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We establish a constructive description of twice-monogenic functions of
double variable by means twice-differentiable functions of real variable.

Встановлено конструктивний опис двiчi моногенних функцiй подвiйної
змiнної за допомогою двiчi диференцiйовних функцiй дiйсної змiнної.

1. Introduction. An effectiveness of analytic function methods ap-
plicable for researching plane potential fields inspires developing similar
methods for other models of mathematical physics. In this paper we de-
velop such methods for the wave equation

∂2F

∂x2
− ∂2F

∂y2
= 0. (1)

Let P := {x+ jy : j2 := 1, x, y ∈ R} be the algebra of double numbers
over the field of real numbers R (see, e. g., [1, p. 52]). In the algebra P there
exists a basis {I1, I2} such that I21 = I1, I22 = I2, I1I2 = 0 and I1 + I1 = 1.
In this case,

1 = I1 + I2, j = I1 − I2 (2)

and obviously, z = x+jy = (x+y)I1+(x−y)I2. Algebraic operations with
double numbers are defined by the usual way, and the division is defined
for all elements of P except the set of zero divisors {x+ jy : y = ±x}.
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In many papers (see, e. g., [1 — 7]) differentiable functions in P are
studied, and their physical applications are considered. In this paper, in
contrast to previous papers, we consider the differentiable functions in the
sense of Gâteaux that is more weak assumption a priori.

2. Monogenic functions of double variable. We associate the set
Dz := {z = x+ jy : (x, y) ∈ D} in the plane P with a set D of the two-
dimensional real space R2.

We say that a continuous function Φ : Dz → P is monogenic in a
domain Dz if Φ is differentiable in the sense of Gateaux in every point of
Dz, i. e. if for every z ∈ Dz there exists an element Φ′(z) ∈ P such that

lim
ε→0+0

(Φ(z + εh) − Φ(z)) ε−1 = hΦ′(z) ∀h ∈ P. (3)

Theorem 1. Let u(x, y), v(x, y) be differentiable functions in a domain
D ⊂ R2. A function Φ : Dz → P of the form

Φ(z) = u(x, y) + jv(x, y) (4)

is monogenic in a domain Dz if and only if the following conditions are
fulfilled in D:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
=
∂v

∂x
. (5)

The conditions (5) are analogous to the Cauchy – Riemann conditions.
It is easy see that all elementary functions introduced in the paper [5,

p. 64] are monogenic.
Let Γ be a Jordan rectifiable curve in the plane R2. For a function

Φ : Γz → P of the form (4) we define an integral along the curve Γz by the
equality ∫

Γz

Φ(z)dz :=

∫
Γ

udx+ vdy + j

∫
Γ

vdx+ udy. (6)

The following analogue of the Cauchy theorem is proved in a such way
as in the complex analysis (see, e. g., [8, p. 88]).

Theorem 2. Suppose that a domain D is bounded by a closed Jordan
rectifiable curve Γ, and the functions u(x, y), v(x, y) are continuously dif-
ferentiable in D. Suppose also that a function Φ : Dz → P of the form (4)
is monogenic in the domain Dz and continuous in the closure Dz. Then∫

Γz

Φ(z)dz = 0.
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It is easy to prove the following analogue of Morera theorem for func-
tions taking values in the algebra P.

Theorem 3. If a function Φ : Dz → P is continuous in a simply
connected domain Dz and satisfies the equality∫

Tz

Φ(z)dz = 0 (7)

for every triangle Tz ⊂ Dz, then Φ is monogenic in the domain Dz.

3. Relation between twice-monogenic functions and the wave
equation. Twice continuously differentiable solutions of the equation (1)
are called wave functions. Denote by C2(D) the set of all twice continuously
differentiable functions in a domain D. We say that Φ : Dz → P is a
twice-monogenic function if the Gateaux derivative Φ′ is continuous and
differentiable in the sense of Gateaux in the domain Dz.

