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In the paper we consider the problem of the rigorous description of the
kinetic evolution in the presence of initial correlations of quantum particles.
One developed approach consists on the description of the evolution
of quantum many-particle systems within the framework of marginal
observables in mean �eld scaling limit. Another method based on the
possibility to describe the evolution of states within the framework of a one-
particle marginal density operator governed by the generalized quantum
kinetic equation in case of initial states speci�ed by a one-particle marginal
density operator and correlation operators.

Â ðîáîòi ðîçãëÿäà¹òüñÿ ïðîáëåìà ñòðîãîãî îïèñó êiíåòè÷íî¨ åâîëþöi¨ çà
íàÿâíîñòi ïî÷àòêîâèõ êîðåëÿöié êâàíòîâèõ ÷àñòèíîê. Îäèí ç ðîçâèíó-
òèõ ïiäõîäiâ ïîëÿãà¹ â îïèñi åâîëþöi¨ êâàíòîâèõ ñèñòåì áàãàòüîõ ÷àñòè-
íîê â òåðìiíàõ ìàðãiíàëüíèõ ñïîñòåðåæóâàíèõ â ñêåéëií îâié ãðàíèöi
ñåðåäíüîãî ïîëÿ. Ùå îäèí ìåòîä  ðóíòó¹òüñÿ íà ìîæëèâîñòi îïèñó åâî-
ëþöi¨ ñòàíiâ çà äîïîìîãîþ îäíî÷àñòèíêîâîãî ìàðãiíàëüíîãî îïåðàòîðà
ãóñòèíè, ÿêèé âèçíà÷à¹òüñÿ óçàãàëüíåíèì êâàíòîâèì êiíåòè÷íèì ðiâ-
íÿííÿì ó âèïàäêó ïî÷àòêîâèõ ñòàíiâ çàäàíèõ îäíî÷àñòèíêîâèì ìàðãi-
íàëüíèì îïåðàòîðîì ãóñòèíè i êîðåëÿöiéíèìè îïåðàòîðàìè.

c© Institute of Mathematics, 2014



Quantum kinetic equations with correlations 47

1 Introduction

As is known the collective behavior of quantum many-particle systems can
be e�ectively described within the framework of a one-particle marginal
density operator governed by the kinetic equation in a suitable scaling
limit of underlying dynamics. At present the considerable advances in the
rigorous derivation of the quantum kinetic equations in the mean (self-
consistent) �eld scaling limit is observed [1]-[6]. In particular, the nonlinear
Schr�odinger equation [3]-[10] and the Gross�Pitaevskii equation [7]-[15]
was justi�ed.

The conventional approach to this problem is based on the
consideration of an asymptotic behavior of a solution of the quantum
BBGKY hierarchy for marginal density operators constructed within the
framework of the theory of perturbations in case of initial data speci�ed
by one-particle marginal density operators without correlations, i.e. such
that satisfy a chaos condition [16],[17]. We note, that for the �rst time a
perturbative solution of the quantum BBGKY hierarchy was constructed
by D. Petrina [18] (see also [19]).

In paper [20] it was developed more general method of the derivation of
the quantum kinetic equations. By means of a non-perturbative solution of
the quantum BBGKY hierarchy constructed in [21] it was established that,
if initial data is completely speci�ed by a one-particle marginal density
operator, then all possible states of many-particle systems at arbitrary
moment of time can be described within the framework of a one-particle
density operator governed by the generalized quantum kinetic equation
(see also [22]). Then the actual quantum kinetic equations can be derived
from the generalized quantum kinetic equation in appropriate scaling
limits, for example, a mean �eld limit [23].

Another approach to the description of the many-particle evolution is
given within the framework of marginal observables governed by the dual
quantum BBGKY hierarchy [24]. In paper [25] a rigorous formalism for the
description of the kinetic evolution of observables of quantum particles in
a mean �eld scaling limit was developed.

In this paper we consider the problem of the rigorous description of the
kinetic evolution in the presence of initial correlations of quantum particles.
Such initial states are typical for the condensed states of quantum gases
in contrast to the gaseous state. For example, the equilibrium state of the
Bose condensate satis�es the weakening of correlation condition speci�ed
by correlations of the condensed state [26]. Thus, our goal consists in the
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derivation of the mean �eld quantum kinetic equation including initial
correlations.

We outline the structure of the paper. In section 2, we establish the
mean �eld asymptotic behavior of marginal observables governed by the
dual quantum BBGKY hierarchy. The limit dynamics is described by
the set of recurrence evolution equations, namely by the dual quantum
Vlasov hierarchy. Furthermore, the links of the dual quantum Vlasov
hierarchy for the limit marginal observables and the quantum Vlasov-
type kinetic equation with correlations are established. In section 3, we
consider the relationships of dynamics described by marginal observables
and within the framework of a one-particle marginal density operator
governed by the generalized quantum kinetic equation including initial
correlations. In section 4, we develop one more approach to the description
of the quantum kinetic evolution with correlations in the mean �eld limit.
We prove that a solution of the generalized quantum kinetic equation
with correlations is governed by the quantum Vlasov-type equation with
correlations. The property of the propagation of initial correlations is also
established. Finally, in section 5, we conclude with some perspectives for
future research.

