solutions ψ and
ϕ ∈ T ∗(M

(N)
m ) to the Nöther equations (2.10) and (2.11), respectively. Then

this dynamical system is a Lax integrable bi-Hamiltonian flow on M
(N)
m

with respect to two compatible Poissonian structures ϑ, η : T ∗(M
(N)
m ) →

T (M
(N)
m ), whose adjoint Lax representation

dΛ/dt = [Λ,K ′,∗], (3.22)

where Λ := ϑ−1η, is the so-called recursion operator. This operator can
be transformed, in virtue of the gradient relationship (3.6), to the stan-
dard discrete Lax form dln/dt = [pn(l), ln] + (Dnpn(l))ln for some matrix
pn(l) ∈ EndCr describing the temporal evolution dfn/dt = pn(l)fn related
to (2.13), for f ∈ l∞(Z;Cr).

Remark 3.5. Inasmuch as all Hamiltonian flows (3.21) commute with
each other and the dynamical system (2.1), and since they possess the same
Poissonian and compatible (ϑ, η)-pair, the analytical algorithm described
above can also be applied to any other flow commuting with (2.1).

Solutions to the discrete linear Lax problem (2.13) can be construct-
ed by means of the gradient-holonomic algorithm devised in [39, 25, 7]
for studying the integrability of nonlinear dynamical systems on func-
tional manifolds. More specifically, by making use of the preliminary
analytical expressions for the related compatible Poissonian structures
ϑ, η : T ∗(M

(N)
m ) → T (M

(N)
m ) on the manifold M

(N)
m and using the fact
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that the recursion operator Λ := ϑ−1η : T ∗(M
(N)
m ) → T ∗(M

(N)
m ) satisfies

the dual Lax commutator equality (3.22), one can retrieve the standard
Lax representation for it in terms of algebraic formulas. As a corollary
of Proposition 3.4, one has the existence of a nontrivial asymptotic (as
λ → ∞) solution to the Lax equation (2.8), which provides an effective
Lax integrability criterion for a dynamical system (2.1) on the manifold
M

(N)
m .

4. The Bogoyavlensky–Novikov finite-dimensional reduction.
In this section, we assume that our dynamical system (2.1) on the periodic
manifold M (N)

m is Lax integrable and possesses two compatible Poissonian
structures ϑ, η : T ∗(M

(N)
m ) → T (M

(N)
m ). Thus, we have the nonlinear finite-

dimensional dynamical system

dw/dt := Kn[w] = −ϑ grad Hn[w] (4.1)

for indices n ∈ ZN , owing to its N -periodicity. The finite-dimensional
dynamical system (4.1) can be equivalently considered as that on the
finite-dimensional space M (N)

m ≃ (Cm)N parameterized by an integer in-
dex n ∈ ZN . The Liouville integrability of this system is our next concern.
To study the flow (4.1) on the manifold M(N), we shall make use of the
Bogoyavlensky–Novikov [37, 11] reduction scheme [37, 39, 8, 40].

Let Λ(M
(N)
m ) := ⊗Nj=0Λj(M

(N)
m ) be the standard finitely generated

Grassmann algebra [5, 39, 7] of differential forms on the manifold M(N).
Then the differential complex

Λ0(M (N)
m )

d→ Λ1(M (N)
m )

d→ · · · d→ Λj(M (N)
m )

d→ Λj+1(M (N)
m )

d→ · · · ,

where d : Λ(M
(N)
m ) → Λ(M

(N)
m ) is the exterior differentiation, is finite

and exact. Since the discrete "derivative"Dn := ∆−1 commutes with the
differentiation d : Λ(M

(N)
m ) → Λ(M

(N)
m ), [Dn, d] = 0 for all n ∈ ZN , and

for any element a ∈ Λ0(M
(N)
m )

grad(
∑
n∈ZN

Dnan[w]) = 0, (4.2)

one can formulate the following Gelfand–Dikiy type [19] result.

Lemma 4.1. Let L[w] ∈ Λ0(M
(N)
m ) be a Fréchet smooth local La-

grangian functional on the manifold M (N)
m . Then there exists a differential
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1-form α(1) ∈ Λ1(M
(N)
m ), such that the equality

dLn[w] =< grad Ln[w], d(w)ᵀ > +Dnα
(1)
n [w] (4.3)

holds for all n ∈ ZN .
Proof. One can easily see that

dLn[w] =

N−1∑
j=0

<
∂Ln[w]

∂wn+j
, dwn+j >

N−1

=
∑
j=0

<
∂Ln[w]

∂wn+j
,∆jdwn >=

=<
N−1∑
j=0

∆−j ∂Ln[w]