The next theorem follows from the conditions (5).
Theorem 4. Let a function of the form (4) be twice-monogenic in a

domain Dz, and u, v ∈ C2(D). Then u and v are wave functions in D.
Two wave functions u(x, y), v(x, y) is called conjugate if they are related

by the conditions (5).
Theorem 5. Let u(x, y) be a wave function in a simple connected do-

main D. Then there exist one (accurate to a real constant) wave function
v(x, y) conjugate to u(x, y) in the domain D.

Proof. Consider the integral

v0(x, y) =

z∫
z0

∂u

∂y
dx+

∂u

∂x
dy , (8)

where z0 := z0 + jy0 is a fixed point and z = x+ jy is an arbitrary point
in Dz.

Since u(x, y) is a wave function, then ∂
∂x

(
∂u
∂x

)
= ∂

∂y

(
∂u
∂y

)
. Therefore, the

integral (8) does not depend on the way of integration and is a function
of the point z only. Taking it into account, in the following equalities the
integral is taken from z to z + h along the segment on which dy = 0:

∂v0
∂x

= h−1 lim
h→0

[v0(x+ h, y) − v0(x, y)] = h−1 lim
h→0

z+h∫
z

∂u

∂y
dx =

∂u

∂y
.
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The equality ∂v0
∂y = ∂u

∂x can be proved similarly.
Thus, v0(x, y) is a wave function conjugate to u(x, y), and v(x, y) =

= v0(x, y) + C with a real constant C.

4. Constructive description of twice-monogenic functions. Now
we construct a representation of any twice-monogenic function using two
differentiable functions of a real variable.

Note that the sets I1 := {λ1I1 : λ1 ∈ R} , I2 := {λ2I2 : λ2 ∈ R} are
maximal ideals in the algebra P. Consider the linear functionals f1 and f2
defined on P, whose kernel is the ideals I1 and I2, respectively:

f1(I1) = 0, f1(I2) = 1,

f2(I1) = 1, f2(I2) = 0.

Therefore, f1(z) = x−y, f2(z) = x+y. It is obvious that f1(α) = f2(α) =
= α for all α ∈ R. Note that the functionals f1, f2 are continuous and
multiplicative.

A domain D is called convex in the direction of the straight line L, if
it contains each segment that connects two points of D and is parallel to
the straight line L.

In the case where a segment l is parallel to a straight line L in R2, we
shall say that the segment lz is parallel to the straight line Lz in P.

Denote by L1 and L2 the straight lines y = x and y = −x, respectively.
For z1, z2 ∈ P and z1 ̸= z2, denote by [z1z2] the segment connecting the
points z1 and z2.

Lemma. 1) Let a domain D ⊂ R2 be convex in the direction of the
straight line L1 and a function of the form (4) be twice-monogenic in Dz,
and u, v ∈ C2(D). If the points z1, z2 ∈ Dz are such that the segment
[z1z2] is parallel to L1

z, then Φ(z2) − Φ(z1) ∈ I1.
2) Let a domain D ⊂ R2 be convex in the direction of the straight

line L2 and a function of the form (4) be twice-monogenic in Dz, and
u, v ∈ C2(D). If the points z1, z2 ∈ Dz are such that the segment [z1z2] is
parallel to L2

z, then Φ(z2) − Φ(z1) ∈ I2.
Proof. Consider the case 1) of Lemma. In this case there exists a real

number λ such that z2 = z1 + 2λI1 and [z1z2] is completely contained in
D. Since {I1, I2} is a basis in P, the following decomposition is true:

Φ(z1) − Φ(z2) = αI1 + βI2 ,

where α, β ∈ R.
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To complete the proof, it is sufficient to show that β = 0. Using the
equalities (2), we have:

Φ(z1) − Φ(z2) = Φ(z1) − Φ(z1 + 2λI1) = u(x1, y1) + jv(x1, y1)−

−u(x1 +λ, y1 +λ)−jv(x1 +λ, y1 +λ) = αI1 +βI2 =
1

2
(α+β)+

1

2
j(α−β),

whence we obtain the system of equations
u(x1, y1) − u(x1 + λ, y1 + λ) =

1

2
(α+ β),

v(x1, y1) − v(x1 + λ, y1 + λ) =
1

2
(α− β).

