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In the paper we consider the problem of the rigorous description of the
kinetic evolution in the presence of initial correlations of quantum particles.
One developed approach consists on the description of the evolution
of quantum many-particle systems within the framework of marginal
observables in mean field scaling limit. Another method based on the
possibility to describe the evolution of states within the framework of a one-
particle marginal density operator governed by the generalized quantum
kinetic equation in case of initial states specified by a one-particle marginal
density operator and correlation operators.
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1 Introduction

As is known the collective behavior of quantum many-particle systems can
be effectively described within the framework of a one-particle marginal
density operator governed by the kinetic equation in a suitable scaling
limit of underlying dynamics. At present the considerable advances in the
rigorous derivation of the quantum kinetic equations in the mean (self-
consistent) field scaling limit is observed [1]-[6]. In particular, the nonlinear
Schrodinger equation [3]-[10] and the Gross-Pitaevskii equation [7]-[15]
was justified.

The conventional approach to this problem is based on the
consideration of an asymptotic behavior of a solution of the quantum
BBGKY hierarchy for marginal density operators constructed within the
framework of the theory of perturbations in case of initial data specified
by one-particle marginal density operators without correlations, i.e. such
that satisfy a chaos condition [16],[17]. We note, that for the first time a
perturbative solution of the quantum BBGKY hierarchy was constructed
by D. Petrina [18] (see also [19]).

In paper [20] it was developed more general method of the derivation of
the quantum kinetic equations. By means of a non-perturbative solution of
the quantum BBGKY hierarchy constructed in [21] it was established that,
if initial data is completely specified by a one-particle marginal density
operator, then all possible states of many-particle systems at arbitrary
moment of time can be described within the framework of a one-particle
density operator governed by the generalized quantum kinetic equation
(see also [22]). Then the actual quantum kinetic equations can be derived
from the generalized quantum kinetic equation in appropriate scaling
limits, for example, a mean field limit [23].

Another approach to the description of the many-particle evolution is
given within the framework of marginal observables governed by the dual
quantum BBGKY hierarchy [24]. In paper [25] a rigorous formalism for the
description of the kinetic evolution of observables of quantum particles in
a mean field scaling limit was developed.

In this paper we consider the problem of the rigorous description of the
kinetic evolution in the presence of initial correlations of quantum particles.
Such initial states are typical for the condensed states of quantum gases
in contrast to the gaseous state. For example, the equilibrium state of the
Bose condensate satisfies the weakening of correlation condition specified
by correlations of the condensed state [26]. Thus, our goal consists in the
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derivation of the mean field quantum kinetic equation including initial
correlations.

We outline the structure of the paper. In section 2, we establish the
mean field asymptotic behavior of marginal observables governed by the
dual quantum BBGKY hierarchy. The limit dynamics is described by
the set of recurrence evolution equations, namely by the dual quantum
Vlasov hierarchy. Furthermore, the links of the dual quantum Vlasov
hierarchy for the limit marginal observables and the quantum Vlasov-
type kinetic equation with correlations are established. In section 3, we
consider the relationships of dynamics described by marginal observables
and within the framework of a one-particle marginal density operator
governed by the generalized quantum kinetic equation including initial
correlations. In section 4, we develop one more approach to the description
of the quantum kinetic evolution with correlations in the mean field limit.
We prove that a solution of the generalized quantum kinetic equation
with correlations is governed by the quantum Vlasov-type equation with
correlations. The property of the propagation of initial correlations is also
established. Finally, in section 5, we conclude with some perspectives for
future research.

2 The kinetic evolution within the framework
of marginal observables

The kinetic evolution of many-particle systems can be described within
the framework of observables. We consider this problem on an example
of the mean field asymptotic behavior of a non-perturbative solution of
the dual quantum BBGKY hierarchy for marginal observables. Moreover,
we establish the links of the dual quantum Vlasov hierarchy for the limit
marginal observables with the quantum Vlasov-type kinetic equation in
the presence of initial correlations.

