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Semiclassical hydrodynamics of

a quantum Kane model for

semiconductors

In this paper we derive a semiclassical hydrodynamic system for electron
densities and currents in the two energy bands of a semiconductor. We use
the semiclassical Wigner equation with a k · p Hamiltonian and a BGK
dissipative term to construct the �rst two moment equations. The closure
of the moment system is obtained using the Maximum Entropy Principle,
by minimizing a Gibbs free-energy functional under suitable constraints.
We prove that the constraint equations can be uniquely solved, i.e. that
the local equilibrium state can be parametrized by the density and velocity
�eld. Some BGK-like models are proposed to mimic the quantum interband
migration.

1 Introduction

Description of the charge carriers dynamics in semiconductor devices
is certainly a severe task, especially if one wishes to keep together a
rigorous (and complete, whenever possible) physical picture with a �nal
result (set of equations) simple enough for the numerical implementation.
Hydrodynamic approach is an excellent compromise between the two
requirements. Our aim is the construction of hydrodynamic equations
for the electron dynamics, by means of moment method, starting from
the pseudo-kinetic formulation of quantum mechanics in terms of Wigner
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Semiclassical hydrodynamics of a quantum Kane model 11

functions. The physical framework adopted in this paper is based on the
so called k · p method, [9, 13], a simple model for the description of charge
transport in a semiconductor with two available energy bands.

The k · p Hamiltonian has been widely studied and employed in
literature (see for instance the review [5]). In particular, it has been
exploited in [3, 4] to derive a semi-classical two-band di�usive model, with
weak or strong external �elds.

The rigorous derivation of the k · p Hamiltonian from the complete
Hamiltonian of an electron in a periodic potential, under a suitable
homogenization scaling, is based on the concept of envelope functions and
can be found in [2]. The result is a 2×2 matrix Hamiltonian, which means
that electrons in the k · p description are pseudo-spinors (the pseudo-spin
being related to the two energy bands). A fully-quantum treatment based
on the k · p method leads to non-parabolic intraband dynamics as well as
to interband quantum transitions.

However, in the present semiclassical treatment, the latter aspect is
lost. Nevertheless, the non-parabolic dynamics is still present and leads to
non-trivial �uid models.

The semiclassical kinetic equations, that we need to get the
hydrodynamic model, can be naturally expressed in terms of Wigner
functions, describing statistical states of electrons in terms of quasi-
distributions in phase-space. Due to pseudo-spin, the standard scalar
Wigner function has to be substituted by a matrix-valued Wigner function.
Such a matrix can be projected on the two energy subspaces, thus obtaining
two distributions of electrons, corresponding to the two energy bands.
Then, the macroscopic �uid quantities can be obtained by taking moments
of the band-projected Wigner function, which have the physical meaning
of densities n± and velocity �eld u±, where the subscript ± means +, the
upper band, and −, the lower band (see Eqs. (24) and (25). The Wigner
formalism, moreover, permits the introduction of a well justi�ed BGK term
(see [1, 8]]) which takes in account the interaction phenomena leading to a
local equilibrium relaxation. Thanks to this relaxation mechanism we can
assume that, in a time-scale larger that the relaxation time, the system is in
a local equilibrium state. The latter is chosen according to the Maximum
Entropy Principle (MEP), i.e. as the most probable microscopic state,
given the observed macroscopic moments n± and u±. This strategy, as
usual, provides a closure of the moment equations.

The paper is organized in the following way: in section 2 we present the
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k · p Hamiltonian. The presence of the two bands is treated introducing
a pseudo-spinorial formulation via a representation on the Pauli matrices
basis. In section 3 we deduce the Wigner-BGK equations for our model.
The Wigner matrix is decomposed in its scalar part w0 and its pseudo-
spinorial part ~w. ~w is further split in a part parallel to the direction of the
pseudo-spinorial part of the Hamiltonian, wS , and a part orthogonal to
it, ~w⊥. This representation discovers itself useful in the evaluation of the
moments for the Wigner equation, since the contribution of ~w⊥ vanishes. In
Section 4 we deduce the moment equations of zeroth and �rst order, where
appear the tensors P± and Q±, which can be interpreted as the pressure
and e�ective-mass tensors. In Section 5 the application of the MEP implies
that these tensors depend on two Lagrange multipliers, a scalar one, A±,
and a vector one, B±. The closure of the moment equations requests the
study of the dependence of the tensors on the macroscopic quantities,
n±, the numerical density and u±, the velocity �eld. In Theorem 1 we
prove that B± (and A±, as a consequence) is a smooth globally invertible
function of the macroscopic quantities.