2 The kinetic evolution within the framework

of marginal observables

The kinetic evolution of many-particle systems can be described within
the framework of observables. We consider this problem on an example
of the mean �eld asymptotic behavior of a non-perturbative solution of
the dual quantum BBGKY hierarchy for marginal observables. Moreover,
we establish the links of the dual quantum Vlasov hierarchy for the limit
marginal observables with the quantum Vlasov-type kinetic equation in
the presence of initial correlations.

2.1 Many-particle dynamics of observables

We consider a quantum system of a non-�xed (i.e. arbitrary but �nite)
number of identical (spinless) particles obeying Maxwell�Boltzmann
statistics in the space R3. We will use units where h = 2π~ = 1 is a
Planck constant, and m = 1 is the mass of particles.
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Let the space H be a one-particle Hilbert space, then the n-particle
space Hn = H⊗n is a tensor product of n Hilbert spaces H. We adopt the
usual convention that H⊗0 = C. The Fock space over the Hilbert space H
we denote by FH =

⊕∞
n=0Hn.

The Hamiltonian Hn of the n-particle system is a self-adjoint operator
with the domain D(Hn) ⊂ Hn

Hn =

n∑
i=1

K(i) + ε

n∑
i1<i2=1

Φ(i1, i2), (1)

where K(i) is the operator of a kinetic energy of the i particle, Φ(i1, i2)
is the operator of a two-body interaction potential and ε > 0 is a scaling
parameter. The operator K(i) acts on functions ψn, that belong to the
subspace L2

0(R3n) ⊂ D(Hn) ⊂ L2(R3n) of in�nitely di�erentiable functions
with compact supports, according to the formula: K(i)ψn = − 1

2∆qiψn.
Correspondingly, we have: Φ(i1, i2)ψn = Φ(qi1 , qi2)ψn, and we assume that
the function Φ(qi1 , qi2) is symmetric with respect to permutations of its
arguments, translation-invariant and bounded function.

Let a sequence g = (g0, g1, . . . , gn, . . .) be an in�nite sequence of self-
adjoint bounded operators gn de�ned on the Fock space FH. An operator
gn de�ned on the n-particle Hilbert space Hn = H⊗n will be also denoted
by the symbol gn(1, . . . , n). Let the space L(FH) be the space of sequences
g = (g0, g1, . . . , gn, . . .) of bounded operators gn de�ned on the Hilbert
space Hn that satisfy symmetry condition: gn(1, . . . , n) = gn(i1, . . . , in),
for arbitrary (i1, . . . , in) ∈ (1, . . . , n), equipped with the operator norm
‖.‖L(Hn). We will also consider a more general space Lγ(FH) with the
norm ∥∥g∥∥

Lγ(FH)

.
= max

n≥0

γn

n!

∥∥gn∥∥L(Hn)
,

where 0 < γ < 1. We denote by L
γ ,0(FH) ⊂ Lγ(FH) the everywhere dense

set in the space Lγ(FH) of �nite sequences of degenerate operators with
in�nitely di�erentiable kernels with compact supports.

For gn ∈ L(Hn) it is de�ned the one-parameter mapping

R1 3 t 7→ Gn(t)gn
.
= eitHngne

−itHn , (2)

where the Hamilton operatorHn has the structure (1). On the space L(Hn)
one-parameter mapping (2) is an isometric ∗-weak continuous group of
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operators. The in�nitesimal generator Nn of this group of operators is a
closed operator for the ∗-weak topology, and on its domain of the de�nition
D(Nn) ⊂ L(Hn) it is de�ned in the sense of the ∗-weak convergence of the
space L(Hn) by the operator

w∗− lim
t→0

1

t

(
Gn(t)gn − gn

)
= −i(gnHn −Hngn)

.
= Nngn, (3)

where Hn is the Hamiltonian (1) and the operator Nngn is de�ned
on the domain D(Hn) ⊂ Hn. Therefore on the space L(Hn) a unique
solution of the Heisenberg equation for observables of a n-particle system
is determined by group (2) [22].

In what follows we shall hold abridged notations: Y ≡ (1, . . . , s), X ≡
(j1, . . . , jn) ⊂ Y , and {Y \ X} is the set, consisting of a single element
Y \ X = (1, . . . , s) \ (j1, . . . , jn), thus, the set {Y \ X} is a connected
subset of the set Y .

