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Investigation of nonequilibrium
processes in vicinity of hydrodynamic
states

The Chapman-Enskog method is generalized for the investigation of
processes in the vicinity of hydrodynamic states of a gas. The generalization
is made on the basis of the Bogolyubov idea of the functional hypothesis.
A theory that describes a nonequilibrium state of a gas by the usual hydro-
dynamic variables and arbitrary additional local variables is constructed.
The gradients of all these parameters and the deviations of the latter
variables from their hydrodynamic values are assumed to be small and
are estimated by two independent small parameters. The proposed theory
is nonlinear in the additional variables too. It leads to linear integral
equations with an operator, given by the linearized collision integral. Some
of them are eigenvalue problems for this operator and describe kinetic
modes of the system.

The proposed theory is applied to the solution of a modified Grad
problem in which nonequilibrium states of a gas are described by the usual
hydrodynamic variables and small deviations of the energy and momentum
fluxes from their hydrodynamic values. In the simplest approximation
this leads to a theory of the Maxwell relaxation. It is shown that the
distribution function of the 13-moment Grad approximation corresponds
to the approximation of zero order in gradients and to small fluxes.
Moreover, in that theory the investigation of the relaxation phenomena
in the system is reduced to a very approximate solution of the above-
mentioned eigenvalue problems. The Bogolyubov idea of the functional
hypothesis gives an adequate solution of the problem.
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Meton Yenmena—Emckora y3araabHIOETHCS 1T JOCJTIIKEHHS TPOIIECIB TT0-
63y Bif rigpoawHAMIYHUX CTAHIB rady. Y3arajbHEHHS POOUTHCS HA OC-
HOBI ifel dyukmionaasuol rimore3n Boromobosa. [Tobymosano Teopito, ska
OINMCYy€ HEPIBHOBAXKHI CTAHM Ta3y 3BUYUANHUMU TiIPOJUHAMIYHUMU 3MiH-
HUMH 1 JTOBUIBHUMH JIOJATKOBUMU JIOKAJIBHUMU 3MiHHUMU. ['pagienTu BCix
OUX IapaMeTpiB i BIAXWUIEHHS OCTAHHIX 3MIHHHMX BiJ IX riapoauHaMigHUX
3HAYEHh BBAYKAIOTHCS MaJMMH. Po3pobiieHa Teopist € HesHIHHA TaKOXK 1
II0 JOJATKOBUX 3MIHHIX. BoHaA Beze 1o JiHIMHUX IHTErpaJIbHUX DIBHAHD 3
OIIepaTOpPOM, IO JAETHCS JIHEAPU30BAHUM iHTErpajoM 3iTKHeHb. /ledki 3
HUX € CIIEKTPAJIHLHOIO 33Ja9€I0 1 ONMUCYIOTh KiHETUYHI MOIU CHCTEMU.

PoszBunyTa Teopis 3acTocoBaHa A0 po3B’sa3yBaHHA MOAUMIKOBAHOI IIPO-
6memu 'pesa, B sKiil HEepiBHOBaKHMII CTAH ra3y OMUCYETHCA 3BUIANHUMU
TiAPOAVMHAMIYHUMHY 3MIHHUMHA 1 MAJIUMU BIIXUJIEHHSIMU TTIOTOKIB €Heprii Ta
iMIysibCy Bif IX rigpoguHAMIMHIX 3HAYMEHD. Y HAMIpOCTioOMy HAO/MKeHH]
e Bejie 70 Teopil MakcBe LTBCHKOI pesakcarii. I[Tokazyerncs, o dyHKIis
po3mnoainy 13-momenTHOro HabMKeHHs ['pena BiAMOBigae HyJIHOBOMY Ha-
O/IMKEHHIO 33 IPAJi€HTaMu i MajmM HOTOKaM. Binbie Toro, B il Teopii
JOCJILIZKEHHS PETAKCAINHNX ABUI B CUCTEMI 3BOAUTHCS 10 AyzKe HabIIm-
JKEeHOTO PO3B’sI3Ky BKa3aHOI CIEKTPAJIBHOI 3a1ati. Inest dbyHKIioHATIHHOT
rinmore3u BorooboBa /1a€ agekBaTHUI pO3B’ 30K MpOOIeMHu.

1 Introduction

The problem of the solution of the Boltzmann equation in order to build
hydrodynamic equations was posed by Boltzmann as soon as he derived
his equation

f,(z,t f,(z,t
P ) — 0, 280 1,0, 0
which describes nonequilibrium states of a rarefied gas in terms of the
distribution function (DF) f,(z,t) (I,(f) is the collision integral, v, =
p1/m; we restrict the discussion to a one-component system).