Since in semiclassical limit the quantum interference terms between the
two bands disappear, in Section 6 we examine some models that enable the
reintroduction of this aspect. We propose there three di�erent BGK-like
terms which satisfy this condition.

2 The k · p model
The simplest possible description of an electron in a semiconductor crystal
with two energy bands (e. g. �valence� and �conduction�) is obtained from
a periodic Hamiltonian by means of the k · p method [9, 13] and consists
of a 2× 2 Hamiltonian of the following form:

H =

− ~2

2m∆ + Eg/2 −~2

m K · ∇

~2

m K · ∇ − ~2

2m∆− Eg/2

 . (1)

Here, Eg is the band-gap and K = (K1,K2,K3) is the matrix element of
the gradient operator between the Bloch functions b± of the upper (+)
and lower (−) bands, evaluated at zero pseudo-momentum:

K =

∫
lattice cell

b+(x)∇b−(x) dx ,
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~ is Planck's constant over 2π and m is the electron mass. The k · p model
has to be completed by adding an �external� potential term qV (where
q > 0 denotes the elementary charge), accounting for all electric �elds
except the crystal one. The electric potential V (x) can be either �xed or
self-consistently given by a Poisson equation.

The k · p Hamiltonian H is the quantization of the classical matrix-
valued symbol

h(p) =

 p2

2m + Eg/2 −i ~mK · p

i ~mK · p p2

2m − Eg/2

 , (2)

where p = |p|.
In this paper we make the choice to decompose any 2 × 2 complex

matrix in the basis of Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

(the coe�cients of the decomposition will be real if the matrix is
hermitian). The operators σ1, σ2, σ3 are called �pseudo-spin components�
in this context. Putting

α = (α1, α2, α3) :=
~
m

K and γ := Eg/2, (3)

we can write

h(p) =
p2

2m
σ0 + α · pσ2 + γ σ3 = h0(p)σ0 + ~h(p) · ~σ, (4)

where

h0(p) =
p2

2m
, ~h(p) = (0,α · p, γ),

and, as usual, ~σ = (σ1, σ2, σ3) is the formal vector of Pauli matrices. Here
and in the following we adopt the arrow notation for three-vectors, such as
~h(p), that are the pseudo-spinorial part of the Pauli coe�cients. Instead,
we do not use the arrow notation for �cartesian� three-vectors such as x,
p, K, α, etc. The dispersion relation for the free Hamiltonian H is easily
obtained by computing the (p-dependent) eigencouples of the symbol h(p).
This yields to the energy bands

E±(p) =
p2

2m
±
√

(α · p)2 + γ2 =
p2

2m
± |~h(p)| (5)
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and to the corresponding normalized energy eigenvectors

ψp± =
1√

2(1± ν3(p))

(
ν3(p)± 1

ν1(p) + iν2(p)

)
, (6)

where we have introduced

~ν(p) = (ν1(p), ν2(p), ν3(p)) =
~h(p)

|~h(p)|
=

(0,α · p, γ)√
(α · p)2 + γ2

. (7)

The two eigenprojections P±(p), that we call band-projections, are
therefore given by

P±(p) = ψp± ⊗ ψ
p
± =

1

2
(σ0 ± ~ν(p) · ~σ) (8)

and we can clearly write

h(p) = E+(p)P+(p) + E−(p)P−(p). (9)

Important quantities associated to the energy bands are the semiclassical
velocities v±

v± = ∇pE±(p) =
p

m
± α · p√

(α · p)2 + γ2
α =

p

m
± ν2α (10)

and the e�ective-mass tensor M±(p) de�ned by [2]

M−1± (p) = ∇p ⊗∇pE±(p) =
1

m
I± γ2α⊗α

((α · p)2 + γ2)
3/2

. (11)

where I is the identity matrix.

