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In this paper, we investigate the complex oscillation of the nonhomogeneous
linear differential polynomial gf = g

(
f, f ′, · · · , f (k)

)
=

∑k
j=0 djf

(j) + b,
where dj (j = 0, 1, · · · , k), b are analytic functions generated by solutions
of the differential equation f (k) + A (z) f = 0, k ≥ 2, where A (z) ̸≡ 0 is
analytic function with finite iterated p-order in the unit disc ∆ = {z ∈ C :
|z| < 1}. This paper improves very recent result of Cao, Li, Tu and Xu.

1. Introduction and statement of results. In this paper, we assume
that the reader is familiar with the fundamental results and the standard
notations of the Nevanlinna’s theory on the complex plane and in the unit
disc ∆ = {z ∈ C : |z| < 1} (see [1 — 5]). We need to give some definitions
and discussions.

Definition 1.1 [6, 7]. Let f be an analytic function in ∆, and

DM (f) := lim sup
r→1−

log+M (r, f)

−log (1 − r)
= a <∞ (or a = ∞) ,

then we say that f is a function of finite a degree (or of infinite degree)
defined by maximum modulus function M (r, f) = max

|z|=r
|f (z)|.

Now we give the definitions of iterated order and finiteness degree of
the order to classify generally the functions of fast growth in ∆ as those in
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C (see [8, 9, 3]). Let us define inductively, for r ∈ [0, 1), exp1 r := er and
expp+1 r := exp

(
expp r

)
, p ∈ N. We also define for all r sufficiently large

in (0, 1) , log1 r := log r and logp+1 r := log
(
logp r

)
, p ∈ N. Moreover, we

denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r.

Definition 1.2 [10, 11]. Let f be a meromorphic function in ∆. Then
the iterated p−order of f is defined as

ρp (f) = lim sup
r→1−

log+p T (r, f)

−log (1 − r)
(p ≥ 1 is an integer) ,

where log+
1 x = log+ x = max {log x, 0} , log+

p+1 x = log+ log+
p x. If f is

analytic in ∆, then the iterated p−order of f is defined as

ρM,p (f) = lim sup
r→1−

log+p+1M (r, f)

−log (1 − r)
(p ≥ 1 is an integer) .

Remark 1.1. It follows by M. Tsuji [4, p. 205]) that if f is an analytic
function in ∆, then we have the inequalities

ρ1 (f) ≤ ρM,1 (f) ≤ ρ1 (f) + 1,

which are the best possible in the sense that there are analytic functions
g and h such that ρM,1 (g) = ρ1 (g) and ρM,1 (h) = ρ1 (h) + 1, see [11].
However, it follows by Proposition 2.2.2 in [3] that ρM,p (f) = ρp (f) for
p ≥ 2.

Definition 1.3 [10]. The finiteness degree of the order of analytic func-
tion f(z) in ∆ is defined as

iM (f) =


0, if f is of finite degree,
min {j ∈ N : ρM,j (f) < +∞} if f is of infinite degree,
and ρM,j (f) <∞ for some j ∈ N,
+∞, if ρM,j (f) = +∞ for all j ∈ N.

Definition 1.4 [12]. Let f be a meromorphic function in ∆. Then the
iterated exponent of convergence of the sequence of zeros of f (z) is defined
as

λp (f) = lim sup
r→1−

log+
p N

(
r, 1f

)
−log (1 − r)

(p ≥ 1 is an integer) ,
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where N
(
r, 1f

)
is the counting function of zeros of f (z) in {z : |z| < r}.

Similarly, the iterated exponent of convergence of the sequence of distinct
zeros of f (z) is defined as

λp (f) = lim sup
r→1−

log+
p N

(
r, 1f

)
−log (1 − r)

(p ≥ 1 is an integer) ,

where N
(
r, 1f

)
is the counting function of distinct zeros of f (z) in

{z : |z| < r}.
Definition 1.5 [12]. The finiteness degree of the convergence exponent

of the sequence of zeros of analytic function f(z) in ∆ is defined as

iλ (f) =


0, if N

(
r, 1f

)
= O

(
log 1

1−r

)
,

min {j ∈ N : λj (f) < +∞} if some j ∈ N
with λj (f) < +∞ exists,

+∞, if λj (f) = +∞ for all j ∈ N.