In any approach the starting point for the construction of hydrodynamic
equations on the basis of the kinetic equation (1) is the energy, momentum,
and particle number conservation laws in differential form, which follow
from the relations

/dBPCMpIp(f) = 07 (CHP : Epv Pi, myg Ep = p2/2m) . (2)
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The above-mentioned conversation laws have the form

Oc _ Ogn  Om _ Ot Op_ Omn
ot Oz, ot~ Oz, ot Oz,

3)

where the energy density ¢, the momentum density m;, the mass density
p (variables (,(x,t)), and the densities of the corresponding fluxes gy, ti,
m, are given by the formulas

ez/d?’pepfp, Tn :/d?’ppnfp, p:/dgpmfp;

dn = /d3p 5pvnpfp7 ti, = /dgpplvnpfp- (4)
The mass velocity v,, and temperature T" are defined by the relations
Tn = pUn, €=¢°+ pv?/2, €°=3nT/2 (p=mn). (5)

An important role in hydrodynamics is played by the Galilean transforma-
tion from the laboratory reference frame (LRF) to the accompanying
reference frame (ARF)

Gn = @0 + 12+ (€° + pv?/2) vy, i = 15, + pUivy (6)

(A° is a quantity A in the ARF). Finally, the time equations for usual
hydrodynamic variables T'(z,t), v, (z,t), n(x, t) (denoted below by £, (x, 1))
become

or _ _, or 2 (0q 0w\ du__ Ou 104
ot~ "oz, 3n\dx, "Mox,) ot  "Ox, mnz,’
on  Onu
a T 8$l ’ (7)

The next step is to express the fluxes ¢7, 2, in terms of the hydrodynamic
variables &, (z,t) by functionals ¢ (x,£(t)), t2,(x, £(t)) that leads to closed
equations of the form

08, (1)

o = My (@ E(0) ®)

(M (x,€) are some functionals of &,(x)). The hydrodynamic variables
€.(x,t) are expressed only in terms of the simplest moments of
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the distribution function f,(z,¢). Therefore the number of parameters
that describe the system state is reduced as we go from kinetics to
hydrodynamics. Therefore the parameters §,(x,t) (or equivalent variables
Cu(z,t)) may be called reduced description parameters (RDP) of the
system.

A considerable contribution into the solution of this problem was
made by Hilbert [1], who formulated the concept of the normal solution
f,(x,&(t)) of the kinetic equation (1). This solution is a functional of the
hydrodynamic variables ¢, (z,t) as functions of the coordinates, and it
depends on the time only through their mediation. Hilbert developed a
perturbation theory in a small parameter g for calculation DF f,(z,£) on
the basis of the estimates I,(f) ~ g1, f,(z,t) ~ ¢°. The parameter g
(the Knudsen number) is given by the formula g = I/L where [ is the
gas mean free path, and L is a characteristic dimension of the system
inhomogeneities. In the main order of the perturbation theory the DF
fp(x, &) coincides with the Maxwell distribution wy,

wy = Wl w=— e F  (L(w)=0). (9
P e P (2mmT)3/2 P

In practical terms the Hilbert perturbation theory was improved by
Enskog [2], who managed to derive hydrodynamic equations with account
for dissipative processes. His method is called the Chapman—Enskog
method [3], because the same results were obtained by Chapman on the
basis of Maxwell’s ideas. The Chapman-Enskog method reduces to the
solution of linear integral equations of the form

Kg, = hy, (10)

where g, is the sought-for function, and h, is a known function (the
Fredholm integral equation of the first kind). The kernel K, of the
operator K is defined by the linearized collision integral

Kg, = /d3p'Kmo/gp/7

5L (F)
WKy = —Mppwy, My = # : (11)
P f—w

The integral equations are solved with additional conditions which follow
from the definition of the hydrodynamic variables (4) and (5). In fact, in
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the Chapman-Enskog method the perturbation theory for the DF f,(z,§)
is built in small gradients of the hydrodynamic variables according to the

estimate
asgll (I) ~ gs
812[1 ...al‘ls '

Burnett proposed the method of Sonine orthogonal polynomial S (z)
expansion [4, 5] for the approximate solution of integral equations of the
form (10) related to the Boltzmann equation. The use of these polynomials
is due to the fact that the DF f,(z,£) proves to be proportional to the
Maxwell distribution, and therefore the orthogonality relation