2.1 Many-particle dynamics of observables

We consider a quantum system of a non-fixed (i.e. arbitrary but finite)
number of identical (spinless) particles obeying Maxwell-Boltzmann
statistics in the space R3. We will use units where h = 27h = 1 is a
Planck constant, and m = 1 is the mass of particles.
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Let the space H be a one-particle Hilbert space, then the n-particle
space H, = H®" is a tensor product of n Hilbert spaces H. We adopt the
usual convention that H®® = C. The Fock space over the Hilbert space H
we denote by Fy = @, Hn.

The Hamiltonian H,, of the n-particle system is a self-adjoint operator
with the domain D(H,) C Hn,

n n
Hy, =Y K(i)+e Y  ®(i1iz), (1)
i=1 11<to=1

where K (i) is the operator of a kinetic energy of the ¢ particle, ®(iy,i2)
is the operator of a two-body interaction potential and € > 0 is a scaling
parameter. The operator K (i) acts on functions 1,, that belong to the
subspace L3(R3") C D(H,,) C L*(R3") of infinitely differentiable functions
with compact supports, according to the formula: K (i), = —%Aqﬂ/)n-
Correspondingly, we have: ® (i1, i2), = ®(qi,, ¢, )n, and we assume that
the function ®(g;,,q:,) is symmetric with respect to permutations of its
arguments, translation-invariant and bounded function.

Let a sequence g = (g0, 91,---59n,--.) be an infinite sequence of self-
adjoint bounded operators g, defined on the Fock space F3. An operator
gn defined on the n-particle Hilbert space H,, = H®" will be also denoted
by the symbol g, (1,...,n). Let the space £(F3) be the space of sequences

g = (90,91, -+, Gn,--.) of bounded operators g, defined on the Hilbert
space H,, that satisfy symmetry condition: g,(1,...,n) = gn(i1,...,in),
for arbitrary (i1,...,i,) € (1,...,n), equipped with the operator norm

l-Il¢(3,.)- We will also consider a more general space £,(F3) with the
norm

,yn
9l e,z = Ty 9l e ae,-
where 0 < v < 1. We denote by £ o(Fy) C £,(F3) the everywhere dense
set in the space £,(Fy) of finite sequences of degenerate operators with
infinitely differentiable kernels with compact supports.
For g, € £(H,) it is defined the one-parameter mapping

Rl St gn (t)gn KN 6itH7Lgn€7itH", (2)

where the Hamilton operator H,, has the structure (1). On the space £(H,,)
one-parameter mapping (2) is an isometric *-weak continuous group of
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operators. The infinitesimal generator N, of this group of operators is a
closed operator for the x-weak topology, and on its domain of the definition
D(N,,) C £(H,,) it is defined in the sense of the x-weak convergence of the
space £(H,) by the operator

* . 1 . .
where H, is the Hamiltonian (1) and the operator N,g, is defined
on the domain D(H,) C H,. Therefore on the space £(H,) a unique
solution of the Heisenberg equation for observables of a n-particle system
is determined by group (2) [22].

In what follows we shall hold abridged notations: Y = (1,...,s), X =
(J1,---+Jn) C Y, and {Y \ X} is the set, consisting of a single element
Y\X =(@1,...,8)\ (J1,---,Jn), thus, the set {Y \ X} is a connected
subset of the set Y.

To describe the evolution within the framework of marginal observables
we introduce a notion of the (1 + n)th-order (n > 0) cumulant of groups
of operators (2) as follows [21]

Ripn(t, {Y\ X}, X) = (4)
= > )PP =) TT Grocxoi (8, 6(X0),
P: ({¥\X}, X)=U, X; X;CP

where the symbol ), means the sum over all possible partitions P of
the set ({Y' \ X}, 41,...,7n) into |P| nonempty mutually disjoint subsets
X; € {Y\ X},X), and 6(-) is the declusterization mapping defined as
follows: ({Y \ X}, X) =Y. For example,

2y (t, {Y}) = gS(t>Y)?
Q[Q(ta {Y \ (.7)}’]) = gs(t7Y) - gsfl(th\ (]))gl(t’])