∂wn+j
, dwn >= Dn

(N−1∑
j=0

(< pj , dwn+j >

)
,

where pk :=
N−1∑
j=0

∆−j ∂Ln[w]
∂wn+j+k+1

for k = 0, . . . , N − 1. Having defined the

expression grad Ln[w] :=
N−1∑
j=0

∆−j ∂Ln[w]
∂wn+j

, one obtains the result (4.3),

where

α(1)
n [w] :=

N−1∑
j=0

< pj , dwn+j > (4.4)

is the corresponding differential 1-form on the manifold M
(N)
m , thereby

concluding the proof.
Exterior differentiating expression (4.3), we obtain that

−Dnω
(2)
n [w] =< d grad Ln[w],∧dw > (4.5)

for any n ∈ Z, where the 2-form

ω(2)[w] := dα(1)[w] (4.6)

is nondegenerate on M
(N)
m if the Hessian ∂2nL[w]/∂2w is also nondegener-

ate.
Consider the manifold

M̄ (N)
m :=

{
grad L(Ñ)

n [w] = 0; w ∈M (N)
m

}
, (4.7)

where the Lagrangian functional is defined as

L(N̄) := −γN̄ +
N̄−1∑
j=0

cjγj (4.8)
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with γj ∈ D(M
(N)
m ), j = 0, . . . , N̄ − 1, for some N̄ ∈ Z+, being suitable

nontrivial conservation laws for the dynamical system (2.1) as constructed
above. Here cj ∈ C, ≤ j ≤ N̄ − 1, are arbitrary but fixed constants. It fol-
lows from (4.7) and (4.5) that the closed 2-form ω(2) ∈ Λ2(M

(N)
m ) is invari-

ant with respect to the index n ∈ ZN on the manifold M̄ (N)
m . Moreover, the

submanifold (4.7) is also invariant both with respect to the index n ∈ ZN
and the evolution parameter t ∈ R. In fact, for any n ∈ ZN the Lie deriva-
tive LKgrad L(N̄) = (grad L(N̄))′K+K ′,∗(grad L(N̄)) = 0, since the func-
tional L(N̄)

n [w] ∈ D(M̄
(N)
m ) is a sum of conservation laws for the dynamical

system (2.1), whose gradients satisfies the Lax condition (2.8). In addition,
it is easy to see that if the Lie derivative LKgradL(N̄)

n [w] = 0, n ∈ ZN ,
at t = 0, then grad L(N̄)

n [w] = 0 for all t ∈ R and n ∈ ZN . Thus, the
Bogoyavlensky–Novikov reduction of the dynamical system (2.1) upon the
invariant submanifold M̄ (N)

m is completely invariantly defined.
At this point there is a natural question to ask: What is the relation-

ship between the dynamical system (2.1) restricted to the submanifold
M

(N)
m and the dynamical system (2.1) reduced on the finite-dimensional

submanifold M̄ (N)
m ⊂M

(N)
m ? To further analyze the reduction, we consider

the equation

< grad L(N̄)
n [w],Kn[w] >= −Dnh

(t)
n [w], (4.9)

for a local functional h(t)[w] ∈ Λ0(Mm), which follows from the conditions
(4.2) and (2.8):

grad < grad L(N̄)
n [w],Kn[w] >=

= (grad L(N̄)
n [w])′,∗Kn[w] +K ′,∗

n [w]grad L(N̄)
n [w] =

= (grad L(N̄)
n [w])′Kn[w] +K ′,∗

n [w]grad L(N̄)
n [w] = LKgrad L(N̄)

n [w] = 0,

Since on the submanifold M̄
(N)
m the gradient grad L(Ñ)

n [w] = 0 for all
n ∈ ZN , we deduce from (4.9) that the local functional h(t)[w] ∈ Λ0(M̄

(N)
m )

does not depend on index n ∈ ZN .
The properties of the manifold M̄ (N)

m described above, make it possible
to consider it as a symplectic manifold endowed with the symplectic struc-
ture ω(2) ∈ Λ2(M̄

(N)
m ) given by expressions (4.4) and (4.6). From this point

of view we can study the integrability properties of the dynamical system
(2.1) reduced on the invariant finite-dimensional manifold M̄ (N)

m ⊂M
(N)
m .
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First, we observe that the vector field d/dt on M̄(N) is canonically
Hamiltonian [4, 5, 37] with respect to the symplectic structure ω(2) ∈
∈ Λ2(M̃(N)), i.e.