To describe the evolution within the framework of marginal observables
we introduce a notion of the (1 + n)th-order (n ≥ 0) cumulant of groups
of operators (2) as follows [21]

A1+n(t, {Y \X}, X)
.
= (4)

.
=

∑
P: ({Y \X}, X)=

⋃
iXi

(−1)|P|−1(|P| − 1)!
∏
Xi⊂P

G|θ(Xi)|(t, θ(Xi)),

where the symbol
∑

P means the sum over all possible partitions P of
the set ({Y \ X}, j1, . . . , jn) into |P| nonempty mutually disjoint subsets
Xi ⊂ ({Y \ X}, X), and θ(·) is the declusterization mapping de�ned as
follows: θ({Y \X}, X) = Y . For example,

A1(t, {Y }) = Gs(t, Y ),

A2(t, {Y \ (j)}, j) = Gs(t, Y )− Gs−1(t, Y \ (j))G1(t, j).

In terms of observables the evolution of quantum many-particle systems
is described by the sequence B(t) = (B0, B1(t, 1), . . . , Bs(t, 1, . . . , s), . . .)
of marginal observables (or s-particle observables) Bs(t, 1, . . . , s), s ≥ 1,
determined by the following expansions [24]:

Bs(t, Y ) =

s∑
n=0

1

n!

s∑
j1 6=... 6=jn=1

A1+n(t, {Y \X}, X)B0,ε
s−n(Y \X), (5)
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where B(0) = (B0, B
0,ε
1 (1), . . . , B0,ε

s (1, . . . , s), . . .) ∈ Lγ(FH) is a sequence
of initial marginal observables, and the generating operator A1+n(t) of
expansion (5) is the (1 + n)th-order cumulant of groups of operators (2)
de�ned by expansion (4). The simplest examples of marginal observables
(5) are given by the expressions:

B1(t, 1) = A1(t, 1)B0,ε
1 (1),

B2(t, 1, 2) = A1(t, {1, 2})B0,ε
2 (1, 2) + A2(t, 1, 2)(B0,ε

1 (1) +B0,ε
1 (2)).

If γ < e−1, for the sequence of operators (5) the estimate is true:∥∥B(t)
∥∥
Lγ(FH)

≤ e2(1− γe)−1
∥∥B(0)

∥∥
Lγ(FH)

.

We note that a sequence of marginal observables (5) is the non-
perturbative solution of recurrence evolution equations known as the dual
quantum BBGKY hierarchy [24].

2.2 A mean �eld asymptotic behavior of marginal

observables

A mean �eld asymptotic behavior of marginal observables (5) is described
by the following statement [25].

Theorem 1 Let for B0,ε
n ∈ L(Hn), n ≥ 1, in the sense of the ∗-weak

convergence on the space L(Hs) it holds: w∗− limε→0(ε−nB0,ε
n − b0n) = 0,

then for arbitrary �nite time interval there exists the mean �eld limit of
marginal observables (5): w∗− limε→0(ε−sBs(t) − bs(t)) = 0, s ≥ 1, that
are determined by the following expansions:

bs(t, Y ) =

s−1∑
n=0

t∫
0

dt1 . . .

tn−1∫
0

dtn
∏
l1∈Y

G1(t− t1, l1) (6)

×
s∑

i1 6=j1=1

Nint(i1, j1)
∏

l2∈Y \(j1)

G1(t1 − t2, l2) . . .

∏
ln∈Y \(j1,...,jn−1)

G1(tn−1 − tn, ln)

s∑
in 6= jn = 1,

in, jn 6= (j1, . . . , jn−1)

Nint(in, jn)

×
∏

ln+1∈Y \(j1,...,jn)

G1(tn, ln+1)b0s−n(Y \ (j1, . . . , jn)).
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In expansion (6) we denote by the symbol Nint(i1, j2) the operator de�ned
on gn ∈ L(Hn)

Nint(i1, j2)gn
.
= −i(gnΦ(i1, j2)− Φ(i1, j2)gn).

The proof of Theorem 1 is based on formulas for cumulants of
asymptotically perturbed groups of operators (2).

For arbitrary �nite time interval the asymptotically perturbed group
of operators (2) has the following scaling limit in the sense of the ∗-weak
convergence on the space L(Hs):

w∗− lim
ε→0

(
Gs(t, Y )−

s∏
j=1

G1(t, j)
)
gs = 0. (7)

Taking into account analogs of the Duhamel equations for cumulants of
asymptotically perturbed groups of operators, in view of formula (7) we
have

w∗− lim
ε→0

(
ε−n

1

n!
A1+n

(
t, {Y \X}, j1, . . . , jn

)
−

−
t∫

0

dt1 . . .

tn−1∫
0

dtn
∏
l1∈Y

G1(t− t1, l1)

s∑
i1 6=j1=1

Nint(i1, j1)

×
∏

l2∈Y \(j1)

G1(t1 − t2, l2) . . .
∏

ln∈Y \(j1,...,jn−1)

G1(tn−1 − tn, ln)

×
s∑

in 6= jn = 1,
in, jn 6= (j1, . . . , jn−1)

Nint(in, jn)
∏

ln+1∈Y \(j1,...,jn)

G1(tn, ln+1)
)
gs−n = 0,

where we used notations accepted in formula (6) and gs−n ≡
gs−n((1, . . . , s)\(j1, . . . , jn)), n ≥ 1. As a result of this equality we establish
the validity of Theorem 1 for expansion (5) of marginal observables.