In terms of observables the evolution of quantum many-particle systems
is described by the sequence B(t) = (By, Bi(t,1),...,Bs(t,1,...,5),...)
of marginal observables (or s-particle observables) B(t,1,...,s), s > 1,
determined by the following expansions [24]:

BtY) =Y L Sl (Y \ XL X) B, (VA X), (3)

n=0 ' ji#. . Fja=1
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where B(0) = (B, BY(1),...,B%(1,...,s),...) € £,(Fx) is a sequence
of initial marginal observables, and the generating operator 2A;,,(¢) of
expansion (5) is the (1 4+ n)th-order cumulant of groups of operators (2)
defined by expansion (4). The simplest examples of marginal observables
(5) are given by the expressions:

By (t7 1) =20 (t’ 1)3?)6(1)7
By (t,1,2) = Ay (¢, {1,2}) BY“(1,2) + Az (£, 1,2)(BY(1) + BY<(2)).

If v < e !, for the sequence of operators (5) the estimate is true:
HB(t)H,CA,(]-‘H) <e’(1- ’ye)_lHB(O)‘|£7(FH)'
We note that a sequence of marginal observables (5) is the non-

perturbative solution of recurrence evolution equations known as the dual
quantum BBGKY hierarchy [24].

2.2 A mean field asymptotic behavior of marginal
observables

A mean field asymptotic behavior of marginal observables (5) is described
by the following statement [25].

Theorem 1 Let for BY¢ € £(H,), n > 1, in the sense of the x-weak
convergence on the space £(Hs) it holds: w*—lim._,o(e " BY¢ — b0) = 0,
then for arbitrary finite time interval there exists the mean field limit of
marginal observables (5): w*—lim._,o(e *Bs(t) — bs(t)) = 0, s > 1, that
are determined by the following expansions:

s—1 ¢ tn—1
be(t,Y) = /dtl... / dt, ] 610t —t1,10) (6)
n=0 j 0 LLeY
s
X Z Ning (41, 1) H Gi(ty —t2,12) ...
i1#£j1=1 12€Y\(j1)
s
H gl (tn—l - tru ln) Z Mnt(lna]n)
lney\(jlvuajnfl) in #jnzl,
in7jn 75 (jl: e 7jn—1)

X H gl(tnaln+1)bgfn(y\ (]hv]n))

ln+1€Y\(J1,--,Jn)
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In expansion (6) we denote by the symbol My (i1, j2) the operator defined
on g, € L(H,)

Mnt(i17j2)gn = _Z(gnq>(zl7j2) - q)(217j2)gn)

The proof of Theorem 1 is based on formulas for cumulants of
asymptotically perturbed groups of operators (2).

For arbitrary finite time interval the asymptotically perturbed group
of operators (2) has the following scaling limit in the sense of the *-weak
convergence on the space £(Hs):

w—hm QStY Hg1t] (7)

Taking into account analogs of the Duhamel equations for cumulants of
asymptotically perturbed groups of operators, in view of formula (7) we
have

1
w"— lim (Gin*ml—kn(t, {Y \ X}vjlv s 7jn) -

e—0
tn—1
/dt1 / dty H Gi(t —t1,11) Z Ning (41, j1)
ey i1#j1=1
X H Gi(ty —t2,12) .. H Gi(tn-1 —tn,1n)
l2€Y\(j1) L €Y \(J1,--30n—1)
s
X Z Mnt(i7zaj7z) H gl(tn7ln+1))gs—n = 0;
in 7£ Jn =1, ln+1€Y\(.j1a~-wjn)
inajn # (jla-“ajnfl)

where we used notations accepted in formula (6) and gs—, =
Is—n((1,...;89\(J1,---,4n)), n > 1. As aresult of this equality we establish
the validity of Theorem 1 for expansion (5) of marginal observables.