−i d
dt
ω(2)(u, p) = dh(t)(u, p), (4.10)

where h(t)(w, p) := h(t)[w], ω(2)(w, p) := ω(2)[w] and (w, p)ᵀ ∈ M̄
(N)
m are

canonical variables induced on the manifold M̄ (N)
m by the Liouville 1-form

(4.4). More specifically, from expression (4.9) one obtains that

di d
dt
< grad L(N̄)

n [w], dwn >= −Dndh
(t)
n [w],

which together with the identity (4.5) in the form

i d
dt
d < grad L(N̄)

n [w], dwn >= −Dni d
dt
ω(2)
n [w],

leads to

d

dt
< grad L(N̄)

n [w], dwn >= −Dn(dh(t)n [w] + i d
dt
ω(2)
n [w]). (4.11)

Since grad L(N̄)[w] = 0 = LK grad L[w] identically on M̄ (N)
m , from (4.11)

one obtains the result (4.10).
The same is true of any of the Hamiltonian systems (3.21) commut-

ing with (2.1) on the manifold Mm. Moreover, owing to the function-
al independence of invariants γj ∈ D(M

(N)
m ), 0 ≤ j ≤ N − 1, in the

Lagrangian functional (4.8), we can construct a set of functionally in-
dependent functions h(j) ∈ D(M̄

(N)
m ), j = 0, . . . , N̄ − 1, as follows:

< gradL(Ñ)
n [w], ϑ grad γj,n[w] >= Dnh

(j)
n [w] . It is easy to check that

these functions h(j) ∈ D(M̄
(N)
m ), 0 ≤ j ≤ N̄ − 1, are invariant with re-

spect to indices n ∈ ZN and commute with each other and the Hamil-
tonian function h(t) ∈ D(M̄

(N)
m ) with respect to the symplectic structure

ω(2) ∈ Λ2(M̄
(N)
m ). Thus, if the dimension dim M̃(N) = 2Ñ , the discrete

dynamical system (2.1) reduced upon the finite-dimensional submani-
fold M̄

(N)
m ⊂ M

(N)
m is Liouville integrable. If the set of conservation laws

γj ∈ D(M
(N)
m ), j = 0, . . . , N − 1, is functionally dependent on M

(N)
m ,

the scheme can be modified using the Dirac reduction technique [4, 8, 39]
for determining a regular symplectic structure ω̄(2)[w] ∈ Λ2(M̄

(N)
m ) on an

invariant nonsingular submanifold M̄ (N)
m .
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5. Examples: differential-difference nonlinear Schrödinger and
Ragnisco–Tu dynamical systems and their integrability.

5.1. The discrete nonlinear Schrödinger dynamical system.
The discrete nonlinear Schrödinger dynamical system (2.2) is defined on
the periodic manifold M2 ⊂ l∞(Z;C2). Its Lax type integrability was
proved in [1, 34, 10] making use of the simplest discretization of the
standard Zakharov–Shabat spectral problem for the well-known nonlin-
ear Schrödinger equation. We begin this section by applying the gradient-
holonomic integrability analysis described above to the discrete dynamical
system (2.2). First, we shall show the existence of an infinite hierarchy of
functionally independent conservation laws obtained by solving the deter-
mining Lax equation (2.8) in the asymptotic form (3.17). The following is
a key result for our analysis.

Lemma 5.1. The functional expression

φn :=

(
1

an(λ)

)
exp[it(2 − λ− λ−1)]

n∏
j=0

σj(λ), (5.1)

where

σj(λ) ∼ λ

hj [u, ū]
(1 −

∑
s∈Z+

σ
(s)
j [u, ū]λ−s−1), (5.2)

an(λ) ∼
∑
s∈Z+

a(s)n [u, ū]λ−s,

is an asymptotic solution to the determining Lax equation

dφn/dt+K ′,∗φn = 0 (5.3)

as λ → ∞ for all n ∈ ZN with the operator K ′,∗ : T ∗(M2) → T ∗(M2) of
the form:

K ′,∗
n =


i∆−1D2

n − iūn(un+1 + un−1)−
−i(∆ + ∆−1) · ūnun

iūn(ūn+1 + ūn−1)

−iun(un+1 + un−1)
−i∆−1D2

n + iun(ūn+1 + ūn−1)+
+i(∆ + ∆−1) · ūnun

.
(5.4)

Proof. It suffices to find the corresponding coefficients of the asymp-
totic expansions (5.2). To do this, we consider the following two equations
that can be easily obtained from (5.3), (5.4) and (5.1):
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D−1
n

d
dt [− lnhn + ln(1 −

∑
s∈Z+

σ
(s)
n λ−s−1)]+

+iλ[h−1
n+1(1 − ūnun)(1 −

∑
s∈Z+

σ
(s)
n λ−s−1) − 1]+

+ i
λ

[
(1 − ūn−1un−1)hn(1 −

∑
s∈Z+

σ
(s)
n λ−s−1)−1 − 1

]
−

−iūn(un+1 + un−1) + iūn(ūn+1 + ūn−1)
∑
s∈Z+

a
(s)
n λ−s

(5.5)