Remark 1.2. Similarly, we can define the finiteness degree iλ (f) of
λp(f).

For k ≥ 2, we consider the linear differential equation

f (k) +A (z) f = 0, (1)

where A (z) ̸≡ 0 is an analytic function in the unit disc of finite iterated
p−order. It is well-known that all solutions of equation (1) are analytic
functions in ∆ and that there are exactly k linearly independent solu-
tions of (1) (see, [2]). For fixed points of entire functions or meromorphic
functions on the plane, there are sequences of results, see [13]. In [14],
Chen firstly studied the problem on the fixed points and hyper-order of
solutions of second order linear differential equations with entire coeffi-
cients. After that, there were some results which improve those of Chen,
see [15 — 20]. Recently many important results have been obtained on the
complex oscillation theory of solutions and differential polynomials gener-
ated by solutions of differential equations in the unit disc ∆, refer to see
[21, 22, 12, 23, 24] and others. In this paper, we continue to consider this
subject and investigate the complex oscillation theory of differential poly-
nomials generated by analytic solutions of higher order linear differential
equations in ∆.
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Let L (G) denote a differential subfield of the field M (G) of mero-
morphic functions in a domain G ⊂ C. Throughout this paper, we simply
denote L instead of L (∆) . Special case of such differential subfield

Lp+1,ρ= {g meromorphic in ∆: ρp+1 (g) < ρ} ,

where ρ is a positive constant.
In [23], Cao, Li, Tu and Xu investigated the fixed points of linear dif-

ferential polynomial generated by analytic solutions of second order differ-
ential equation in the unit disc and obtained the following result.

Theorem A [23]. Let A (z) be an analytic function of infinite degree
and of finite iterated order ρM,p (A) = ρ > 0 in the unit disc ∆, and let
f ̸≡ 0 be a solution of the equation

f ′′ +A (z) f = 0.

Moreover, let

P [f ] = P
(
f, f ′, · · · , f (m)

)
=

m∑
j=0

pjf
(j)

be a linear differential polynomial with analytic coefficients pj ∈ Lp+1,ρ,
assuming that at least one of the coefficients pj does not vanish identically.
If φ (z) ∈ Lp+1,ρ is a non-zero analytic function in ∆, and neither P [f ]
nor P [f ] − φ vanishes identically, then we have

iλ (P [f ] − φ) = i (f) = p+ 1

and
λp+1 (P [f ] − φ) = ρM,p+1 (f) = ρM,p (A) = ρ.

Remark 1.3. The idea of the proof of Theorems A is borrowed from
the paper of Laine and Rieppo [18] with the modifications reflecting the
change from the complex plane C to the unit disc ∆.

The question which arises: Can we obtain a result which generalizes
Theorem A by considering equation (1)?

The main purpose of this paper is to investigate the complex os-
cillation of the linear differential polynomial gf = g

(
f, f ′, · · · , f (k)

)
=

=
∑k
j=0 djf

(j) + b, where dj (j = 0, 1, · · · , k) , b are analytic functions
generated by solutions of equation (1). The method used in the proofs of
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our theorems is simple, and different, from the method in Laine and Riep-
po [18] and Cao, Li, Tu and Xu [23]. Before we state our results, we define
the sequence of functions αi,j (j = 0, 1, . . . , k − 1) by

αi,j =

{
α′
i,j−1 + αi−1,j−1, for all i = 1, 2, . . . , k − 1,
α′
0,j−1 −Aαk−1,j−1, for i = 0

and
αi,0 =

{
di, for all i = 1, 2, . . . , k − 1,
d0 − dkA, for i = 0.

(2)

We define also h by

h =

∣∣∣∣∣∣∣∣∣∣
α0,0 α1,0 . . αk−1,0

α0,1 α1,1 . . αk−1,1

. . . . .