If 8% € £,(Fy), then the sequence b(t) = (bo,b1(t),...,bs(t),...) of
limit marginal observables (6) is a generalized global solution of the Cauchy
problem of the dual quantum Vlasov hierarchy

Y):ZN(j>bs(t7Y)+ Z Mnt(jl;jQ)bsfl(tvy\(j1)>7 (8)

J1#j2=1

ba(t) li=o=b3, s>1, (9)
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where the symbol N (j) denotes the infinitesimal generator defined on g,, €
Lo(Hy,) of the group of operators Gy (t, j) of j particle

N(])gn = —i(gnK(j) — K(j)gn)-

It should be noted that equations set (8) has the structure of recurrence
evolution equations. We give several examples of the evolution equations
of the dual quantum Vlasov hierarchy (8) in terms of operator kernels of
the limit marginal observables

—(-A, + A ,)bl(t,ql;QE%

2
2
Z —Ag +Ay)

1=

1
+(®(q) — ¢b) — (g1 — @2)))ba(t, a1, a2 1. 45) +
+(®(q) — @) — (g1 — q2)) (b1(t, q15 41) + ba(t, a5 45)).

We consider the mean field limit of a particular case of marginal
observables, namely the additive-type marginal observables B(1)(0) =
(0, BY¢(1),0,...). We remark that the k-ary marginal observables are
represented by the sequence B®*)(0) = (O, ..., 0 Bg’e(l, ..., k),0,.. ) In
case of additive-type marginal observables expansions (5) the following
form:

.0
zabl(tquqi):

M\H

0
{ abz(t Q1,QZ7Q17QQ

BW(t,Y) = Ay (t) Z BY(j), s>1, (10)

where 2,(t) is s-order cumulant (4) of groups of operators (2).

Corollary 1 If for the additive-type marginal observable B06 € L£(H),
it holds w*—1lim,_o(e ' BYC — b9) = 0, then, according to the statement
of Theorem 1, for addztwe type marginal observable (10) we have
w*— limeﬁo(e_ngl)’e(t) —bgl)(t)) =0, s > 1, where the limit additive-type

marginal observable bgl)

b (t,Y) /dh /dts 1 H Gi(t—t1,hh) Z Nint(71,71)  (11)

lLey i17£j1=1

< I Gt —tal).. 11 Gi(ts—2 —ts—1,15-1)

12€Y\(41) lq—ley\(jl ~~~~~ Js—2)

(t) is determined by a special case of expansion (6)
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S

X Z /\/int(isflvjsfl)

) i_fxfl 7ﬁjs‘71 = laA
ts—1,0s—1 7 (J1,- -, Js—2)

X H gl( s— 1a ) ?(Y\(jla"'vjs—l))'

Ls€Y\(j1,-ds—1)

We make several examples of expansions (11) for the limit additive-type
marginal observables

bV (t,1) = Gi(t,1) (1),

t

2
b(l)(t7112 /dtlngl t_th mt ]- 2 Z t17
A — j=1
Thus, for arbitrary initial states in the mean field scaling limit the
kinetic evolution of quantum many-particle systems is described in terms

of limit marginal observables (6) governed by the dual quantum Vlasov
hierarchy (8).

2.3 The derivation of the quantum Vlasov-type
kinetic equation with correlations

Furthermore, the relationships between the evolution of observables and
the kinetic evolution of states described in terms of a one-particle marginal
density operator are considered.

Let initial states specified by the one-particle marginal density operator
F{]’é € £1(H) in the presence of correlations, i.e. initial state is defined by
the following sequence of density operators:

n
Fe= (1, F) (1 921_[F0e )y gn [ FYCG), ), (12)

where the bounded operators g, = g,(1,...,n) € L£(H,), n > 2, are
specified initial correlations. We note that such assumption about initial
states is intrinsic for the kinetic description of a gas. On the other hand,
initial data (12) is typical for the condensed states of quantum gases,
for example, the equilibrium state of the Bose condensate satisfies the
weakening of correlation condition with the correlations which characterize
the condensed state [26].
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We assume that for the initial one-particle marginal density operator
F{* € £(H) exists the mean field limit lime o [[e F{* = 2] 31 ;) = 0
then in the mean field limit initial state is defined by the following sequence
of operators:

fo=(1,£0 gQHf1 cgn [T G, ). (13)
=1

We consider links of the constructed mean field asymptotic behavior of
marginal observables with the nonlinear Vlasov-type kinetic equation in
case of initial states (13).