and( ∑
s∈Z+

a
(s)
n λ−s

)
D−1
n

d
dt [− lnhn + ln(1 −

∑
s∈Z+

σ
(s)
n λ−s−1)] + 4i

( ∑
s∈Z+

a
(s)
n λ−s

)
+

+
[
iλhn+1(ūn+1un+1 − 1)(

∑
s∈Z+

a
(s)
n+1λ

−s)(
∑
s∈Z+

a
(s)
n+1λ

−s) −
∑
s∈Z+

a
(s)
n λ−s

]
+

+ i
λ

[
(ūn−1un−1 −1)(

∑
s∈Z+

a
(s)
n+1λ

−s)hn(1 −
∑
s∈Z+

σ
(s)
n λ−s−1)−1 −

∑
s∈Z+

a
(s)
n λ−s

]
+

+ d
dt

∑
s∈Z+

a
(s)
n λ−s − iun(un+1 + un−1) + iun(ūn+1 + ūn−1)

∑
s∈Z+

a
(s)
n λ−s.

Now equating the coefficients of (5.5) at the same degrees of the param-
eter λ ∈ C, we recursively obtain the functional expression expression for
hn, σ

(s)
n and a(s)n , n ∈ Z, s ∈ Z+; namely,

hn = (1 − u∗nun), a(0)n = 0, a(1)n = β,

σ(0)
n = u∗n−1(un + un−2) − i∆−1D2

n(lnhn)t,

σ(1)
n = i

d

dt
σ
(0)
n−1 + (hn−1hn−2 − 1) + a

(1)
n−1u

∗
n−1(un + un−2),

a(2)n = −3a
(1)
n−1 + i

d

dt
σ
(1)
n−1 − ia

(1)
n−1D

−1
n (lnhn−1)t+

+ a(1)n σ(0)
n − un−1(u∗n + u∗n−2)a

(1)
n−1,

dhn/dt = iDn(u∗n−1un − u∗nun−1), . . . ,

whence σ
(0)
n = −(u∗nun−1 + u∗n−1un−2) , σ

(1)
n =

= i
d

dt
σ
(0)
n−1 + (1 − u∗n−1un−1)(1 − u∗n−2un−2) + βu∗n−1(un + un−2), . . . ,

and so on. Thus, the corresponding recursion formulas are solvable for all
s ∈ Z+, so it follows that the expression (5.1) is a true asymptotic solution
to the Lax equation (5.3), and the proof is complete.
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Recalling now that the expression

γ(λ) := −
N−1∑
n=0

lnhn +
N−1∑
n=0

ln(1 −
∑
s∈Z+

σ(s)
n λ−s−1)

as λ→ ∞ is a generating function of conservation laws for the dynamical
system (2.2), one finds that functionals

γ̄0 =
N−1∑
n=0

ln(1 − ūnun), γ0 = −
N−1∑
n=0

σ(0)
n , γ1 = −

N−1∑
n=0

(σ(1)
n +

1

2
σ(0)
n σ(0)

n ),

γ2 = −
N−1∑
n=0

(σ(2)
n +

1

3
σ(0)
n σ(0)

n σ(0)
n + σ(0)

n σ(1)
n ), . . . ,

and so on, make up an infinite hierarchy of exact conserved quantities for
the discrete nonlinear Schrödinger dynamical system (2.2).

A few remarks are in order concerning the complete integrability of the
discrete nonlinear Schrödinger dynamical system (2.2). First, we can easily
show using the standard asymptotic small parameter approach [39, 25, 7]
that the Nöther equation (2.5) on the manifold M

(N)
2 possesses [40, 34]

the exact Poissonian operator solution

ϑn =

(
0 ihn

−ihn 0

)
, (5.6)

for n ∈ ZN , subject to which the dynamical the dynamical system (2.2) is
Hamiltonian via d

dt (u, u
∗)ᵀ = −ϑ grad Hϑ[u, u∗] on the periodic manifold

M
(N)
2 , where the Hamiltonian function is

Hϑ :=
N∑
n=0

lnh2n −
N∑
n=0

(ūnun+1 − ūnun+1) = 2 ln |γ0| −
1

2
(γ0 + γ̄0).