3 Wigner-BGK equations for the k · p model
Let ρij(x,y, t), 1 ≤ i, j ≤ 3, be the density matrix describing the quantum
statistical state of electrons with Hamiltonian (1). The corresponding
kinetic-like description is provided by the Wigner matrix wij(x,p, t)
de�ned by [14, 16, 3]

wij(x,p, t) =
1

(2π~)3/2

∫
R3

ρij

(
x +

ξ

2
,x− ξ

2
, t

)
e−ip·ξ/~dξ. (12)
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The Wigner matrix w = (wij) is hermitian,

w(x,p, t) = w∗(x,p, t),

and, consequently, its Pauli representation

w = w0σ0 + ~w · ~σ, ~w = (w1, w2, w3) (13)

has real components wk(x,p, t), 0 ≤ k ≤ 3.
Considering P± and ~ν, as de�ned in (8) and (7), the two scalar functions

w± = Tr(P±w) = w0 ± ~ν · ~w (14)

can be semi-classically interpreted as the phase-space distributions of
electrons in the two energy bands E± [3] and will play a central role in the
following. Moreover, if ws = ~ν · ~w, we have the obvious relations

w± = w0 ± ws, w0 =
w+ + w−

2
, ws =

w+ − w−
2

, (15)

and ws has therefore the meaning of �band polarization�. It will be
convenient, moreover, to introduce a notation for the perpendicular part
of ~w with respect to ~ν by putting

~w = ws~ν + ~w⊥. (16)

Assume now that the dynamics of the density matrix ρ(x,y, t) is given by
the von Neumann equation (Schr�odinger equation for mixed states)

i~
∂ρ

∂t
= (Hx −Hy)ρ+ (V (x)− V (y))σ0ρ,

where Hx and Hy denote the k · p Hamiltonian (1) acting, respectively, on
the x and y variables, and V is an external and/or self-consistent electric
�eld. Then, using (12) and (13), it is not di�cult to prove that, up to terms
of order ~2, the evolution equations for the time dependent Pauli-Wigner
functions are the following

∂w0

∂t
+

p

m
· ∇xw0 + F · ∇pw0 + α · ∇xw2 = 0,

∂ ~w

∂t
+

p

m
· ∇x ~w + F · ∇p ~w + α · ∇xw0 ~e2 −

2

~
~h(p)× ~w = 0.

(17)
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Here, ~h(p) = (0,α ·p, γ), ~e2 = (0, 1, 0) and F = −∇V denotes the external
force corresponding to the electric potential V .

In order to supplement system (17), which describes a conservative
Hamiltonian dynamics, with a collisional mechanism, we insert a BGK
(Bhatnaghar-Gross-Krook) collisional relaxation-time term. This term
mimics the collisions that force the system towards a local equilibrium
and it is characterized by the relaxation time τc, which is assumed to be
the same constant for all components. The system, which will be referred
to as �Wigner-BGK� (WBGK) equations, takes the new form

∂w0

∂t
+

p

m
· ∇xw0 + F · ∇pw0 + α · ∇xw2 =

g0 − w0

τc
,

∂ ~w

∂t
+

p

m
· ∇x ~w + F · ∇p ~w + α · ∇xw0 ~e2 −

2

~
~h(p)× ~w =

~g − ~w

τc
,

(18)
where g = g0σ0 + ~g · ~σ is a local-equilibrium Wigner matrix that will be
speci�ed later on.

We now extract from Eq. (18), equations for the band distributions
w+ and w− (see de�nition (14)). For this purpose we introduce the
orthonormal basis (~n1, ~n2, ~ν), where ~n1 ≡ ~e1 = (1, 0, 0) and ~n2 is chosen
such that ~n1×~n2 = ~ν. Using the decomposition ~w = ws~ν+ ~w⊥ (see ((16))
and taking account that w2 = ws~ν · ~e2 + ~w⊥ · ~e2, with

~e2 =
α · p√

(α · p)2 + γ2
~ν +

γ√
(α · p)2 + γ2

~n2, (19)

we rewrite the �rst of equations (18) as

∂w0

∂t
+

p

m
· ∇xw0 + F · ∇pw0 +

α · p√
(α · p)2 + γ2

α · ∇xws

+
γ√

(α · p)2 + γ2
~n2 · (α · ∇x ~w⊥) =

g0 − w0

τc
. (20)

Concerning the second of equations (18), using again (19), we have

∂

∂t
(ws~ν + ~w⊥) +

p

m
· ∇x (ws~ν + ~w⊥) +

α · p~ν + γ ~n2√
(α · p)2 + γ2

α · ∇xw0

+ ~ν F · ∇pws + (F · ∇p~ν)ws + F · ∇p ~w⊥

=
2

~
~h(p)× ~w⊥ +

gs − ws
τc

~ν +
~g⊥ − ~w⊥

τc
.
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Decomposing this equation in the parallel and perpendicular parts with
respect to ~ν, and using ~ν · (F · ∇p~ν) = 0, we obtain an equation for ws:

∂ws
∂t

+
p

m
· ∇xws + F · ∇pws +

α · p√
(α · p)2 + γ2

α · ∇xw0

+ ~ν · (F · ∇p ~w⊥) =
gs − ws
τc

, (21)

and an equation for ~w⊥:

∂ ~w⊥
∂t

+
p

m
· ∇x ~w⊥ + (F · ∇p)ws + (F · ∇p ~w⊥)⊥

+
γ ~n2√

(α · p)2 + γ2
α · ∇xw0 =

2

~
~h(p)× ~w⊥ +

~g⊥ − ~w⊥
τc

, (22)

(which will not be used in the following). Then, recalling (15) and (10),
equations for w+ and w− are now readily obtained from (20) and (21):

∂w±
∂t

+ v± · ∇xw± + F · ∇pw± +
γ√

(α · p)2 + γ2
~n2 · (α · ∇x ~w⊥)

± ~ν · (F · ∇p ~w⊥) =
g± − w±

τc
. (23)

4 Moment equations and entropy closure

The local equilibrium Wigner matrix g = g0σ0 + ~g · ~σ is given by the
MEP and is, therefore, the maximizer of a suitable entropy functional
(which depends on the particle statistics) under the constraint of given
macroscopic moments [10, 15]. We make the following assumptions:

1. the system is in thermal equilibrium at constant temperature T > 0
(e.g. with a phonon bath);

2. the electron statistics is well approximated by Maxwell-Boltzmann
distribution (in the semiclassical approach);

3. the observed macroscopic moments are the densities

n±(x, t) =

∫
R3

w±(x,p, t) dp (24)



18 L. Barletti, et al.

and the velocity �eld

u±(x, t) =
1

n±(x, t)

∫
R3

v±(p)w±(x,p, t) dp (25)

of the electrons in the two energy bands.

It follows from the above assumptions that the local equilibrium g must
be sought as the minimizer of the Gibbs free-energy functional

E(w) =

∫
R6

Tr {kBT (w logw − w) + hw} dp dx, (26)

among all positive-de�nite Wigner matrices w sharing the macroscopic
moments (24) and (25). In (26), kB is the Boltzmann constant, h is the
matrix-valued symbol of the Hamiltonian (see (2)), and logw is the matrix
logarithm. It can be shown [3] that the solution g of such constrained
minimization problem is given by

g±(x,p, t) = e−βE±(p)+B±·v±(p)+A± , ~g⊥ = 0, (27)

where β = (kBT )−1, and A± = A±(x, t) and B± = B±(x, t) are Lagrange
multipliers to be determined from the constraint equations∫

R3

g±(x,p, t) dp = n±(x, t),

∫
R3

v±(p) g±(x,p, t) dp = n±(x, t)u±(x, t).

(28)

Let us now assume that the time-scale over which the system is observed
is much larger than the relaxation time τc (the so-called hydrodynamic
asymptotics). In this limit, we have that w → g and we can rewrite Eq.
(23) with w± = g± and ~w⊥ = ~g⊥ = 0, obtaining that the local equilibrium
function satis�es

∂g±
∂t

+ v± · ∇xg± + F · ∇pg± = 0. (29)

Remark 1 The quantum interference terms (i.e. the terms containing
~w⊥ in Eq. (23)), which are responsible for quantum coupling between
the two bands [11], have disappeared in our semiclassical hydrodynamic
picture because ~g⊥ = 0. When dealing with the semiclassical di�usive
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limit, however, we have to consider terms of order ~ in the semiclassical
expansion of the quantum equilibrium (our g is the leading order of such
expansion) and band-coupling interference terms appear [3, 6]. �

Integrating Eq. (29) over R3, and using the constraints (28), we have

∂n±
∂t

+∇x (n±u±) = 0 (30)

that is the continuity equation for n±. Multiplying Eq. (29) by v± and
integrating over p, we obtain the �rst-order moment equation

∂(n±u±)

∂t
+∇x · P± − F ·Q± = 0, (31)

that is the momentum balance equation, where the tensors P± and Q± are
de�ned as follows:

P± =

∫
R3

v± ⊗ v± g± dp, Q± =

∫
R3

(∇p ⊗ v±) g± dp. (32)

Recalling (10) and (11), the tensor Q±, which �mediates� the action of the
force F, can be written as

Q± =

∫
R3

(∇p ⊗∇pE±) g± dp =

∫
R3

M−1± (p) g± dp, (33)

showing that Q± is the average inverse e�ective-mass. For suitable values
of α and γ, Q− can be negative: in this case the lower-band electrons
behave like positive-charged carriers (holes).