(12)

_ 1020 (s+a+1)
/dgpwz€3 V25 (Bep) S (Bey) = TP 0. (13)
(a is some parameter; 3 = T~!) is obviously helpful. In fact, the
polynomial series is truncated artificially, and one-, two-, etc. polynomial
approximations are built. Kohler proposed a variational principle [6] for
the solution of integral equations of the form (4) which is based on the

Hilbert result that the bilinear form
{gpa hp} = /dgp dgp/wprp’gphp’ (14)

(gp, hp are arbitrary functions) has the properties

{g;m hp} = {hpagp}a {gpvgp} > 0;

{999} =0 = 9= Cup, (15)

(Cup are defined in (2)). This variational principle justifies the convergence
of the Burnett procedure of approximate solution of the integral equation
(10) with increasing number of polynomials.

It is also worth noting at this point that on the basis of (15) it is easy
to show, following Hilbert, the symmetry of the operator K (11), i.e. the
relation (g,, Kh,) = (Kgp, hp). Here, the scalar product is defined as

(9p Bp) = (gphp),  (9p) = /d3pwpgp' (16)

The positiveness of the eigenvalues of the operator K also follows from
(15). Its eigenfunctions can be assumed to be orthogonal in the introduced
scalar product.
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In this paper we construct theory which describes nonequilibrium
states close to hydrodynamic ones. These states are described by usual
hydrodynamic variables &, (z,t) (or (,(x,t)) and some additional variables
vi(z,t) that vanish at usual hydrodynamic evolution. Therefore, variables
@i(z,t) describe relaxation phenomena and one receives an opportunity
to study forming the hydrodynamic evolution. The proposed theory is
given by our generalization of the Chapman—Enskog method based on the
Bogolyubov idea of the functional hypothesis [7] (see discussion this idea,
for example, in [8]). Relaxation processes are considered at their end that
allows to build a perturbation theory in magnitude of variables ¢;(z,t)
which is additional one to usual perturbation theory in gradients.

The idea of investigation of relaxation processes at their end was used
in a series of papers: in theory of relaxation of polaron gas velocity
and temperature in polar crystals [9], in hydrodynamics of phonon
subsystem of dielectrics taking into account drift velocity relaxation [10], in
hydrodynamics of two-component plasma taking into account temperature
and velocity relaxation of the components [11].

Plan of the paper is as follows. In the Section 2 the Grad approach
to solution of kinetic equations is discussed in connection with the
Bogolyubov reduced description method. Particular attention is paid to
the analysis of his 13-moment approximation (we call this theory the Grad
problem). In the Section 3 the general theory is constructed which describes
nonequilibrium processes in the vicinity of hydrodynamic states. Section
4 gives application of the developed theory to a modified Grad problem.

2 The Grad problem and the Bogolyubov
reduced description method

Grad proposed a method [12] in which solutions of the Boltzmann equation
are sought from the very outset as a truncated series in the orthogonal
tensor Hermite polynomials H;, ;. (Z). The use of these polynomials is
justified by the same reason as the use of the Sonine polynomials, namely,
by the form of their normalization condition

/ BpwiHy, 1 (B/m) Y25 Hy ., ((8/m)V/?p) =

s/

= ndssr 251110(1)--- T (17)
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(o is an arbitrary permutation of the numbers 1, ..., s). In the Chapman-—
Enskog method, a hydrodynamic gas state is described by moments of the
DF f,(x,t) with the functions (,, defined in (2). In the 13-moment Grad
approximation the system is described by the moments of the DF with the
functions

Cup7 EpVip, hln(p)/m (hln (P) =PnDi1 — 6nlp2/3)

which are taken in the ARF. According to (4) this state is defined by the
variables ¢, (z,t), ¢ (x, 1),

7rlon (:L'v t) = t?n (1'7 t) - 5lntfnm(ma t)/3

where ¢ (z,t), t}, (z,t) are the densities of the gas energy and momentum
fluxes in the ARF ({,(z,t) can be used instead of (,(z,t)). The Grad
equations for fluxes are obtained from the kinetic equation by direct
substitution of the DF expansion in the Hermite polynomials, which leads
to their quadratic nonlinearity because the collision integral I,(f) is a
quadratic function of the DF f,,. In the G-13 approximation, equations
(7) are final equations, and they are supplemented by the time equations
for the fluxes ¢7(x,t), 77, (z,t).