If b0 ∈ Lγ(FH), then the sequence b(t) = (b0, b1(t), . . . , bs(t), . . .) of
limit marginal observables (6) is a generalized global solution of the Cauchy
problem of the dual quantum Vlasov hierarchy

∂

∂t
bs(t, Y ) =

s∑
j=1

N (j) bs(t, Y ) +

s∑
j1 6=j2=1

Nint(j1, j2) bs−1(t, Y \ (j1)), (8)

bs(t) |t=0= b0s, s ≥ 1, (9)
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where the symbol N (j) denotes the in�nitesimal generator de�ned on gn ∈
L0(Hn) of the group of operators G1(t, j) of j particle

N (j)gn
.
= −i(gnK(j)−K(j)gn).

It should be noted that equations set (8) has the structure of recurrence
evolution equations. We give several examples of the evolution equations
of the dual quantum Vlasov hierarchy (8) in terms of operator kernels of
the limit marginal observables

i
∂

∂t
b1(t, q1; q′1) = −1

2
(−∆q1 + ∆q′1

)b1(t, q1; q′1),

i
∂

∂t
b2(t, q1, q2; q′1, q

′
2) =

(
− 1

2

2∑
i=1

(−∆qi + ∆q′i
) +

+(Φ(q′1 − q′2)− Φ(q1 − q2))
)
b2(t, q1, q2; q′1, q

′
2) +

+
(
Φ(q′1 − q′2)− Φ(q1 − q2)

)(
b1(t, q1; q′1) + b1(t, q2; q′2)

)
.

We consider the mean �eld limit of a particular case of marginal
observables, namely the additive-type marginal observables B(1)(0) =
(0, B0,ε

1 (1), 0, . . .). We remark that the k-ary marginal observables are
represented by the sequence B(k)(0) =

(
0, . . . , 0, B0,ε

k (1, . . . , k), 0, . . .
)
. In

case of additive-type marginal observables expansions (5) the following
form:

B(1)
s (t, Y ) = As(t)

s∑
j=1

B0,ε
1 (j), s ≥ 1, (10)

where As(t) is s-order cumulant (4) of groups of operators (2).

Corollary 1 If for the additive-type marginal observable B0,ε
1 ∈ L(H),

it holds w∗− limε→0(ε−1B0,ε
1 − b01) = 0, then, according to the statement

of Theorem 1, for additive-type marginal observable (10) we have

w∗− limε→0(ε−sB
(1),ε
s (t)−b(1)s (t)) = 0, s ≥ 1, where the limit additive-type

marginal observable b
(1)
s (t) is determined by a special case of expansion (6)

b(1)s (t, Y ) =

t∫
0

dt1 . . .

ts−2∫
0

dts−1
∏
l1∈Y

G1(t− t1, l1)

s∑
i1 6=j1=1

Nint(i1, j1) (11)

×
∏

l2∈Y \(j1)

G1(t1 − t2, l2) . . .
∏

ls−1∈Y \(j1,...,js−2)

G1(ts−2 − ts−1, ls−1)
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×
s∑

is−1 6= js−1 = 1,
is−1, js−1 6= (j1, . . . , js−2)

Nint(is−1, js−1)

×
∏

ls∈Y \(j1,...,js−1)

G1(ts−1, ls)b
0
1(Y \ (j1, . . . , js−1)).

We make several examples of expansions (11) for the limit additive-type
marginal observables

b
(1)
1 (t, 1) = G1(t, 1) b01(1),

b
(1)
2 (t, 1, 2) =

t∫
0

dt1

2∏
i=1

G1(t− t1, i)Nint(1, 2)

2∑
j=1

G1(t1, j) b
0
1(j).

Thus, for arbitrary initial states in the mean �eld scaling limit the
kinetic evolution of quantum many-particle systems is described in terms
of limit marginal observables (6) governed by the dual quantum Vlasov
hierarchy (8).

2.3 The derivation of the quantum Vlasov-type

kinetic equation with correlations

Furthermore, the relationships between the evolution of observables and
the kinetic evolution of states described in terms of a one-particle marginal
density operator are considered.

Let initial states speci�ed by the one-particle marginal density operator
F 0,ε
1 ∈ L1(H) in the presence of correlations, i.e. initial state is de�ned by

the following sequence of density operators:

F c =
(
1, F 0,ε

1 (1), g2

2∏
i=1

F 0,ε
1 (i), . . . , gn

n∏
i=1

F 0,ε
1 (i), . . .