. . . . .
α0,k−1 α1,k−1 . . αk−1,k−1

∣∣∣∣∣∣∣∣∣∣
and ψ (z) by

ψ (z) = C0 (φ− b) + C1 (φ′ − b′) + · · · + Ck−1

(
φ(k−1) − b(k−1)

)
,

where Cj ∈ Lp+1,ρ (j = 0, 1, . . . , k − 1) are meromorphic functions depend-
ing on αi,j and φ (z) ( ̸≡ 0) ∈ Lp+1,ρ is analytic function. We obtain:

Theorem 1.1. Let A (z) be an analytic function of infinite degree and
of finite iterated order ρM,p (A) = ρ > 0 in the unit disc ∆, and let f ̸≡ 0
be a solution of equation (1). Moreover, let

gf = g
(
f, f ′, · · · , f (k)

)
=

k∑
j=0

djf
(j) + b (3)

be a linear differential polynomial with analytic coefficients dj ∈ Lp+1,ρ,
b ∈ Lp+1,ρ, assuming that at least one of the coefficients dj does not van-
ish identically such that h ̸≡ 0. Let φ (z) (̸≡ 0) ∈ Lp+1,ρ be an analytic
function such that ψ (z) ̸≡ 0. Then the differential polynomial gf satisfies

iλ (gf − φ) = iλ (gf − φ) = i (f) = p+ 1

and

λp+1 (gf − φ) = λp+1 (gf − φ) = ρp+1 (f) = ρM,p+1 (f) = ρM,p (A) = ρ .
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Theorem 1.2. Let H be a set of complex numbers satisfying
dens∆{|z| : z ∈ H ⊆ ∆} > 0, and let A (z) ̸≡ 0 be an analytic func-
tion in the unit disc ∆ such that ρp (A) = ρ < +∞ and for real number
α > 0, we have for all ε > 0 sufficiently small,

T (r,A (z)) ≥ expp−1

{
α

(
1

1 − |z|

)ρ−ε}

as z → 1− for z ∈ H, and let f ̸≡ 0 be a solution of equation (1).
Let be the linear differential polynomial (3) with analytic coefficients dj ∈
Lp+1,ρ, b ∈ Lp+1,ρ, assuming that at least one of the coefficients dj does
not vanish identically such that h ̸≡ 0. Let φ (z) ( ̸≡ 0) ∈ Lp+1,ρ be an
analytic function such that ψ (z) ̸≡ 0. Then the differential polynomial gf
satisfies

iλ (gf − φ) = iλ (gf − φ) = i (f) = p+ 1

and ρp (A) ≤ λp+1 (gf − φ) = λp+1 (gf − φ) = ρp+1 (f) = ρM,p+1 (f) ≤
≤ ρM,p (A).

2. Some lemmas. We need the following lemmas in the proofs of our
theorems.

Lemma 2.1 [10]. If f and g are meromorphic functions in ∆, p ≥ 1
is an integer, then we have

(i) ρp (f) = ρp (1/f) , ρp (a.f) = ρp (f) (a ∈ C− {0});
(ii) ρp (f) = ρp (f ′) ;
(iii) max{ρp (f + g) , ρp (fg)} ≤ max{ρp (f) , ρp (g)};
(iv) if ρp (f) < ρp (g) , then ρp (f + g) = ρp (g) , ρp (fg) = ρp (g).
Lemma 2.2 ([12], Lemma 2.5). Let p ≥ 1 be an integer, and let f (z)

be a meromorphic solution in the unit disc ∆ of the differential equation

f (k) +Ak−1 (z) f (k−1) + · · · +A1 (z) f ′ +A0 (z) f = F,

where A0 (z) , · · · , Ak−1 (z) and F ̸≡ 0 are meromorphic functions in
∆ such that max {ρp+1 (F ) , ρp+1 (Aj) (j = 0, · · · , k − 1)} < ρp+1 (f) <
+∞. Then iλ (f) = iλ (f) = i (f) = p + 1 and λp+1 (f) = λp+1 (f) =
ρp+1 (f).

Lemma 2.3 [10]. Let p ≥ 1 be an integer, and let A0(z), · · · , Ak−1(z)
be analytic functions in ∆ such that i (A0) = p. If

max{i (Aj) : j = 1, · · · , k − 1} < p
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or

max{ρM,p (Aj) : j = 1, · · · , k − 1} < ρM,p (A0) ,

then every solution f ̸≡ 0 of the differential equation

f (k) +Ak−1 (z) f (k−1) + · · · +A1 (z) f ′ +A0 (z) f = 0

satisfies i (f) = p+ 1 and ρp+1 (f) = ρM,p+1 (f) = ρM,p (A0) .