The equations of the G-13 approximation were considered by Grad
as a means to investigate nonequilibrium states that precede standard
hydrodynamic ones. On this basis he discussed [13] the hydrodynamic
evolution, studying normal according to Hilbert solutions, with the fluxes
¢ (z,t), w7, (x,t) that are functionals of the usual hydrodynamic variables
a7, C(1)), ¢, (2, C(1).

The situation may be clarified further if we will base the consideration
on the Bogolyubov idea of the functional hypothesis and his idea of
hierarchy of nonequilibrium states of a system during its evolution. These
ideas are basis of the Bogolyubov reduced description method (RDM)
of nonequilibrium processes [7] and can be applied to investigation of
evolution of a system described by the Liouville equation or kinetic
equations (see review in [8]). On this basis the Chapman-Enskog method
is generalized in the present paper.

Usual hydrodynamic states are realized in the system at times ¢ > 7y,
where 7y is the mean free time. Nonequilibrium Grad states are realized
at t > 71, where 7y is a characteristic time such that 7, < 79. According
to the idea of the functional hypothesis we have

fp(z,t) 577 o2, C(1), ¢° (1), (1)), (18)
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i.e. at times ¢t > 7 the DF f,(z,t) becomes a functional of the RDP
Cu(z,t), g (x,t), nf, (x,t) as functions of the coordinates and depends on
the time only through their mediation. This functional is universal in the
sense that only the RDP (,(z,t), ¢7(z,t), 7}, (x,t) on the right-hand side
of (18) depend on the initial system state described by the DF f,(x,t = 0).
To the functional hypothesis (18) definitions of the RDP

/ d3p EpUip fp-‘,—mv(x)(x, Ca qo’ WO) = Qf(l’),
/ d3p R (p)fp+7rw(x) (1[,’7 Cv qov WO)/m = 7'('2)” (.’E),
[ EGutlec.a0.n7) = (o) (19)

must be added.

The idea of the functional hypothesis is obviously a generalization of
the Hilbert idea of normal solutions. However, in Bogolyubov’s research
it became a result of his investigations into non-linear dynamic systems,
in which the synchronization of the solutions of their dynamic equations
with the evolution of some parameters is observed. The term “the
functional hypothesis” was introduced by Uhlenbeck. By now, thanks to
Peletminsky’s investigations, this idea has largely lost the status of a
hypothesis. In some important cases it can be proven [14]-[16] (see also [8]).
The right hand side of the functional hypothesis (18) contains asymptotic
value of the distribution function f,(z, t). Transition to asymptotics implies
some coarsening procedure. This procedure corresponds to possibilities of
experimental observations and make possible the reduced description of
the system.

In fact in the G-13 approximation, the DF f,(z, (,¢°, 7°) is given by
the formula

1
fp(.’L‘, <7q07ﬂ-0> = U);(’I’L,T) {1 + anplﬂ-rotl(x)—*—

1 2¢ep o
— pi(ZE 2
oGy — D (””)}pﬁp—mvm ’ (20)

n—n(z), T—T(z)
to which there are no corrections in the framework of Grad’s theory
(wy(n, T) = wy in (9)). A comparison of (20) with the functional from (18)
shows that (20) corresponds to an approximation of small fluxes ¢} (z,t),
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77, (x,t) and the zero-order approximation in gradients. Moreover, we show
further on the basis of the developed in the Section 3 theory that expression
(20) corresponds to one-polynomial approximation.

Below we call problem of reduced description of the nonequilibriun
system by variables (,(z,t), ¢7(x,t), ], (x,t) the Grad problem.

3 Description of nonequilibrium processes
in the vicinity of the hydrodynamic states

3.1 The basic equations of the theory

Consider a generalization of the Grad problem to the case of description
of the system by arbitrary parameters that are additional to usual
hydrodynamic variables. The corresponding stage of evolution precedes
in time hydrodynamic stage. The use of the two reference frames (the
laboratory and the accompanying ones) brings a certain complication to
the theory. Therefore in this section we choose the densities of the integrals
of motion (,(x,t) as the basic hydrodynamic variables.