)
, (12)

where the bounded operators gn ≡ gn(1, . . . , n) ∈ L(Hn), n ≥ 2, are
speci�ed initial correlations. We note that such assumption about initial
states is intrinsic for the kinetic description of a gas. On the other hand,
initial data (12) is typical for the condensed states of quantum gases,
for example, the equilibrium state of the Bose condensate satis�es the
weakening of correlation condition with the correlations which characterize
the condensed state [26].
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We assume that for the initial one-particle marginal density operator
F 0,ε
1 ∈ L1(H) exists the mean �eld limit limε→0

∥∥ε F 0,ε
1 − f01

∥∥
L1(H)

= 0,

then in the mean �eld limit initial state is de�ned by the following sequence
of operators:

f c =
(
1, f01 (1), g2

2∏
i=1

f01 (i), . . . , gn

n∏
i=1

f01 (i), . . .
)
. (13)

We consider links of the constructed mean �eld asymptotic behavior of
marginal observables with the nonlinear Vlasov-type kinetic equation in
case of initial states (13).

In case of initial states speci�ed by sequence (13) the average values
(mean values) of limit marginal observables (6) are determined by the
following positive continuous linear functional [22]

(
b(t), f c

) .
=

∞∑
n=0

1

n!
Tr1,...,n bn(t, 1, ..., n) gn(1, ..., n)

n∏
i=1

f01 (i). (14)

For b(t) ∈ Lγ(FH) and f01 ∈ L1(H), functional (14) exists under the
condition that ‖f01 ‖L1(H) < γ.

Consequently, for the limit additive-type marginal observables (11) the
following equality is true:

(
b(1)(t), f c

)
=

∞∑
s=0

1

s!
Tr1,...,s b

(1)
s (t, 1, . . . , s)gs(1, . . . , s)

s∏
i=1

f01 (i) =

= Tr1 b
0
1(1)f1(t, 1),

where the operator b
(1)
s (t) is given by expansion (11) and the limit marginal

density operator f1(t, 1) is represented by the series expansion

f1(t, 1) =
∞∑
n=0

t∫
0

dt1 . . .

tn−1∫
0

dtn Tr2,...,n+1G1(−t+ t1, 1) (15)

×N ∗int(1, 2)

2∏
j1=1

G1(−t1 + t2, j1) . . .

n∏
in=1

G1(−tn + tn, in)

×
n∑

kn=1

N ∗int(kn, n+ 1)

n+1∏
jn=1

G1(−tn, jn)g1+n(1, . . . , n+ 1)

n+1∏
i=1

f01 (i).
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In series (15) the operator N ∗int(j1, j2)fn = −Nint(j1, j2)fn is adjoint
operator to operator (3) in the sense of functional (14). For bounded
interaction potentials series (15) is norm convergent on the space L1(H)
under the condition: t < t0 ≡ (2 ‖Φ‖L(H2)‖f01 ‖L1(H))

−1.
The operator f1(t) represented by series (15) is a solution of the Cauchy

problem of the quantum Vlasov-type kinetic equation with correlations

∂

∂t
f1(t, 1) = −N (1)f1(t, 1) + (16)

+Tr2(−Nint)(1, 2)

2∏
i1=1

G1(−t, i1)g2(1, 2)

2∏
i2=1

G1(t, i2)f1(t, 1)f1(t, 2),

f1(t)|t=0 = f01 . (17)

This fact is proved similarly as in case of a solution of the quantum BBGKY
hierarchy represented by the iteration series [18],[22].

Thus, in case of initial states speci�ed by one-particle marginal density
operator (13) we establish that the dual quantum Vlasov hierarchy (8) for
additive-type marginal observables describes the evolution of a system of
quantum particles just as the quantum Vlasov-type kinetic equation with
correlations (16).

2.4 The mean �eld evolution of initial correlations

The property of the propagation of initial chaos is a consequence of the
validity of the following equality for the mean value functionals of the limit
k-ary marginal observables in case of k ≥ 2(
b(k)(t), fc

)
=

∞∑
s=0

1

s!
Tr1,...,s b

(k)
s (t, 1, . . . , s)gs(1, . . . , s)

s∏
j=1

f01 (j) = (18)

=
1

k!
Tr1,...,k b

0
k(1, . . . , k)

k∏
i1=1

G1(−t, i1)gk(1, . . . , k)

×
k∏

i2=1

G1(t, i2)

k∏
j=1

f1(t, j), k ≥ 2,

where the limit one-particle marginal density operator f1(t, i) is de�ned by
series expansion (15) and therefore it is a solution of the Cauchy problem
of the quantum Vlasov-type kinetic equation with correlations (16),(17).
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This fact is proved similarly to the proof of a property on the
propagation of initial chaos in a mean �eld limit [25].

Thus, in case of the limit k-ary marginal observables a solution of
the dual quantum Vlasov hierarchy (8) is equivalent to a property of
the propagation of initial correlations for the k-particle marginal density
operator in the sense of equality (18) or in other words the mean �eld
scaling dynamics does not create correlations.