We remark that the functions g± have been determined by the
maximum entropy principle and depend implicitly on the moments n±
and u± because the constraints (28). In this sense, the tensors P± and
Q± can be regarded as functions of n± and u±, making the hydrodynamic
system (30) + (31) formally closed.

For future reference let us summarize here the hydrodynamic model
that we have obtained: it consists of the moment equations

∂n±
∂t

+∇x (n±u±) = 0,

∂(n±u±)

∂t
+∇x · P± − F ·Q± = 0,

(34)

and of the closure relations (32) and (28).
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5 The constraint equations

In this section we study the problem of how writing in a more explicit way
the moment equations, that is expressing the Lagrange multipliers A and
B±, and consequently the tensors P± and Q±, as functions of the moments
n± and u±.

In order to simplify the notations we note that, both in the moment
equations (34) and in the constraint equations (28), the + and − quantities
are completely decoupled (unless coupling mechanisms are introduced,
as we will discuss in Section 6). Then, we can safely drop the ± labels
everywhere, bearing in mind, however, that the + and − problems are
formally identical but physically di�erent, because energies, velocities and
e�ective-masses are di�erent in the two bands.

In order to stress the dependence of the local-equilibrium on the
Lagrange multipliers we put

φ(A,B,p) = e−βE(p)+B·v(p)+A, (35)

and rewrite the constraint equations (28) as follows:∫
R3

φ(A,B,p) dp = n,

∫
R3

v(p)φ(A,B,p) dp = nu, (36)

(recall that we are suppressing the labels ±, and that A, B, n and u are
functions of (x, t)). Equations (36) have to be regarded as a system of four
scalar equations in the unknowns A and B = (B1, B2, B3), for given n > 0
and u = (u1, u2, u3) ∈ R3.

Let us introduce the function f(B) de�ned by

ef(B) =

∫
R3

e−βE(p)+B·v(p) dp. (37)

By using

v(p)φ(A,B,p) = ∇Bφ(A,B,p),

we obtain that the constraint system (36) is (formally) equivalent to{
eAef(B) = n,

∇Bf(B) = u.
(38)
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From Eq. (38) we see that B only depends on u and, once B is solved
from the second equation as function of u, the remaining unknown A is
determined by eA = n e−f(B). Moreover, using

v(p)⊗ v(p)φ(A,B,p) = ∇B ⊗ (∇Bφ(A,B,p)),

the tensor P (see de�nition (32)) can be written as

P = eA
∫
R3

∇B ⊗
(
∇Be−βE(p)+B·v(p)

)
dp

= eA∇B ⊗
(
∇Bef(B)

)
= eA∇B ⊗

(
ef(B) (∇Bf(B))

)
= eAef(B) [∇Bf(B)⊗∇Bf(B) +∇B ⊗ (∇Bf(B))]

and therefore, using Eq. (38),

P = nu⊗ u + n∇B ⊗ (∇Bf(B)). (39)

This decomposition of P shows that ∇B ⊗ (∇Bf(B)) plays the role of
pressure tensor in the Euler equations (34). Unfortunately, the �mass�
tensor Q has not a similarly simple expression in terms of f(B).

As already remarked, the form (38) of the constraint equations allows
to reduce the problem of the solvability of (A,B) as a function of (n,u)
to the solvability of B as a function of u from the equation

∇Bf(B) = u,

which is proven in the following theorem.

Theorem 1 The mapping B ∈ R3 7→ ∇Bf(B) ∈ R3 is globally invertible.