According to Bogolyubov, at the hydrodynamic stage of evolution the
reduced description can be built on the basis of the functional hypothesis

Lt 5 Bed0k [ @rinh@d =G, @

Here, the second formula is the definition of the parameters CN# (z,t), for
which the gas energy, momentum, and mass densities are taken (see (2) and
(4)). Let at t > 71 (79 > 71) the gas be described by the hydrodynamic
parameters ¢, (z,t) and the deviations ¢;(z,t) of the parameters with the
microscopic values 6;;, from their hydrodynamic values 6;(x,t) (notation
wi(z,t) is less descriptive than §6;(z,t) but leads to compact formulas).
Then the functional hypothesis at these times has the form

£y (,6) = £, (2, C(£), 9(0):
/ Bp ity (e,C.0) = pi(a) + 6:(x, ), / &p 0§y (2, ) = 0,(2,0);

/ B3 Gty (,C,0) = (), (22)
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where the last three formulas define the RDPs (,(z,t) and ¢;(z,t).
According to kinetic equation (1), the introduced parameters satisfy
the following time equations

¢, - . )
Bltel) — L C0)s L) =~ [ @Gl 05 (29
0
Kal®sl) _ (o0, 000,
_ 0 3
LH(I, <7 QO) - _87 /d pCMpUTLpf;D(x7 Ca ()0)7 (24)
Opi(x,t)
o - <<><m
0
= Z g ) Ca QO) - % /d3p gipvnpfp(xv §7 30) +
4:/¢%9WQG@%Q¢»~ (25)
The considered problem implies that the relations
Gl ) Gl ), il t) 0
£ (2, C(8), (1)) 757 B (2. (1)) (26)

are true, whence we have the identities
fp(CU»Ca‘PZO) :%P(x7<-)7 Lu(xaC7(p:0) :'Z’H(xvc)a

Li(x7 Cp= O) =0. (27)

According to Bogolyubov’s MRD, the asymptotic DF are the exact
solutions of the kinetic equation

ol2n ) _ ), B8 SO) 1, 1),
@&ﬂgﬁﬁﬁ:_%@ﬂ%%Mﬁﬁ+@@@x@w®» (28)

By their meaning, they describe the system state at ¢ > 7y and ¢ > 79,
respectively. However, the solution of equations (26) can be continued to
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= 0, that introduces the effective initial conditions to time equations

t
(23)-(25).

Equations (28) together with relations (23)-(25) yield the following
integro-differential equations for the DF f,(z, () and f,(z, ¢, ¢)

E:/ﬁ'“xc o', =~y 2B ), 9

Z/da ,0f, IC; 2 Lo(@,C,0) +Z/ds ,6f5(pl ), Li(a!,C, ) =

f
=~ ZEC) 4,6, ) (30)

They should be solved in a perturbation theory in the gradients g of the
RDP (,(x), (u(x), pi(z) and in the parameter X that estimates the order
of the variables ¢;(z) according to

G L) e

— , L Y 31
&ml...axls g 89@1...89@5 g 856[1...(91'15 g ( )

In doing so,the RDP definitions (21) and (22) should be used as additional
conditions.

3.2 Construction of the perturbation theory

According to (27), we can restrict ourselves to the solution of equation
(30) only. The structure of its solution in the perturbation theory is given
by the formulas

=0 + £V + 0(g%), £ = £00 4 £0D 4 10 1 0(4°X?),
£ = £(LO) 1§11 4 O(g'A%);

i’

Ovy,
Bphnl (p) }P—>p—mv )

Bz
FaD {Zc,l £+Zd' . @%} (32)
p T2 Gy T2 iy,

o or
£10) = wo{1 +3 Appn +
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Here and in what follows, A("™) is the contribution of the order g™, and
A(lm1) g the contribution of the order ¢g™A™ to the quantity A, and the
results are given in terms of the gradients of the variables ¢, (z,t), i.e.
T(z,t), vn(z,t), n(z,t). In (32) aip, biip, Cip, dipp are some momentum
functions to be computed. The contribution f,(,l’o) coincides with the first-
order approximation in gradients of the usual Chapman—Enskog method.
The scalar functions A,, B, satisfy the known integral equations

S 1 5 ¢
KOAppl = —F= < - p) yun <Ap€p>o =0;

mI \ 2 T
K°Byhn(p) = 1h() (33)
plnl\P) = mT ni\P),
where
Kth - /dgp/ngzgp’ hopr, Ky = Kpimo pramo
) = [ Epugh, (34)