We remark that the general approaches to the description of the
evolution of states of quantummany-particle systems within the framework
of correlation operators and marginal correlation operators were given in
papers [28],[29] and [30], respectively (see also a review [22]).

3 On relationships of dynamics of observables

and the kinetic evolution of states

We consider the relationships of dynamics of quantum many-particle
systems described in terms of marginal observables and dynamics described
within the framework of a one-particle marginal density operator governed
by the generalized quantum kinetic equation in the presence of initial
correlations. If initial states is completely speci�ed by a one-particle
marginal density operator, using a non-perturbative solution of the
quantum dual BBGKY hierarchy we prove that all possible states at
arbitrary moment of time can be described within the framework of a
one-particle density operator governed by the generalized quantum kinetic
equation with correlations.

3.1 Quantum dynamics of states and correlations

In case of initial states de�ned by sequence (12) the average values (mean
values) of marginal observables (5) are de�ned by the positive continuous
linear functional on the space L(FH)

(
B(t), F c

) .
=

∞∑
n=0

1

n!
Tr1,...,nBn(t, 1, . . . , n) gn(1, . . . , n)

n∏
i=1

F 0,ε
1 (i). (19)

For F 0,ε
1 ∈ L1(H) and B0,ε

n ∈ L(Hn) series (19) exists under the condition
that ‖F 0,ε

1 ‖L1(H) < e−1.
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For mean value functional (19) the following representation holds(
B(t), F c

)
=
(
B(0), F (t | F1(t))

)
, (20)

where B(0) = (B0, B
0,ε
1 (1), . . . , B0,ε

s (1, . . . , s), . . .) ∈ Lγ(FH) is a sequence
of initial marginal observables, and F (t | F1(t)) = (1, F1(t), F2(t |
F1(t)), . . . , Fs(t | F1(t)), . . .) is a sequence of explicitly de�ned marginal
functionals Fs(t | F1(t)), s ≥ 2, with respect to the one-particle marginal
density operator

F1(t, 1) =

∞∑
n=0

1

n!
Tr2,...,1+n A1+n(−t)gn+1(1, . . . , n+ 1)

n+1∏
i=1

F 0,ε
1 (i). (21)

The generating operator A1+n(−t) ≡ A1+n(−t, 1, . . . , n + 1) of series
expansion (21) is the (1 + n)th-order cumulant of groups of operators
Gn(−t), n ≥ 1, adjoint to groups (2) in the sense of functional (19).

The marginal functionals of the state Fs(t | F1(t)), s ≥ 2, are
represented by the following series expansions:

Fs
(
t, Y | F1(t)

) .
= (22)

.
=

∞∑
n=0

1

n!
Trs+1,...,s+nG1+n

(
t, {Y }, s+ 1, . . . , s+ n

) s+n∏
i=1

F1(t, i),

where the (1 + n)th-order generating operator G1+n(t), n ≥ 0, is
determined by the expansion

G1+n(t, {Y }, X \ Y )
.
= (23)

.
= n!

n∑
k=0

(−1)k
n∑

n1=1

. . .

n−n1−...−nk−1∑
nk=1

1

(n− n1 − . . .− nk)!

×Ă1+n−n1−...−nk(t, {Y }, s+ 1, . . . , s+ n− n1 − . . .− nk)

×
k∏
j=1

∑
Dj : Zj =

⋃
lj
Xlj ,

|Dj | ≤ s+ n− n1 − · · · − nj

1

|Dj |!

×
s+n−n1−...−nj∑
i1 6=...6=i|Dj |=1

∏
Xlj⊂Dj

1

|Xlj |!
Ă1+|Xlj |(t, ilj , Xlj ).
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In formula (23) we denote by
∑

Dj :Zj=
⋃
lj
Xlj

the sum over all possible

dissections of the linearly ordered set Zj ≡ (s+n−n1− . . .−nj+1, . . . , s+
n−n1− . . .−nj−1) on no more than s+n−n1− . . .−nj linearly ordered
subsets and we introduced the (1 + n)th-order scattering cumulants

Ă1+n(t, {Y }, X \ Y )
.
=

.
= A1+n(−t, {Y }, X \ Y )gs+n(θ({Y }), X \ Y )

s+n∏
i=1

A1(t, i),

where it is used notations accepted above. We give examples of the
scattering cumulants

G1(t, {Y }) = Ă1(t, {Y }) .
= A1(−t, {Y })gs(θ({Y }))

s∏
i=1

A1(t, i),

G2(t, {Y }, s+ 1) = A2(−t, {Y }, s+ 1)gs+1(θ({Y }), s+ 1)

s+1∏
i=1

A1(t, i)−

−A1(−t, {Y })gs(θ({Y }))
s∏
i=1

A1(t, i)×

×
s∑
i=1

A2(−t, i, s+ 1)g2(i, s+ 1)A1(t, i)A1(t, s+ 1).