Lemma 2.4. Let A (z) be an analytic function of infinite degree and
of finite iterated order ρM,p (A) = ρ > 0 in the unit disc ∆, and let f ̸≡ 0
be a solution of equation (1). Moreover, let

gf = g
(
f, f ′, · · · , f (k)

)
=

k∑
j=0

djf
(j) + b (4)

be a linear differential polynomial with analytic coefficients dj ∈ Lp+1,ρ,
b ∈ Lp+1,ρ, assuming that at least one of the coefficients dj does not vanish
identically such that h ̸≡ 0. Then, the differential polynomial gf satisfies

i (gf ) = i (f) = p+ 1, ρp+1 (gf ) = ρp+1 (f) = ρM,p+1 (f) = ρM,p (A) = ρ .

Proof. Suppose that f ̸≡ 0 is a solution of (1). Then by Lemma 2.3, we
have i (f) = p + 1, ρp+1 (f) = ρM,p+1 (f) = ρM,p (A) = ρ . Substituting
f (k) = −Af into (4), we obtain

gf − b = dkf
(k) + dk−1f

(k−1) + · · · + d0f =

= dk−1f
(k−1) + · · · + (d0 − dkA) f. (5)

We can rewrite (5) as

gf − b =

k−1∑
i=0

αi,0f
(i), (6)

where αi,0 are defined in (2). Differentiating both sides of equation (6) and
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replacing f (k) by f (k) = −Af, we obtain

g′f − b′ =
k−1∑
i=0

α′
i,0f

(i) +
k−1∑
i=0

αi,0f
(i+1) =

=
k−1∑
i=0

α′
i,0f

(i) +
k∑
i=1

αi−1,0f
(i) =

= α′
0,0f +

k−1∑
i=1

α′
i,0f

(i) +
k−1∑
i=1

αi−1,0f
(i) + αk−1,0f

(k) =

= α′
0,0f +

k−1∑
i=1

(
α′
i,0 + αi−1,0

)
f (i) − αk−1,0Af =

=

k−1∑
i=1

(
α′
i,0 + αi−1,0

)
f (i) +

(
α′
0,0 − αk−1,0A

)
f. (7)

We can rewrite (7) as

g′f − b′ =

k−1∑
i=0

αi,1f
(i), (8)

where

αi,1 =

{
α′
i,0 + αi−1,0, for all i = 1, 2, . . . , k − 1,

α′
0,0 −Aαk−1,0, for i = 0.

(9)

Differentiating both sides of equation (8) and replacing f (k) by f (k) =
= −Af, we obtain

g′′f − b′′ =
k−1∑
i=0

α′
i,1f

(i) +
k−1∑
i=0

αi,1f
(i+1) =

=
k−1∑
i=0

α′
i,1f

(i) +
k∑
i=1

αi−1,1f
(i) =

= α′
0,1f +

k−1∑
i=1

α′
i,1f

(i) +
k−1∑
i=1

αi−1,1f
(i) + αk−1,1f

(k) =

= α′
0,1f +

k−1∑
i=1

(
α′
i,1 + αi−1,1

)
f (i) − αk−1,1Af =
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=
k−1∑
i=1

(
α′
i,1 + αi−1,1

)
f (i) +

(
α′
0,1 − αk−1,1A

)
f (10)

which implies that

g′′f − b′′ =
k−1∑
i=0

αi,2f
(i), (11)

where

αi,2 =

{
α′
i,1 + αi−1,1, for all i = 1, 2, . . . , k − 1,

α′
0,1 −Aαk−1,1, for i = 0.

(12)

By the same method as above we can easily deduce that

g
(j)
f − b(j) =

k−1∑
i=0

αi,jf
(i), j = 0, 1, . . . , k − 1, (13)

where

αi,j =

{
α′
i,j−1 + αi−1,j−1, for all i = 1, 2, . . . , k − 1,

α′
0,j−1 −Aαk−1,j−1, for i = 0

(14)

and
αi,0 =

{
di, for all i = 1, 2, . . . , k − 1,

d0 − dkA, for i = 0.
(15)

By (6) — (13) we obtain the system of equations

gf − b = α0,0f + α1,0f
′ + · · · + αk−1,0f

(k−1) ,
g′f − b′ = α0,1f + α1,1f

′ + · · · + αk−1,1f
(k−1) ,

g′′f − b′′ = α0,2f + α1,2f
′ + · · · + αk−1,2f

(k−1) ,

· · ·
g
(k−1)
f − b(k−1) = α0,k−1f + α1,k−1f

′ + · · · + αk−1,k−1f
(k−1) .