(the kernel K, is defined in (11); h, is an arbitrary function). The

second formula in (33) is the additional condition that follows from the

RDP definition in (22). The functions fl()o,o) and f,(,l’o) define the main

contributions M,Sl’o) and M,SQ’O) to the usual hydrodynamic equations (8)

or 2_ov

M(l’o):— nif,Tin M(l’o):f e il

0 v Ox, 3 Ox,’ ! v 0x, mndx; mox’
onuy;
MM = L 35
120 2 8qf(1’0) . tm,o)@ 420 _ 1 8tl°7§1,0)
0 3n Oz I 9z, |’ ! mn Oz,

MZY = o, (36)

In (35) the expressions for the reversible fluxes

@0 =0, Y =psy,  p=nT
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are taken into account (p is the pressure). Equations (36) include the
dissipative contributions to the fluxes

o0 — oT 00 _ <8w N v, 26 8vm) ,

ﬂi@xn’ In or,  0r; 3 "oz,

2 4m

K= —§<612)Ap>0, n=-7F

where x and 7 are the gas heat conductivity and shear viscosity, respecti-
vely.
According to (25) and (32), in the zero-order approximation in gradients
the equation for the parameters ¢; has the form
i
ot

(0 1) Z H”M/SD’L , EO 2) Z Vigrir 507.’%01” (38)

where the coefficients

(e3Bp)° (37)

_L(01)+L(02)+O( O)\B )

piir = {Oip, airp },
1 0
Viitirn = {Hip, bi'i”p} + 5 /dsp dsp/wpeiPKpp/p”ai’p’ai”p” (39)
and the function K,

521,()
wprp/pII = _Mpp/p”wp'wp”7 Mpp/p// = 5f /gf . . (40)
PP If

are introduced. According to (22) and (30), these coefficients g/, vi7;» and
functions a;p, bi;rp from (32) are the solutions of the integral equations with
the additional conditions

Kag, = Z irpthiris  (@ipCup) =0, (aipbirp) = Giir; (41)

il

Kbyriny = Z QipViiri + Z (biirphiir +iirrpptiir)—

1
_5 /dgp/dBPI/Kpp/p//ai/p/ai”p”7 <bi/i”p<up> = O7 <bi/i”p'9ip> = O (42)
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Expressions (39) for the coefficients p;;/, v;i74 follow also from the integral
equations (41) and (42) when the last relations in (41) and (42) are taken
into account. However, as will be shown below, these expressions for p;;/,
vy are not needed for the solution of equations (41) and (42).

Further analysis of the integral equations (41) and (42) without
specifying the parameters ¢; (and the functions 6,,) is difficult. However,
it is easy to show that the quantities ¢; are linear combinations of the
gas kinetic modes ¢,. To demonstrate this, consider the right and left
eigenfunctions of the matrix p;;

g Hiit Ui’ o = Aalia, E Vialiit = AaViras
i’ i

Z Ui Vi) = 5040/7 Z Ui Vit = 61'2'/, (43)
% «
with additional normalization and completeness conditions. Then

0i=Y UinPa;  Pa= Z Piia (44)

and, according to (38), the quantities ¢, satisfy the equation

0
gota — 7>\as0a — O%/ l/aa/a//saa/saa// + O(gOAg),g])’
VO(O['O(” = Z Uia”ii’i”ui’a'ui”a” (45)

iilil!

In this case, (41) gives the integral equation
kaap = )\aaapa <a'apgup> =0, <aap9a'p> = doa’ (46)

for the functions anp = ), @ipltia (Bap = Y, 0ipUia). Thus, we have
arrived at a spectral problem for the operator K , l.e. for the linearized
collision operator. The positiveness of its eigenvalues A, and the possibility
of considering its eigenfunctions to be orthogonal in the scalar product
(16) are mentioned above. The spectral problem (46) describes the kinetic
modes of the system because the second condition in (46) means that
the eigenfunctions a., are orthogonal to the hydrodynamic ones ¢,
(KC.p = 0). Thus the variables ¢;, as the problem under consideration
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implies, really attenuate with the time. The functions ¢, are the gas kinetic
modes. Relations (46) define the type of these modes.