Proof. We �rst prove local invertibility. Let u(B) := ∇Bf(B). Using (39),
and recalling that n > 0 is given, we have that

∂ui
∂Bj

=
∂2f

∂Bi∂Bj
=

Pij
n
− uiuj

=
1

n

∫
R3

(vi(p)− ui)(vj(p)− uj)φ(A,B,p) dp,

showing that the Jacobian matrix of the transformation is the covariance
matrix of v(p), relative to the probability density φ(A,B,p)/n, which is
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semi-de�nite positive. The positive de�niteness is readily proven by direct
inspection, since

3∑
i,j=1

∂ui
∂Bj

ξiξj =
1

n

∫
R3

[ξ · (v(p)− u)]
2
φ(A,B,p) dp > 0

for every ξ ∈ R3 with ξ 6= 0, which concludes the proof of local invertibility.
In order to prove the global result, we resort to the classical result of

Hadamard, that a local di�eomorphism is global if an only if it is proper
(the inverse image of a compact is compact). In the present case this
reduces to prove that, for every sequence Bk ∈ R3 such that |Bk| → ∞,
also the image sequence uk = u(Bk) ∈ R3 is such that |uk| → ∞. Since
|Bk| → ∞, we are interested in the asymptotic behavior of the distribution
φ(A,B,p) for large |B|. Without loss of generality, we put here m = 1 and
β = 1. The critical points of φ(A,B,p) (as a function of p) are determined
by the condition

∇p (E(p)−B · v(p)) = 0.

Recalling (5) and (10), this leads to the condition

p±∇p|~h(p)| −B∓α ·B∇pν2(p) = 0,

that is

p± (α · p)α

[(α · p)2 + γ2]
1/2
−B∓ (α ·B)α γ2

[(α · p)2 + γ2]
3/2

= 0.

Making the change of variable

q =
p

|B|
,

we obtain the equation

q± (α · q)α

|B|
[
(α · q)2 + |B|−2γ2

]1/2 − B

|B|
∓ (α ·B)α γ2

|B|4
[
(α · q)2 + |B|−2γ2

]3/2 = 0,

which is asymptotically equivalent for |B| → ∞ to

q− B

|B|
= 0,
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i.e. to
p = B.

Thus, we have shown that, for large |B|, the distribution φ(A,B,p) has a
single critical point (which is clearly a maximum) at p = B. Moreover, it

decays like e−|p|
2/2 away from the maximum. This gaussian-like behavior

ensures that

1

n

∫
R3

pφ(A,B,p) dp ∼ B, as |B| → ∞.

Finally, since v(p) = p ± ν2(p)α, and ν2(p)α is a bounded quantity, we
also obtain

u =
1

n

∫
R3

v(p)φ(A,B,p) dp ∼ 1

n

∫
R3

pφ(A,B,p) dp ∼ B,

which shows that |uk| → ∞ if |Bk| → ∞, concluding the proof. �

6 Band coupling

As already remarked, the disappearance of the quantum interference terms
in the semiclassical limit makes our hydrodynamic model decoupled with
respect to the two bands. Coupling mechanisms can be introduced in two
ways. First of all, we may assume that the electric potential is composed
of two parts:

V = Vext + Vint,

where Vext is the �external� part (taking account, e.g., of external bias,
gate potentials, and heterostructure potentials), while Vint is the �internal�
(or self-consistent) part, taking account of Coulomb repulsion between
electrons. In the simple mean-�eld model, this is given by the Poisson
equation

εs∆Vint = −q(n+ + n−), (40)

where q is the elementary charge and εs is the permittivity of the
semiconductor. The right-hand side depends on the total density n+ +n−,
this coupling the upper-band and lower-band populations.

The other source of coupling derives from collisional mechanisms. In
order to introduce them, we have to go back to the kinetic level and add to
the WBGK equation (18) a suitable matrix-valued �interband� collisional
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operator C(w) [12]. This is assumed to act on a much slower time scale
with respect to τc (otherwise it would a�ect the hydrodynamic limit and
destroy the structure of our MEP-based model). Thus, we rewrite Eq. (18)
with the (generic) additional terms:
∂w0

∂t
+

p

m
· ∇xw0 + F · ∇pw0 + α · ∇xw2 =

g0 − w0

τc
+ C0(w),

∂ ~w

∂t
+

p

m
·∇x ~w + F · ∇p ~w + α·∇xw0 ~e2 −

2

~
~h(p)× ~w =

~g − ~w

τc
+ ~C(w).