In case of initial states specified by sequence (13) the average values
(mean values) of limit marginal observables (6) are determined by the
following positive continuous linear functional [22]

Zi' 1om n(t,1,...,n)gn(1,...,n)Hff(i). (14)

For b(t) € £,(Fx) and f{ € £'(H), functional (14) exists under the
condition that || f0]le1(3) <.

Consequently, for the limit additive-type marginal observables (11) the
following equality is true:

CRIONSEDY 1, Try B (1, 8)ga(, . 8) [[ £26) =
S =1
= Try (1) f1 (8, 1),

where the operator b{" (t) is given by expansion (11) and the limit marginal
density operator fi(t,1) is represented by the series expansion

tn—1

t 1 Z/dtl /dt TI'Q n+1g1( t+t1, ) (15)

i(1,2) H Gi(—t1 +ta,j1) . H Gi(—tyn +tn,in)

Ji=1 ip=1
n+1 n+1

XZMnt kn,n+1) Hg1 tns Jn)g14n(l,...,n+1) Hf1
k=1 dn=1
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In series (15) the operator N:%,(j1,72)fn = —Nit(j1,72)fn is adjoint
operator to operator (3) in the sense of functional (14). For bounded
interaction potentials series (15) is norm convergent on the space £!(H)
under the condition: ¢ < tg = (2 [|®|| (3 1/ 22 20)) -

The operator f;(t) represented by series (15) is a solution of the Cauchy
problem of the quantum Vlasov-type kinetic equation with correlations

0
afl(ta 1) = 7N(1)f1(tv 1) + (16)
2 2
+Try (= Nin) (1,2) [ Ga(—ti1)92(1,2) [T Ga(tsi2) f2(t,1) fr (2, 2),
i1=1 ig=1
f1()]e=0 = 1. (17)

This fact is proved similarly as in case of a solution of the quantum BBGKY
hierarchy represented by the iteration series [18],[22].

Thus, in case of initial states specified by one-particle marginal density
operator (13) we establish that the dual quantum Vlasov hierarchy (8) for
additive-type marginal observables describes the evolution of a system of
quantum particles just as the quantum Vlasov-type kinetic equation with
correlations (16).

2.4 The mean field evolution of initial correlations

The property of the propagation of initial chaos is a consequence of the
validity of the following equality for the mean value functionals of the limit
k-ary marginal observables in case of k > 2

(0@, 1) = - Tr b1 s)as(L, ) [T HG) = (18)
s=0 j=1

k
1 .
- HTrL__w W(1,... k) 1‘7[1 Gi(—t,i))gr(1,..., k)
k k
x [T Giti) [T 1), k=2,
ig=1 j=1

where the limit one-particle marginal density operator f1(¢,4) is defined by
series expansion (15) and therefore it is a solution of the Cauchy problem
of the quantum Vlasov-type kinetic equation with correlations (16),(17).
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This fact is proved similarly to the proof of a property on the
propagation of initial chaos in a mean field limit [25].

Thus, in case of the limit k-ary marginal observables a solution of
the dual quantum Vlasov hierarchy (8) is equivalent to a property of
the propagation of initial correlations for the k-particle marginal density
operator in the sense of equality (18) or in other words the mean field
scaling dynamics does not create correlations.

We remark that the general approaches to the description of the
evolution of states of quantum many-particle systems within the framework
of correlation operators and marginal correlation operators were given in
papers [28],[29] and [30], respectively (see also a review [22]).

3 On relationships of dynamics of observables
and the kinetic evolution of states

We consider the relationships of dynamics of quantum many-particle
systems described in terms of marginal observables and dynamics described
within the framework of a one-particle marginal density operator governed
by the generalized quantum kinetic equation in the presence of initial
correlations. If initial states is completely specified by a one-particle
marginal density operator, using a non-perturbative solution of the
quantum dual BBGKY hierarchy we prove that all possible states at
arbitrary moment of time can be described within the framework of a
one-particle density operator governed by the generalized quantum kinetic
equation with correlations.