If ‖F1(t)‖L1(H) < e−(3s+2), then for arbitrary t ∈ R series expansion
(20) converges in the norm of the space L1(Hs) [22].

We emphasize that marginal functionals of the state (22) characterize
the correlations generated by dynamics of quantum many-particle systems
in the presence of initial correlations.

3.2 On an equivalence of mean value functional

representations

We establish the validity of equality (20) for mean value functional (19).
In a particular case of initial data speci�ed by the additive-type

marginal observables, i.e. B(1)(0) = (0, B0,ε
1 (1), 0, . . .), equality (20) takes

the form (
B(1)(t), F c

)
= Tr1B

0,ε
1 (1)F1(t, 1), (24)
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where the one-particle marginal density operator F1(t) is determined by
series expansion (21). The validity of this equality is a result of the direct
transformation of the generating operators of expansions (10) to adjoint
operators in the sense of the functional (19).

In case of initial data speci�ed by the s-ary marginal observables i.e.
B(s)(0) = (0, . . . , 0, B0,ε

s (1, . . . , s), 0, . . .), s ≥ 2, equality (20) takes the
following form:

(
B(s)(t), F c

)
=

1

s!
Tr1,...,sB

0,ε
s (1, . . . , s)Fs

(
t, 1, . . . , s | F1(t)

)
, (25)

where the marginal functional of the state Fs(t | F1(t)) is represented by
series expansion (22).

The proof of equality (25) is based on the application of cluster
expansions to generating operators (4) of expansions (5) which is dual
to the kinetic cluster expansions introduced in [20]. Then the adjoint
series expansion can be expressed in terms of one-particle marginal density
operator (21) in the form of the functional from the right-hand side of
equality (25).

In case of the general type of marginal observables the validity of
equality (20) is proven in much the same way as the validity of equalities
(24) and (25).

3.3 The generalized quantum kinetic equation with

correlations

As a result of the di�erentiation over the time variable of operator
represented by series (21) in the sense of the norm convergence of the
space L1(Hs), then the application of the kinetic cluster expansions [20] to
the generating operators of obtained series expansion, for the one-particle
marginal density operator we derive the identity [27]

∂

∂t
F1(t, 1) = −N (1)F1(t, 1) + εTr2(−Nint(1, 2))F2(t, 1, 2 | F1(t)), (26)

where the collision integral is determined by the marginal functional of the
state (22) in case of s = 2. This identity we treat as the non-Markovian
quantum kinetic equation. We refer to this evolution equation as the
generalized quantum kinetic equation with correlations.
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We emphasize that the coe�cients in an expansion of the collision
integral of kinetic equation (26) are determined by the operators speci�ed
initial correlations.

We remark, that for initial data (12) speci�ed by a one-particle
marginal density operator, the evolution of states described within the
framework of a one-particle marginal density operator governed by the
generalized quantum kinetic equation with correlations (26) is dual to the
dual quantum BBGKY hierarchy for additive-type marginal observables
with respect to bilinear form (19), and it is completely equivalent to the
description of states in terms of marginal density operators governed by
the quantum BBGKY hierarchy.

Thus, the evolution of quantum many-particle systems described in
terms of marginal observables can be also described within the framework
of a one-particle marginal density operator governed by the generalized
quantum kinetic equation with correlations in the sense of functional (19).

4 The mean �eld asymptotic behavior of the

generalized quantum kinetic equation

We establish a mean �eld asymptotics of a solution of the non-Markovian
quantum kinetic equation with correlations constructed above. This
asymptotics is governed by the quantum Vlasov-type kinetic equation with
correlations derived above from the dual quantum Vlasov hierarchy for the
limit marginal observables.

4.1 The mean �eld limit theorem

For solution (21) of the generalized quantum kinetic equation with
correlations (26) the following mean �eld limit theorem is true [23].

Theorem 2 If for the initial one-particle marginal density operator F 0,ε
1 ∈

L1(H) exists the limit limε→0 ‖ε F 0,ε
1 − f01 ‖L1(H) = 0, then for �nite time

interval t ∈ (−t0, t0), where t0 ≡ (2 ‖Φ‖L(H2)‖f01 ‖L1(H))
−1, there exists the

mean �eld limit of solution (21) of the Cauchy problem of the generalized
quantum kinetic equation with correlations (26)

lim
ε→0

∥∥ε F1(t)− f1(t)
∥∥
L1(H)

= 0, (27)
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where the operator f1(t) is represented by series (15) and it is a solution
of the Cauchy problem of the quantum Vlasov-type kinetic equation with
correlations (16),(17).