Since h ̸≡ 0, then by Cramer’s rule, we have

f =

∣∣∣∣∣∣∣∣∣∣∣

gf − b α1,0 · · · αk−1,0

g′f − b′ α1,1 · · · αk−1,1

g′′f − b′′ α1,2 · · · αk−1,2

...
... · · ·

...
g
(k−1)
f − b(k−1) α1,k−1 · · · αk−1,k−1

∣∣∣∣∣∣∣∣∣∣∣
h

.
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Then

f = C0 (gf − b) + C1

(
g′f − b′

)
+ · · · + Ck−1

(
g
(k−1)
f − b(k−1)

)
, (16)

where Cj are meromorphic functions depending on αi,j with ρp+1 (Cj) <
< ρM,p (A) , where αi,j are defined in (14) and (15).

By (6) and Lemma 2.1, we have ρp+1 (gf ) ≤ ρp+1 (f) and by (16),
Lemma 2.1 we get that ρp+1 (f) ≤ ρp+1 (gf ) . Hence i (gf ) = i (f) = p+ 1
and ρp+1 (gf ) = ρp+1 (f) = ρM,p+1 (f) = ρM,p (A) = ρ. Lemma is proved.

Remark 2.1. In Lemma 2.4, if we do not have the condition h ̸≡ 0,
then the conclusion of Lemma 2.4 cannot holds. For example, if we take
dk = 1, d0 = A and dj ≡ 0 (j = 1, 2, . . . , k − 1) then h ≡ 0. It follows that
gf ≡ b and ρp+1 (gf ) = ρp+1 (b) < ρM,p (A) = ρp+1 (f) = ρM,p+1 (f) .

Lemma 2.5 [22]. Let H be a set of complex numbers satisfying
dens∆{|z| : z ∈ H ⊆ ∆} > 0, and let A (z) ̸≡ 0 be an analytic func-
tion in the unit disc ∆ such that ρp (A) = ρ < +∞ and for real number
α > 0, we have for all ε > 0 sufficiently small,

T (r,A (z)) ≥ expp−1

{
α

(
1

1 − |z|

)ρ−ε}

as z → 1− for z ∈ H. Then every solution f ̸≡ 0 of equation (1) satisfies
ρp (f) = +∞ and ρM,p (A) ≥ ρp+1 (f) = ρM,p+1 (f) ≥ ρ .

Lemma 2.6. Let H be a set of complex numbers satisfying dens∆{|z| :
z ∈ H ⊆ ∆} > 0, and let A (z) ̸≡ 0 be an analytic function in the unit disc
∆ such that ρp (A) = ρ < +∞ and for real number α > 0, we have for all
ε > 0 sufficiently small,

T (r,A (z)) ≥ expp−1

{
α

(
1

1 − |z|

)ρ−ε}

as z → 1− for z ∈ H, and let f ̸≡ 0 be a solution of equation (1). Let be
the linear differential polynomial (4) with analytic coefficients dj ∈ Lp+1,ρ,
b ∈ Lp+1,ρ, assuming that at least one of the coefficients dj does not vanish
identically such that h ̸≡ 0. Then, the differential polynomial gf satisfies

i (gf ) = p+ 1, ρp (A) ≤ ρp+1 (gf ) = ρp+1 (f) ≤ ρM,p (A) .
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Proof. Suppose that f ̸≡ 0 is a solution of (1). Then by Lemma 2.5,
we have

i (f) = p+ 1, ρp (A) ≤ ρp+1 (f) = ρM,p+1 (f) ≤ ρM,p (A) = ρ.

By using similar arguments as in the proof of Lemma 2.4, we obtain Lemma
2.6.