3.1 Quantum dynamics of states and correlations

In case of initial states defined by sequence (12) the average values (mean
values) of marginal observables (5) are defined by the positive continuous
linear functional on the space £(F)

n

(B(t), F) = Z%Trl,_“,n Bu(t, 1) ga(1,.,m) [ F°(0). (19)
n=0 "

i=1

For F{° € £'(#) and B%¢ € £(H,,) series (19) exists under the condition
that ||F107€||£1(H) <e L
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For mean value functional (19) the following representation holds
(B(), F) = (B(0), F(t | Fi(1))), (20)

where B(0) = (Bo, BY“(1),...,B%¢(1,...,s),...) € £,(Fy) is a sequence
of initial marginal observables, and F(¢ | Fi(t)) = (1,Fi(t), Fa(t |
Fi(t)),...,Fs(t | Fi(t)),...) is a sequence of explicitly defined marginal
functionals Fy(t | F1(t)), s > 2, with respect to the one-particle marginal
density operator

o0 n+1
1 €/
Fi(t,1) =) —Tratn Aapn(—gnsa(1n + 1) [ 76). (21)
n=0 =1

The generating operator A;1,(—t) = A1, (—t,1,...,n + 1) of series
expansion (21) is the (1 + n)th-order cumulant of groups of operators
Gn(—t), n > 1, adjoint to groups (2) in the sense of functional (19).

The marginal functionals of the state Fi(t | Fi(t)),s > 2, are
represented by the following series expansions:

F(t.Y | Fu(t) = (22)
[ele] 1 s+n

- Z ] Troi1,.sin G14n (LY s +1,...,s+n) H Fy(t,14),
n=0 i=1

where the (1 + n)th-order generating operator &i.,(t),n > 0, is
determined by the expansion

Gt {Y}X\Y) = (23)
n n N—mN]—...—MNp_1 1
D NEILD SN >
k=0 ni=1 np=1 (n—ny—...—nyg)!
XﬁllJF”*"l*m*”k (tv {Y}a s+1,...,s+n—n1 —...— nk)

k
1

<11 > o

| D, !

Jj=1 D]‘:Z]’:Ulj )(1,].7

IDj|<s+n—ny —---—nj

s+n—mi—...—n; 1

X > I =« tyir, Xp).
X! x| (E iy, Xi )

i1#. Fip, =1 Xi;CD,
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In formula (23) we denote by >_p ., | y, the sum over all possible

dissections of the linearly ordered set Z; = (s+n—mn1—...—n;+1,...,5+
n—mny—...—nj_1) on no more than s+mn—ny —... —n; linearly ordered
subsets and we introduced the (1 + n)th-order scattering cumulants

EéJllJrn(tv {Y}’ X \ Y) =
s+n
= Ql1+n(_t7 {Y}’ X \ Y)gs+n(9({y})a X \ Y) H 2 <t7 Z'),

i=1

where it is used notations accepted above. We give examples of the
scattering cumulants

&1 (t, {Y}) = QJ[I (t, {Y}) =2 (—t, {Y})gs(g({Y})) H A1 (t,1),
=1

s+1
Go(t,{Y}, s +1) = Ao(—t, {V}, s + Dgs1(0({Y}), 5 + 1) H A (t,7) —

=2 (=, {Y})gs(0({Y'})) H%(t’i) X

X ZmZ(_tvia s+ 1)92(27 5+ l)ml(tvl)ml(ta s+ 1)
i=1

If [|Fy(t)]|ler ) < e~ 35+?), then for arbitrary ¢ € R series expansion
(20) converges in the norm of the space £(H,) [22].

We emphasize that marginal functionals of the state (22) characterize
the correlations generated by dynamics of quantum many-particle systems
in the presence of initial correlations.

3.2 On an equivalence of mean value functional
representations
We establish the validity of equality (20) for mean value functional (19).
In a particular case of initial data specified by the additive-type
marginal observables, i.e. B (0) = (0, B{"“(1),0,...), equality (20) takes
the form

(BO(t), F) = Ty By (1) Fi (¢, 1), (24)
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where the one-particle marginal density operator Fj(t) is determined by
series expansion (21). The validity of this equality is a result of the direct
transformation of the generating operators of expansions (10) to adjoint
operators in the sense of the functional (19).