Similar, but more cumbersome, calculations can be employed to find a
second Poissonian operator solution to the Nöther equation (2.5) in the
matrix form:

η =

(
(hn − unD

−1
n un)∆ (u2n + unD

−1
n un)∆−1

u∗nD
−1
n u∗n∆ −(1 + u∗nD

−1
n un)∆−1

)
×

×
(

unD
−1
n un (hn − unD

−1
n u∗n

1 + u∗nD
−1
n un −(u∗n + u∗nD

−1
n u∗n)

)
, (5.7)
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where the operation D−1
n (·) := (1/2)[

∑n−1
k=0(·)k−

∑N−1
k=n (·)k] is quasi-skew-

symmetric with respect to the usual bilinear form on T ∗(M
(N)
2 )×T (M

(N)
2 ),

satisfying the operator identity (D−1
n )∗ = −∆−1D−1

n ∆, n ∈ Z.
The Poissonian operators (5.6) and (5.7) are compatible, so we can

obtain the related Lax representation for the dynamical system (2.2) by
means of the algebraic gradient-holonomic algorithm. The corresponding
result is as follows: the discrete linear spectral problem

∆fn = ln[u, u∗;λ]fn, (5.8)

where f ∈ l∞(Z;C2) and for n ∈ Z

ln[u, u∗;λ] =

(
λ un
u∗n λ−1

)
,

allows the linear Lax isospectral evolution

dfn/dt = pn(l)fn (5.9)

for some matrix pn(l) ∈ End C2, n ∈ Z, which is equivalent to the Hamil-
tonian flow

dfn/dt = {Hϑ, fn}ϑ , (5.10)

where {·, ·}ϑ is the Poissonian structure on the manifold M (N)
2 correspond-

ing to (5.6). The equivalence of (5.6) and (5.10) can be easily demonstrated
by constructing the monodromy matrix Sn(λ), n ∈ ZN , for all λ ∈ C cor-
responding to (5.8) and calculating the Hamiltonian evolution

d

dt
Sn(λ) = {Hϑ, Sn(λ)}ϑ = [pn(l), Sn(λ)],

giving rise to the same matrix pn(l) ∈ End C2, n ∈ Z, as in equation (5.9).
Thus, we have shown that the nonlinear discrete Schrödinger dynami-

cal system (2.2) is a Lax integrable bi-Hamiltonian flow on the manifold
M

(N)
2 . Since the solution φ(λ) ∈ T ∗(M

(N)
2 ) constructed above satisfies the

gradient-like relationship λϑ φ(λ) = η φ(λ) for all for λ ∈ C, we showed
that the conservation laws are mutually commuting with respect to both
Poisson brackets {·, ·}ϑ and {·, ·}η . From whence follows the classical Liou-
ville integrability [5, 33] of the discrete nonlinear Schrödinger dynamical
system (2.2) on the periodic manifold M

(N)
2 . A detailed analysis of the

integrability procedure via the Bogoyavlensky–Novikov reduction [11, 37]
and an explicit construction of solutions to the dynamical system (2.2) are
planned for a later paper.
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5.2. The discrete nonlinear Ragnisco–Tu dynamical system.
We now consider the Ragnisco–Tu differential-difference dynamical system
(2.3) defined on the periodic manifold M

(N)
2 ⊂ l∞(Z;R2), and construct

first the corresponding asymptotic solution to the Lax equation (2.8). The
following result is quite useful.

Lemma 5.2. The functional expression

φn :=

(
an(λ)

1

)
exp(λt)

n∏
j=1

σj(λ), (5.11)

is an asymptotic (as λ → ∞) solution to the determining Lax equation
(2.8) for all n ∈ ZN with the operator K ′,∗ : T ∗(M

(N)
2 ) → T ∗(M

(N)
2 ) of

the form:

K ′,∗
n =

(
∆−1 − 2unvn

−u2n
v2n

−∆ + 2unvn

)
,

where, by definition,

σn(λ) ∼ λ(1 −
∑
s∈Z+

σ(s)
n [u, v]λ−s), (5.12)

an(λ) ∼
∑
s∈Z+

a(s)n [u, v]λ−s,

and the following analytical expressions

σ(0)
n = 0, a(0)n = 0;σ(1)

n = −2un−1vn−1, a
(1)
n = −v2n;

σ(2)
n = 2un−1vn−2 − u2n−1v

2
n−1, a

(2)
n = 2vn(v−n−1 − v2nun);

σ(3)
n = −2un−1vn−2 −D−1

n (dσ(2)
n /dt+ σ(1)

n dσ(1)
n /dt), (5.13)

a(3)n = −da(2)n /dt− 2(un−1vn−2v
2
n − unvnv

2
n−1), ...,

and so on, hold.
Proof. It is easy to calculate that local σ- and a-functionals on M(N)

satisfy the following functional equations:

λ(1 − σn(λ)) +D−1
n

d
dt lnσn(λ) − u2nan(λ) + 2unvn = 0,

dan(λ)/dt+ λan(λ) + an(λ)D−1
n

d
dt lnσn(λ)−

−2unvnλ
−1an−1(λ)σn(λ)−1 + v2n = 0,
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which allow the asymptotic (as λ→ ∞) solutions in the form (5.12). Then,
solving the corresponding recurrence relations inductively, one obtains the
exact analytical expressions (5.13). Taking now into account that for each
n ∈ Z+ there exists a local functional ρn(λ) such that the expression
d
dt lnσn(λ) = Dnρn(λ) holds onM (N)

2 , we obtain the functional expression
(5.11) solving the Lax equation (2.8), which proves the lemma.