The integral equation (42) should be solved for the quantities b
and v;;;». This equation is simplified if, using the eigenfunctions (43),
we introduce the variable

bao/p = Z bii’puiaui’a’ (47)

i1/

that yields the equations

Kba’(x”p = Z aapl/ao/o// + ba’a”p(A(x’ —+ )\a//) —+ h’a’a”p;
(e

<baa’p Cup> =0, <baa’p ea”p> =0, <haa’p Cup> =0 (48)
for the quantities byqrp and Vo (€quations (48) may be called equations
(42) in the a-representation). Here, a,, is the eigenfunction that is found
from equation (46), and haqp is @ known function that depends on aqyp.
Besides the eigenfunctions a,, (their number equals to the number of the
parameters ¢;), the operator K has eigenfunctions a,,, and additional ones
asp. All these functions are orthogonal each to other and a,, are obtained
by the orthogonalization of the functions ¢, (K¢, = 0). The solution of
the integral equation (48) can be sought in the form of expansion in the
operator K eigenfunctions

boz’a”p = E bg/a//aap + E bz(/a//asp + E bg/a//aup,
«a s m

ha’a”p - Z hg/a”aap + Z hi’a”a’sp + Z hg’a”a,up' (49)
« s ”w

The second and fourth formulas in (48) show that the coefficients b, .,
h*, .. are equal to zero. Then the integral equation (48) yields
Vaalart + RS h?

ba/ T bsl = ;)/a” . 50
A v s vy v M vy woarss v

The coefficients vyqa/o~ are now found from the third formula in (48) with
account for the last relation in (46), which yields

bg/a// + Z bg’a” <asp0(xp> =0. (51)
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So, the integral equation with the additional conditions (42) has an unique
solution for the quantities b/, and v;;;.

Let us now discuss the calculation of the first-order contribution in
gradients Ll(-l) to equation (25) for the parameters ¢;. According to (25),
with account for (22) and (27) the main contribution can be written as

LY = *%/d?’p@ipvnpféo’l) Z o, %)

/ &p d®p' i My £V / Epd®p dp" 0y My £ 010D (52)

(Lgl’o) = 0). Here, Lf}’l) is the right-hand sides of the hydrodynamic
equations for the variables (,, and thus for any function h of the
hydrodynamic variables the following formula can be used

Z 8<H 1 1) Z M(l 1) (53)

Expressions for functions M,ﬁl’l) follows from equations (7) and (8)

M(Ll) _ 2 6(]0(0 Y + to(O,l)@ M(Ll) _ 1 81&0(0 b
0 “3n\ dxy; "™ 9x, |’ ! mn Ox,
M =0 (54)
with fluxes

o o 0,1 o
02OV =D epvnpipemo) @iy =Y (Prnpip-mo) i (55)

A 7

Further simplification of formula (52) for Lgl’l) requires the specification
of the parameters ¢; and the corresponding microscopic quantities 6;;.

According to (30) and (53), the contribution fél’l) to the DF satisfies
the equation

6f01 0 £ oty
Z (10) Z pr11)+Z o L(11) Unp apx +
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(1,1) (1,1)
<afp Lo 9 >L(0’1)—

2

dpi | 00¢; [0z, Bz, |

- / & d*p" My £ D100 4 / d*p My £5°7). (56)

Taking into account expressions (32) for the DF and the expressions for the
right-hand sides Mﬁl’o), Lgo’l), Lgl’l), Mﬁl’l) of the equations for RDP from
(35), (38), (52), (54), we obtain the integral equations for the functions
Cinp) diunp

Kcinp = Z Ci'npli’i + Z Qi pQlitjm + hin]h (57)
Kdip,np = Z di’p,npﬂi’i + Z ai’pBi’ip,n + hiun;ﬂ (58)

which, according to (32), define the DF fz()l’l). Here hinp and hi,p, are
known functions (h;,np, depends on ¢;,,) and the coefficients i, Biirun
are given by formulas

Qijjrn = {eip,ci’np}; Bii’yn = {eip; d’i’,unp}' (59)

The additional conditions for equations (57), (58) are given by the formulas
respectively

(CupCinp) = 0, (Bip Cirnp) = 0, (Cuphinp) = 0; (60)

(Cupipmp) =0, (Oip dirpnp) =0, (Cuphipnp) = 0. (61)
Expressions (59) for the coefficients i, Biirun follow from equations
(57), (58) with account for the relation (a;y0;,) = 5 from (41). However,
these relations are not needed for the solution of equations (57), (58), and
the integral equations are linear (this is similar to the situation with the
solution of equations (41) and (42) without regard for (39)). Equations
(57), (58), and (60), (61) are simplified in the a-representation

Kcomp = Comp/\a + Z a'pQa’an T hompv
(CupCanp) =0,  (BapCarnp) =0, ((uphanp) = 0; (62)

Kda;m,p = daunp)\oz + Z aa’pﬂa’aun + haynpa

o

<<updau’np> = 07 <9(xpda’unp> = 07 <<uph(xu’np> = 0. (63)
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The solution of these equations may be discussed in a similar way to the
solution of equation (48) and needs more information about parameters
Pi-