(9)

Since the integral (8) does not depend on a way of integration but
depend on the endpoint only, and since u(x, y), v(x, y) are conjugate wave
functions, we obtain

v(x1, y1) − v(x1 + λ, y1 + λ) = −
z1+2λI1∫
z1

∂u

∂y
dx+

∂u

∂x
dy .

Since dx = dy along the segment [z1z2], then

v(x1, y1) − v(x1 + λ, y1 + λ) = −
z1+2λI1∫
z1

∂u

∂y
dy +

∂u

∂x
dx =

= −
z1+2λI1∫
z1

du = −u(x1 + λ, y1 + λ) + u(x1, y1). (10)

It follows from the equality (10) and the system of equation (9) that

α+ β = α− β,

whence β = 0. The statement 1) of Lemma is proved. The statement 2) is
similarly proved.

Let a domain D ⊂ R2 be convex in the directions of the straight lines
L1 and L2. Then ∆1 := f1(Dz), ∆2 := f2(Dz) are intervals on the real
axis. Consider the linear operators A1 and A2 that assign the functions
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F1 : ∆1 → R and F2 : ∆2 → R, respectively, to every twice-monogenic
function Φ : Dz → P by the formulas F1(t1) := f1(Φ(z)) and F2(t2) :=
:= f2(Φ(z)), where t1 := f1(z) = x− y and t2 := f2(z) = x+ y .

It follows from Lemma that the values F1(t1), F2(t2) do not depend on
a choice of a point z for which f1(z) = t1 or f2(z) = t2 .

Theorem 6. Let a domain D ⊂ R2 be convex in the directions of the
straight lines L1 and L2. Then every twice-monogenic in Dz function of
the form (4) with u, v ∈ C2(D) can be represented in the form

Φ(z) = F1(t1)I2 + F2(t2)I1, (11)

where F1(t1) and F2(t2) are certain twice-differentiable functions on the
intervals ∆1 and ∆2, respectively.

Proof. Let a function Φ have the form

Φ(z) = U(x, y)I1 + V (x, y)I2. (12)

Acting by the linear functionals f1, f2 on the equality (12), we obtain

f1(Φ(z)) = F1(t1) = V (x, y),

f2(Φ(z)) = F2(t2) = U(x, y).

From these equalities and the equality (12) we obtain the representation
(11). It remains to prove the twice-differentiability of functions F1(t1) and
F2(t2).

From the representation (11) we obtain the equalities

F1(t1) = u(x, y) − v(x, y), F2(t2) = u(x, y) + v(x, y). (13)

Since the functions u, v are twice-differentiable in D, the functions
F1(t1), F2(t2) are also twice-differentiable on the intervals ∆1,∆2, respec-
tively, due to the equalities (13). Theorem is proved.

Passing in the equality (11) to the basis {1, j}, we obtain the wave
functions in the domain D:

u(x, y) =
1

2

(
F1(t1) + F2(t2)

)
, v(x, y) =

1

2

(
F2(t2) − F1(t1)

)
,

that coincides with the well-known general solution of the wave equation
(see, e. g., [9, p. 51]).
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Note that the equality (11) can be rewritten as

Φ(z) = A1(Φ(z))I2 +A2(Φ(z))I1.

Let Πz := {z ∈ P : f1(z) = ∆1} ∩ {z ∈ P : f2(z) = ∆2}. The next the-
orem follows directly from the equality (11), where the right-hand part is
a monogenic function in the rectangular domain Πz.

Theorem 7. Let a domain D ⊂ R2 be convex in the directions of the
straight lines L1 and L2. Then every twice-monogenic in Dz function of
the form (4) with u, v ∈ C2(D) can be extended to a function monogenic
in the domain Πz.
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