The proof of this theorem is based on formulas of asymptotically
perturbed cumulants of groups of operators Gn(−t), n ≥ 1, adjoint to
groups (2) in the sense of functional (19). Indeed, in a mean �eld limit for
generating evolution operators (23) of series expansion (22) the following
equalities are valid:

lim
ε→0

∥∥ 1

εn
G1+n(t, {Y }, X \ Y )fs+n

∥∥
L1(Hs+n)

= 0, n ≥ 1, (28)

and in case of the �rst-order generating evolution operator we have

lim
ε→0

∥∥(G1(t, {Y })− (29)

−
s∏

j1=1

G1(−t, j1)gs(θ({Y }))
s∏

j2=1

G1(t, j2)
)
fs
∥∥
L1(Hs)

= 0,

respectively.
In view that under the condition t < t0 ≡ (2 ‖Φ‖L(H2)‖ε F

0,ε
1 ‖L1(H))

−1,
for a bounded interaction potential the series for the operator ε F1(t) is
norm convergent, then for t < t0 the remainder of solution series (21)
can be made arbitrary small for su�cient large n = n0 independently of
ε. Then, using stated above asymptotic formulas, for each integer n every
term of this series converges term by term to the limit operator f1(t) which
is represented by series (15).

As stated above the mean �eld scaling limit (15) of solution (21) of the
generalized quantum kinetic equation in the presence of initial correlations
is governed by the quantum Vlasov-type kinetic equation with correlations
(16).

Thus, we derived the quantum Vlasov-type kinetic equation with
correlations (16) from the generalized quantum kinetic equation (26) in
the mean �eld scaling limit. It is the same as the kinetic equation derived
from the dual quantum Vlasov hierarchy for mean �eld limit marginal
observables.

4.2 A mean �eld limit of marginal functionals of state

As we noted above the all possible correlations of a system of quantum
particles are described by marginal functionals of the state (22).
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Since solution (21) of initial-value problem of the generalized quantum
kinetic equation with correlations (26) converges to solution (15) of
initial-value problem of the quantum Vlasov-type kinetic equation with
correlations (16) as (27), and equalities (28) and (29) hold, for a mean
�eld asymptotic behavior of marginal functionals of the state (22) is true

lim
ε→0

∥∥εsFs(t, 1, . . . , s | F1(t))−

−
s∏

j1=1

G1(−t, j1)gs(1, . . . , s)

s∏
j2=1

G1(t, j2)

s∏
l=1

f1(t, l)
∥∥
L1(Hs)

= 0,

s ≥ 2.

This equalities mean the propagation of initial correlations in time in the
mean �eld scaling limit.

5 Conclusion and outlook

In the paper the concept of quantum kinetic equations in case of the
kinetic evolution, involving correlations of particle states at initial time, for
instance, correlations characterizing the condensed states, was considered.
Two approaches were developed with a view to this purpose. One approach
based on the description of the evolution of quantum many-particle
systems within the framework of marginal observables. Another method
consists in the possibility in case of initial states speci�ed by a one-particle
marginal density operator to describe the evolution of states within the
framework of a one-particle marginal density operator governed by the
generalized quantum kinetic equation with correlations.

In case of pure states the quantum Vlasov-type kinetic equation with
correlations (16) can be reduced to the Gross�Pitaevskii-type kinetic
equation. Indeed, in this case the one-particle density operator f1(t) =
|ψt〉〈ψt| is a one-dimensional projector onto a unit vector |ψt〉 ∈ H and
its kernel has the following form: f1(t, q, q′) = ψ(t, q)ψ∗(t, q′). Then, if we
consider particles, interacting by the potential which kernel Φ(q) = δ(q)
is the Dirac measure, from kinetic equation (16) we derive the Gross�
Pitaevskii-type kinetic equation

i
∂

∂t
ψ(t, q) = −1

2
∆qψ(t, q) +

+

∫
dq′dq′′g(t, q, q; q′, q′′)ψ(t, q′′)ψ∗(t, q)ψ(t, q),



64 V.I. Gerasimenko

where the coupling ratio g(t, q, q; q′, q′′) of the collision integral is the kernel

of the scattering length operator
∏2
i1=1 G1(−t, i1)g2(1, 2)

∏2
i2=1 G1(t, i2). If

we consider a system of quantum particles without initial correlations, then
derived kinetic equation is the cubic nonlinear Schr�odinger equation.

Observing that on the macroscopic scale of the variation of variables,
groups of operators (2) of �nitely many particles depend on microscopic
time variable ε−1t, where ε ≥ 0 is a scale parameter, the dimensionless
marginal functionals of the state are represented in the form Fs(ε

−1t |
F1(t)). As a result of the formal limit processing ε → 0 in the
collision integral, we establish the Markovian kinetic evolution with the
corresponding coe�cient g(ε−1t).

This paper deals with a quantum system of a non-�xed (i.e. arbitrary
but �nite) number of identical (spinless) particles obeying Maxwell�
Boltzmann statistics. The obtained results can be extended to quantum
systems of bosons or fermions [29].

We emphasize, that one of the advantages of the approach to the
derivation of the quantum Vlasov-type kinetic equation from underlying
dynamics governed by the generalized quantum kinetic equation with
correlations enables to construct the higher-order corrections to the mean
�eld evolution of quantum interacting particles.
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