As a simple corollary of Lemma 5.2, we find that the expression

γ(λ) :=

N∑
n=1

ln(1 −
∑
s∈Z+

σ(s)
n λ−s−1) ∼

∑
j∈Z+

γjλ
−j (5.14)

is a generating functional for the infinite hierarchy of conservation laws
γj ∈ D(M

(N)
2 ), j ∈ Z+, of the Ragnisco-Tu differential-difference dynami-

cal system (2.3).
Now we show that the Ragnisco–Tu differential-difference dynamical

system (2.3) is a bi-Hamiltonian dynamical system on the functional man-
ifoldM (N)

2 . To this end, we observe that it follows from Lemma 2.4 that the
element ψ := 1

2 (vn,−un)ᵀ ∈ T ∗(M
(N)
2 ) satisfies the functional equation

(2.10):

dψ/dt+K
′,∗
ψ = grad L, L = −1

2

N−1∑
k=0

u2nv
2
n,

giving rise to the first Poissonian structure

ϑn := ψ′
n − ψ′,∗

n =

(
0 1
−1 0

)
(5.15)

on the manifold M
(N)
2 with respect to which the differential-difference

dynamical system (2.3) is Hamiltonian. In particular, d
dt (un, vn)ᵀ =

= −ϑn grad Hϑ,n[u, v], where the Hamiltonian function, owing to the
relationship (2.12), equals

Hϑ := (ψ,K) − Lψ) =
N−1∑
k=0

(u2nv
2
n/2 − unvn−1) = −1

2

N−1∑
k=0

σ(2)
n .

In the same way one can find the second compatible with (5.15) Poissonian
operator

ηn :=

(
−u2n + 2unD

−1
n ∆un ∆ − 2unD

−1
n ∆vn

−∆−1 + 2unvn − 2vnD
−1
n ∆un −v2n + 2vnD

−1
n ∆vn

)
, (5.16)
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for which d
dt (un, vn)ᵀ = −ηn grad Hη,n[u, v], where the Hamiltonian func-

tion is

Hη := −
N∑
k=1

unvn =
1

2

N∑
k=1

σ
(1)
n+1.

We claim that the hierarchy of conservation laws (5.14) satisfies as λ→ ∞
the gradient relationship

λϑ grad γ(λ) = η grad γ(λ), (5.17)

their mutual commutation with respect to both Poissonian structures
(5.15) and (5.16). Accordingly the Ragnisco–Tu differential-difference dy-
namical system (2.3) is a completely integrable bi-Hamiltonian dynamical
system on the manifold M (N)

2 .
The gradient relationship (5.17) gives rise to the following ‘adjoint’

Lax representation dΛ/dt = [Λ,K
′,∗

], where, by definition, the expression
Λ := ϑ−1η : T ∗(M

(N)
2 ) → T ∗(M

(N)
2 ) is called a recursion operator. Based

on the gradient relationship (5.17) and expression (3.5), we conclude us-
ing the gradient holonomic approach that the Ragnisco–Tu differential-
difference dynamical system (2.3) is also Lax integrable, with an associated
standard linear shift Lax spectral problem of the form

∆fn = ln[u, v;λ]fn, ln[u, v;λ] =

(
λ+ unvn un

vn 1

)
,

for all n ∈ Z, λ ∈ C, where (u, v) ∈M
(N)
2 and f ∈ l∞(Z;C2).

6. Conclusion. The gradient-holonomic scheme for studying Lax in-
tegrability of differential-difference nonlinear dynamical systems devised
here appears to be effective for applications in the one-dimensional case
similar to that of nonlinear dynamical systems defined on spatially one-
dimensional functional manifolds [39, 25, 7, 33, 14]. The algorithm, which
was suggested in [40, 34], makes it possible to readily construct an infi-
nite hierarchy of conservation laws as well as to calculate their compatible
co-symplectic structures. As was also shown, the Bogoyavlensky–Novikov
reduction to integrable Hamiltonian dynamical systems on the correspond-
ing invariant periodic submanifolds generates finite-dimensional Liouville
integrable Hamiltonian systems with respect to the canonical Gelfand–
Dikiy type symplectic structures. As an example, an almost complete inte-
grability analysis of the nonlinear discrete Schrödinger dynamical system
was presented in detail.
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As for different indirect approaches to studying the integrability of
differential-difference dynamical systems on discrete manifolds, it is worth
mentioning the works [29, 12, 35, 6, 9, 24] based on the inverse spec-
tral transform and related Lie-algebraic methods, where a priori Lax in-
tegrable Hamiltonian flows possessing infinite hierarchies of conservation
laws are constructed. Many important analytical properties of these other
approaches were constructively incorporated into the algorithmic gradient-
holonomic scheme presented above.