In case of initial data specified by the s-ary marginal observables i.e.
B®)(0) = (0,...,0,B%(1,...,5),0,...), s > 2, equality (20) takes the
following form:

(BO@W), F*) = Try o BY(L, o 9)F (1,1, | Fu(0), (29)
where the marginal functional of the state Fi(¢ | Fy(t)) is represented by
series expansion (22).

The proof of equality (25) is based on the application of cluster
expansions to generating operators (4) of expansions (5) which is dual
to the kinetic cluster expansions introduced in [20]. Then the adjoint
series expansion can be expressed in terms of one-particle marginal density
operator (21) in the form of the functional from the right-hand side of
equality (25).

In case of the general type of marginal observables the validity of
equality (20) is proven in much the same way as the validity of equalities
(24) and (25).

3.3 The generalized quantum kinetic equation with
correlations

As a result of the differentiation over the time variable of operator
represented by series (21) in the sense of the norm convergence of the
space £'(H,), then the application of the kinetic cluster expansions [20] to
the generating operators of obtained series expansion, for the one-particle
marginal density operator we derive the identity [27]

0

aFl(t, 1) = =N F(t,1) + € Tra(—Nins (1,2)) Fo (¢, 1,2 | F1(¢)), (26)
where the collision integral is determined by the marginal functional of the
state (22) in case of s = 2. This identity we treat as the non-Markovian
quantum kinetic equation. We refer to this evolution equation as the
generalized quantum kinetic equation with correlations.
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We emphasize that the coefficients in an expansion of the collision
integral of kinetic equation (26) are determined by the operators specified
initial correlations.

We remark, that for initial data (12) specified by a one-particle
marginal density operator, the evolution of states described within the
framework of a one-particle marginal density operator governed by the
generalized quantum kinetic equation with correlations (26) is dual to the
dual quantum BBGKY hierarchy for additive-type marginal observables
with respect to bilinear form (19), and it is completely equivalent to the
description of states in terms of marginal density operators governed by
the quantum BBGKY hierarchy.

Thus, the evolution of quantum many-particle systems described in
terms of marginal observables can be also described within the framework
of a one-particle marginal density operator governed by the generalized
quantum kinetic equation with correlations in the sense of functional (19).

4 The mean field asymptotic behavior of the
generalized quantum kinetic equation

We establish a mean field asymptotics of a solution of the non-Markovian
quantum kinetic equation with correlations constructed above. This
asymptotics is governed by the quantum Vlasov-type kinetic equation with
correlations derived above from the dual quantum Vlasov hierarchy for the
limit marginal observables.

4.1 The mean field limit theorem

For solution (21) of the generalized quantum kinetic equation with
correlations (26) the following mean field limit theorem is true [23].

Theorem 2 If for the initial one-particle marginal density operator F{)’E €
LY(H) exists the limit lim,_q [|e F{"¢ — fPllera) = 0, then for finite time
interval t € (—to,to), where to = (2|P|| e, 17 | 213)) " there exists the
mean field limit of solution (21) of the Cauchy problem of the generalized
quantum kinetic equation with correlations (26)

lim [|e Fy (1) — fu(t)

L1(H) =0, (27)
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where the operator f1(t) is represented by series (15) and it is a solution
of the Cauchy problem of the quantum Vlasov-type kinetic equation with
correlations (16),(17).

The proof of this theorem is based on formulas of asymptotically
perturbed cumulants of groups of operators G,(—t), n > 1, adjoint to
groups (2) in the sense of functional (19). Indeed, in a mean field limit for
generating evolution operators (23) of series expansion (22) the following
equalities are valid:

1
lim ‘|Z®1+n(t7 {Y}’X \ Y)fs+’ﬂH£1(H

e—0

0, n>1, (28)

stn)

and in case of the first-order generating evolution operator we have

tim [|(1(1, {Y}) - (29)

S S
- H gl(_tv.jl)gs(e({y})) H gl(t’jZ))szQl(Hs) =0,
Ji=1 jo=1
respectively.