(41)
Following the same arguments that led to Eq. (29), we arrive at

∂g±
∂t

+ v± · ∇xg± + F · ∇pg± = C±(g+, g−) (42)

(where we adopted a notation that stresses the fact that g only depends
on g+ and g−). Taking the zeroth-order and �rst-order moments of this
equation we get a modi�ed version of the hydrodynamic system (34):

∂n±
∂t

+∇x (n±u±) = N±(n+, n−,u+,u−),

∂(n±u±)

∂t
+∇x · P± − F ·Q± = U±(n+, n−,u+,u−),

(43)

where, of course,

N± =

∫
R3

C±(g+, g−) dp

U± =

∫
R3

v±(p)C±(g+, g−) dp,

(44)

and the dependence on (n+, n−,u+,u−) follows from the MEP closure.
Le us now list some possible choice of C(w) in a simple BGK (relaxation

time) form, corresponding to di�erent interband scattering mechanisms.

1. Band-�ip The electron undergoes a collision which exchange its band
label from + to −, or from − to +. Then we put

Cbf (w) = −w − w0σ0
τbf

= − ~w · ~σ
τbf

(45)
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(where τbf denotes the characteristic time of band-�ip scattering, which
we assume constant for simplicity), so that

Cbf
± (w) = ∓w+ − w−

τbf

(from which the band-�ip is evident). According to de�nition (44),
therefore, we have

Nbf
± = ∓n+ − n−

τbf
, Ubf

± = ∓n+u+ − n−u−
τbf

. (46)

Note that the band �ip mechanism conserves the total density and the
momentum and relaxes the polarization of density and momentum, (i.e.
n+ − n− and u+ − u−).

2. Band relaxation An electron in the upper band undergoes a inelastic
collision which scatters it to the lower band [7]. This mechanism is
described by

Cbr (w) = −w0~ν − ~w

τbr
· ~σ, (47)

so that

Cbf
± (w) = ∓w+

τbr
,

(where τbr denotes the characteristic time of band relaxation scattering,
which we assume constant). From de�nition (44) we obtain

Nbr
± = ∓n+

τbr
, Ubr

± = ∓n+u+

τbr
. (48)

Note that this mechanism conserves the total density an momentum and
depletes the upper band in favor of the lower.

3. Isotropic interband scattering An electron undergoes a scattering
event that changes its band label and re-distributes its momentum
according to a isotropic, thermal distribution. This mechanism is described
by

Cis(w) = −w − g
∗

τis
, (49)
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where τis denotes the characteristic time of interband scattering, which
we assume constant, and where g∗ is the isotropic version, with inverted
densities, of the MEP local equilibrium g, i.e.

g∗±(x,p, t) =
n∓
z±

e−βE±(p), ~g∗⊥ = 0, (50)

where

z± =

∫
R3

e−βE±(p) dp, (51)

so that∫
R3

g∗±(x,p, t) dp = n∓(x, t),

∫
R3

v±(p) g∗±(x,p, t) dp = 0

(note the inverted band-labels of the density). Then:

Cis
± (w) = −

w± − g∗±
τis

and

N is
± = ∓n+ − n−

τis
, Uis

± = −n±u±
τis

, (52)

Note, therefore, that this scattering mechanism relaxes the current in
both bands and the density polarization .

7 Conclusions

We can �nally summarize the hydrodynamic model emerged from our
discussion. It consists of the Euler-Poisson-like system

∂n±
∂t

+∇x (n±u±) = N±,

∂(n±u±)

∂t
+∇x · (nu± ⊗ u± + nT±) +∇x (Vext + Vint) ·Q± = U±,

εs∆Vint = −q(n+ + n−),
(53)

where:

N± = N±(n+, n−,u+,u−), U± = U±(n+, n−,u+,u−)



Semiclassical hydrodynamics of a quantum Kane model 27

are the coupling terms discussed above,

T± = ∇B± ⊗∇B± log

∫
R3

e−βE±(p)+B±·v±(p) dp

is the pressure tensor, described in Sec. 5,

Q± =

∫
R3

M−1± (p) e−βE±(p)+B±·v±(p)+A±dp,

is the e�ective-mass tensor, also described in Sec. 5, and the Lagrange
multipliers (A±,B±) can be uniquely solved as functions of the moments
(n±,u±) from the constraint equations

∫
R3

e−βE±(p)+B±·v±(p)+A±dp = n±,∫
R3

v±(p) e−βE±(p)+B±·v±(p)+A±dp = u±,

as proven in Theorem 1.
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