In this vein, the interesting differential-algebraic approaches [41, 22, 47]
proposed for analyzing the integrability both of differential and differential-
difference dynamical systems should also be noted. For example, in [41,
20, 21] these types of differential-algebraic tools were used to study the
integrability of a generalized (owing to D. Holm and M. Pavlov) Riemann
hydrodynamical hierarchy of dynamical systems of the form

Ds
tu = 0, Dt := ∂/∂t+ uDx, Dx := ∂/∂x, (6.1)

on a smooth functional manifold M ⊂ C∞(R;R) for any integer s ∈ Z+.
It was proved that these systems are Lax integrable and possess a bi-
Hamiltonian structure. By replacing the spatial differentiation Dx, x ∈ R,
by its discrete analogDn = ∆−1, n ∈ Z, in these systems, one can similarly
construct a generalized Riemann type hierarchy of the following discrete
dynamical systems

Ds
tun = 0, Dt := ∂/∂t+ un(Dn +Dn−1)/2, (6.2)

for any integer s ∈ Z+ on a suitable discrete manifold M ⊂ l2(Z;R). And
like their counterparts analyzed above, the integrability properties of (6.2)
are important for several practical applications. Naturally, it would be
interesting to apply our direct gradient-holonomic integrability approach
to the hierarchy (6.2) and find its differential-difference analog using the
known [41, 21, 38] corresponding Lax representations. As one can easily
check, one of the discrete analogs of the corresponding linear Lax “spectral”
problem for (6.1) for s = 2 has the form

∆fn = ln[u, z;λ]fn, ln[u, z;λ] :=

(
1 − λDnun −Dnzn

2λ2 1 + λDnun

)
, (6.3)

where zn := Dnun for any n ∈ Z. Unfortunately, the strongly singular
nature of the spectral problem (6.3)does not seem to allow the construction
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of the related Poissonian structures in a reasonable closed form. On the
other hand, this not the case for the following inviscid discrete Riemann–
Burgers dynamical system (6.2) for s = 1:

Dtwn = 0 ⇒ dwn/dt = −(wn+1 − wn−1)/2 := Kn[w], (6.4)

which is defined on an N -periodic discrete manifold M ⊂ l∞(ZN ;R). Fol-
lowing the gradient-holonomic scheme developed for the earlier examples,
we first show the existence of an infinite hierarchy of conservation laws and
the corresponding bi-Hamiltonian formulation for (6.4) .

From Proposition 3.1 we have the determining equation (2.8)

dφn/dt+ [(∆ − ∆−1)wn/2 + (wn+1 − wn−1)/2]φn = 0

and its asymptotic solution φ ∈ T ∗(M) in the form (3.17):

φn =

n−1∏
j=0

σj [w;λ] ,

where n ∈ Z and the local functionals σj [w;λ], j ∈ Z+, possess as λ → ∞
the expansions σj [w;λ] ∼

∑
s∈Z+

σ
(s)
j [w]λ−s. Upon recursively solving the

resulting functional equations

D−1
n (lnσn)t − (wn−1/σn−1 − wn+1σn)/2 − (wn+1 − wn−1) = 0,

one easily obtains the infinite hierarchy (5.14) of conservations laws

γ0 =

N−1∑
n=0

(wn + wn−1), γ1 = 0,

γ2 =

N−1∑
n=0

[(wn + wn−1)2 + wn(wn−1 + wn+1)], . . . , γ2j+1 = 0

for all j ∈ Z+. Then, applying to the hierarchy of conservation laws the
approach of Lemma 2.4, one can finds by straightforward but lengthy calcu-
lations the following pair ϑ, η : T ∗(M) → T (M) of compatible Poissonian
operators on the manifold M :

ϑn := wn(∆ − ∆−1)wn,

ηn := (wnwn+1∆2 − wnwn−1∆−2)(wn + wn−1∆−1). (6.5)
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In particular, the Hamiltonian representation of the Riemann–Burgers sys-
tem (6.4) is easily seen to be

dwn/dt = −ϑngrad Hϑ, Hϑ := −
N−1∑
n=0

(wn + wn−1)/2.