In view that under the condition ¢t < to = (2| ®||¢(p,)ll€ I3 ei)
for a bounded interaction potential the series for the operator € Fi(t) is
norm convergent, then for ¢ < ty the remainder of solution series (21)
can be made arbitrary small for sufficient large n = ny independently of
€. Then, using stated above asymptotic formulas, for each integer n every
term of this series converges term by term to the limit operator f;(¢) which
is represented by series (15).

As stated above the mean field scaling limit (15) of solution (21) of the
generalized quantum kinetic equation in the presence of initial correlations
is governed by the quantum Vlasov-type kinetic equation with correlations
(16).

Thus, we derived the quantum Vlasov-type kinetic equation with
correlations (16) from the generalized quantum kinetic equation (26) in
the mean field scaling limit. It is the same as the kinetic equation derived
from the dual quantum Vlasov hierarchy for mean field limit marginal
observables.

4.2 A mean field limit of marginal functionals of state

As we noted above the all possible correlations of a system of quantum
particles are described by marginal functionals of the state (22).
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Since solution (21) of initial-value problem of the generalized quantum
kinetic equation with correlations (26) converges to solution (15) of
initial-value problem of the quantum Vlasov-type kinetic equation with
correlations (16) as (27), and equalities (28) and (29) hold, for a mean
field asymptotic behavior of marginal functionals of the state (22) is true

1%”6 Fy(t,1,...,s| Fi(t)) —

- H gl(_tajl)gs(]-v .. '78) H gl(tan) Hfl(t’l)HQl(?-Ls) = 07
Jam1 =1

ji=1
s> 2.

This equalities mean the propagation of initial correlations in time in the
mean field scaling limit.

5 Conclusion and outlook

In the paper the concept of quantum kinetic equations in case of the
kinetic evolution, involving correlations of particle states at initial time, for
instance, correlations characterizing the condensed states, was considered.
Two approaches were developed with a view to this purpose. One approach
based on the description of the evolution of quantum many-particle
systems within the framework of marginal observables. Another method
consists in the possibility in case of initial states specified by a one-particle
marginal density operator to describe the evolution of states within the
framework of a one-particle marginal density operator governed by the
generalized quantum kinetic equation with correlations.

In case of pure states the quantum Vlasov-type kinetic equation with
correlations (16) can be reduced to the Gross—Pitaevskii-type kinetic
equation. Indeed, in this case the one-particle density operator f;(t) =
|t) (4| is a one-dimensional projector onto a unit vector |i;) € H and
its kernel has the following form: f(t,q,q’) = ¥(t, ¢)v¥*(t,¢'). Then, if we
consider particles, interacting by the potential which kernel ®(q) = d(q)
is the Dirac measure, from kinetic equation (16) we derive the Gross—
Pitaevskii-type kinetic equation

0 1

+/dq’dq”g(t,q,q;q’,q”)d)(t,q”)w*(t,q)zb(t,q),
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where the coupling ratio g(t, g, ¢; ¢, ¢"’) of the collision integral is the kernel
of the scattering length operator Hi:l Gi(—t,i1)g2(1,2) Hi:l Gi(t,i2). If
we consider a system of quantum particles without initial correlations, then
derived kinetic equation is the cubic nonlinear Schrodinger equation.

Observing that on the macroscopic scale of the variation of variables,
groups of operators (2) of finitely many particles depend on microscopic
time variable e ~1't, where € > 0 is a scale parameter, the dimensionless
marginal functionals of the state are represented in the form F,(s7!t |
Fi(t)). As a result of the formal limit processing ¢ — 0 in the
collision integral, we establish the Markovian kinetic evolution with the
corresponding coefficient g(e~t).

This paper deals with a quantum system of a non-fixed (i.e. arbitrary
but finite) number of identical (spinless) particles obeying Maxwell-
Boltzmann statistics. The obtained results can be extended to quantum
systems of bosons or fermions [29].

We emphasize, that one of the advantages of the approach to the
derivation of the quantum Vlasov-type kinetic equation from underlying
dynamics governed by the generalized quantum kinetic equation with
correlations enables to construct the higher-order corrections to the mean
field evolution of quantum interacting particles.
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