3. Proofs of Theorems.
Proof of Theorem 1.1. Suppose that f ̸≡ 0 is a solution of (1). Then

by Lemma 2.4, we have

i (gf ) = p+ 1, ρp+1 (gf ) = ρp+1 (f) = ρM,p+1 (f) = ρM,p (A) .

Set w (z) = gf − φ. Since ρp+1 (φ) < ρM,p (A) , then by Lemma 2.1 we
have

ρp+1 (w) = ρp+1 (gf ) = ρp+1 (f) = ρM,p+1 (f) = ρM,p (A) .

To prove λp+1 (gf − φ) = λp+1 (gf − φ) = ρp+1 (f) we need to prove
λp+1 (w) = λp+1 (w) = ρp+1 (f) . Substituting gf = w + φ into (16), we
get

f = C0w + C1w
′ + · · · + Ck−1w

(k−1) + ψ (z) , (17)

where

ψ (z) = C0 (φ− b) + C1 (φ′ − b′) + · · · + Ck−1

(
φ(k−1) − b(k−1)

)
and ρp+1 (ψ) < ρM,p (A) . Substituting (17) into (1), we obtain

Ck−1w
(2k−1) +

2k−2∑
j=0

ϕjw
(j) = −

(
ψ(k) +A (z)ψ

)
= H,

where Ck−1, ϕj (j = 0, 1, . . . , 2k − 2) are meromorphic functions with
ρp+1 (Ck−1) < ρM,p (A) , ρp+1 (ϕj) < ρM,p (A). Since ρp+1 (ψ) < ρM,p (A)
and ψ (z) ̸≡ 0, it follows from Lemma 2.3 that H ̸≡ 0. Obviously, there
holds

max{ρp+1 (Ck−1) , ρp+1 (ϕj) (j = 0, 1, . . . , 2k − 2) , ρp+1 (H)} <

< ρM,p (A) = ρp+1 (w) .
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Then by Lemma 2.2, we obtain iλ (w) = iλ (w) = i (w) = p + 1

and λp+1 (w) = λp+1 (w) = ρp+1 (w) , i.e. iλ (gf − φ) = iλ (gf − φ) =

= i (gf − φ) = i (f) = p + 1 and λp+1 (gf − φ) = λp+1 (gf − φ) =
= ρp+1 (f) = ρM,p+1 (f) = ρM,p (A) .

Proof of Theorem 1.2. Suppose that f ̸≡ 0 is a solution of (1). Then
by Lemma 2.6, we have

i (gf ) = p+ 1, ρp (A) ≤ ρp+1 (gf ) = ρp+1 (f) = ρM,p+1 (f) ≤ ρM,p (A) .

Set w (z) = gf − φ. Since ρp+1 (φ) < ρp (A) , then by Lemma 2.1 we have

ρp (A) ≤ ρp+1 (w) = ρp+1 (gf ) = ρp+1 (f) = ρM,p+1 (f) ≤ ρM,p (A) .

Substituting gf = w + φ into (16) and using a similar reasoning as in the
proof of Theorem 1.1, we get

Ck−1w
(2k−1) +

2k−2∑
j=0

ϕjw
(j) = −

(
ψ(k) +A (z)ψ

)
= H,

where Ck−1, ϕj (j = 0, 1, . . . , 2k − 2) are meromorphic functions with
ρp+1 (Ck−1) < ρp (A) , ρp+1 (ϕj) < ρp (A). Since ρp+1 (ψ) < ρp (A) and
ψ (z) ̸≡ 0, it follows from Lemma 2.5 that H ̸≡ 0. Obviously, there holds

max{ρp+1 (Ck−1) , ρp+1 (ϕj) (j = 0, 1, . . . , 2k − 2) , ρp+1 (H)} <

< ρp (A) ≤ ρp+1 (w) .

Then by Lemma 2.2, we obtain iλ (w) = iλ (w) = i (w) = p + 1

and λp+1 (w) = λp+1 (w) = ρp+1 (w) , i.e. iλ (gf − φ) = iλ (gf − φ) =

= i (gf − φ) = i (f) = p+1 and ρp (A) ≤ λp+1 (gf − φ) = λp+1 (gf − φ) =
= ρp+1 (f) = ρM,p+1 (f) ≤ ρM,p (A) .
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