Moreover, the first Poissonian structure of (6.5) allows the continuous lim-
it lim

∆x→0
n→∞

wn := w(x), if n∆x := x ∈ R, to the well-known [30] correct

continuum form ϑ := (w∂+∂w)(w+∂−1w∂)/2. Making use of the Poisso-
nian pair (6.5), one can use the gradient holonomic scheme to find a Lax
representation related to the inviscid discrete Riemann–Burgers dynamical
system (6.4), whose l-operator is given by the matrix expression

ln[w;λ] =

(
λ −wn
1 0

)
for n ∈ Z and λ ∈ C. It should be noted that the higher flows generated
by the inviscid Riemann–Burgers dynamical system (6.4), have nothing
to do with the generalized Riemann hydrodynamic systems (5.11) and
their discrete approximations. Thus, it is necessary to develop a different
approach to constructing their integrable discrete Lax representations so
that they are compatible with the related continuous limits.

7. Acknowledgements. Authors are gratefully acknowledge par-
tial support for the research in this paper from the Turkey-Ukrainian:
TUBITAK-NASU Grant 110T558. A.K. Prykarpatsky cordially thanks
Prof. D. Blackmore (NJIT, USA) and Prof. M.V. Pavlov (Lomonosov Sate
University, Russian Federation) for useful discussions of the results ob-
tained.

References
[1] Ablowitz M., Ladik J. Nonlinear differential-difference equations // J.

Math. Phys. — 1975. — 16, № 3. — P. 598—603.
[2] Ablowitz M. J., Ladik J. F. Nonlinear differential difference equations

and Fourier analysis // J. Math. Phys. — 1976. — 17, № 6. — P. 1011—
1018.

[3] Aceves A.B., De Angelis C., Luther G.G., Rubenchik A.M., Tu-
ritsyn S.K. All-optical-switching and pulse amplification and steering in
nonlinear fiber arrays // Physica D. — 1995. — 87, № 1—4. — P. 262—272.



The discrete Schredinger type hierarchies of dynamical system ... 349

[4] Abraham R., Marsden J. Foundation of mechanics // The Benjamin/
Cummings Publ. Co, Masachusets, 1978.

[5] Arnold V. I. Mathematical methods of classical mechanics. — NY,
Springer, 1978.

[6] Baez J. C., Gillam J.W. An algebraic approach to discrete mechanics //
Lett. Math. Phys.. — 1994. — 31, № 3. — P. 205—212.

[7] Blackmore D., Prykarpatsky A.K., Samoylenko V. Nonlinear
dynamical systems of mathematical physics: spectral and differential-
geometric integrability analysis. — NJ, World Scientific, 2011.

[8] Blaszak M. Multi-Hamiltonian theory of dynamical systems. — Berlin–
Heidelberg: Springer, 1998.

[9] B laszak M., Szum A., Prykarpatsky A. Central extension approach to
integrable field and lattice-field systems in (2+1)-dimensions // Reports on
Math. Phys. — 1999. — 37, № 5. — P. 27—32.

[10] Bogolubov N.N. (Jr.), Prykarpatsky A.K. Inverse periodic problem
for a discrete approximation of the Nonlinear Schrödinger equation // Dokl.
AN SSSR. — 1982. — 265, № 5. — P. 1103—1108.

[11] Bogoyavlensky O. I., Novikov S. P. On the connection of Hamiltoni-
an formulations of stationary and nonstationary problems // Funk. Anal.
Appl. — 1976. — 10, № 1. — P. 9—13 (in Russian).

[12] Deift P., Li L.-C., Tomei C. Loop groups, discrete versions of some clas-
sical integrable systems and rank-2 extensions // Memoirs of the AMS. —
1992. — 100, № 479. — P. 1—101.

[13] Dodd R.K., Eilbeck J.C., Gibbon J., Morris H.C. Solitons and non-
linear equations. — Academic Press, London, 1984.

[14] Eilbeck J.C., Johansson M. The Discrete Nonlinear Schredinger
equation—20 years on // Localization and Energy Transfer in Nonlinear
Systems: Proc. of the Third Conference, San Lorenzo de El Escorial, Spain,
17—21 June 2002, ed. by L. Vazquez, M.P. Zorzano and R. MacKay. —
Singapore: World Scientific, 2003.

[15] Faddeev L.D., Takhtadjan L.A. Hamiltonian methods in the theory of
solitons. — NY, Springer, 1987.

[16] Fisher B., Ozcag E. A result on distributions and the change of variable
// Publ Math. Debrecen. — 1993. — 43. — P. 265—272.

[17] Flach S., Willis C.R. Discrete breathers // Physics Reports. — 1998. —
295, № 5. — P. 181—264.

[18] Fuchsteiner B., Fokas A. Symplectic structures, Backlund transforma-
trions and hereditary symmetries // Physica D. — 1981. — 4, № 1. — P. 47—
66.



350 A.K. Prykarpatski, E Özçağ, Yu.B. Zelinsky
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