The calculation of the DF fél’l) allows us to find the contribution M,SZ’l)
to the right-hand side of the hydrodynamic equations (8). According to (8),
the following formulas hold

yen 2 g Lot Ou e L ot
0 3n oz, oz, |’ ! mn Ox,
MY =0 (64)
with fluxes
qz(lvl) - /d‘n’pgpvmjflgl’l)7 t;’él»l) _ /d?’pplvnpfz(,l’l). (65)

In summary, we have investigated the equations for the RDP ¢; and
&, in the following orders of the perturbation theory

Op;
8? = L0V L 4 LT+ 0(0"N ' N, g°A g7),
0
% _ ﬂ[lSl,O) + Z‘[;S,l,l) + M,(f’o) +Mlg2,1) +O(gl)\2,g2)\2,g3), (66)

where the quantities LEO’I), LEO’Q), Lgl’l), M,ﬁl’o), M,Sl’l), MF(LQ’O), M,SQ’l)
are given in formulas (35), (36), (38), (52), (54), (64). Clearly the above-
described procedure of sequential calculation of the DF and the right-hand
sides of the RDP time equations can be continued. A detailed analysis
of the obtained integral equations for the contributions to the DF is
only possible when the parameters ¢; and the corresponding microscopic
quantities 0;;, are specified. This will allow us to use rotational invariance
considerations, which can greatly simplify the calculations, and to perform
the required Galilean transformation.

4 Modified Grad problem

Consider application of the developed theory to the Grad problem in which
nonequilibrium states of a gas are described by hydrodynamic variables
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Cu(z,t) as well as by energy flux ¢9(x,t) and traceless momentum flux
70 (x,t) taken in ARF. Specification of RDP simplifies the consideration
because allows us to make Galilean transformation for transition from LRF
to ARF and to use rotational invariance in calculations.

It was stressed above that solution of the Grad problem in framework of
the RDM can be based on the functional hypothesis (18) supplemented by
definition of the RDP (19). It is obvious that the Grad DF (20) corresponds
to the zero order approximation in gradients and to an approximation of
small fluxes. In this section according to the general theory developed
in Section 3 a modified Grad problem is investigated. In this problem
the deviations of the fluxes d¢2(z,t), o), (x,t) from their hydrodynamic
values g2 (z,¢(t)), 77, (z,¢(t)), which are functionals of the hydrodynamic
variables (,(x,t), are taken as the RDP. These deviations are assumed
to be small values of the same order A. Specification of the result of
Section 3 for the problem considered here is quite simple. For example,
the functional hypothesis considers the DF as a functional of the form
£y (2, C(1), 8g° (2), 67°(2)).

The time equations for the fluxes ¢y, 7}, follow from their definitions
(19) and kinetic equation (1) and can be written as

oy, B onp, o Ov, (o vy, 0 ovy B 25 o v, n
ot " Oxm MO, " O Oy 3 Oy
ov,  Ov, 2. Ovupy, O n.m ()
- T a5 n - ’ n f )

" <8mn + ox; 36l 8xm> O0xm + Bin(f) (67)
ouf 94 v 50w 1,0, 5Ton,
ot "oz, % oz, 3q" 9z,  mn "™ dzx,  2m Oz,

1. ., b onT  Oq(f) v,
—|—%(ﬂ'ln + QnTéln) 0. om, Tin,m (f) pr. + Ry(f) (68)

where the notation

1 1
Rin(f) = E/dgp hln(p)Iermv(f)v Ri(f) = m /dgpgppleerv(f);

1
71'ln,m(f) = m2 /d3p hln(p)pmfzﬂrmw

1
tﬂn(f) = 2 /dgpepplpnfp+erv (69)
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is introduced. Equations (67), (68) are satisfied by the functionals

qn(x ¢@) = ¢, mp (z,¢((t)) = 77, and the usual hydrodynamic DF
fp(z,¢) = wp + f (10 4 O(g?) (see (27), (32)). Therefore, according to

(67) (68) , the exact time equations for the deviations have the form

ooy, Y oony, 0 Ovp,
ot ™ OTm lna
dun, o vy Ovs
(5 lma +om nma 5ln6ﬂ-sma ) +
00T n.m
et it Lk 5 n = L "
axm + Rl l (70)
Qdqp _ 90q7 o ,0un , du 5T dmy,
ot = Uam,  Ua, 6"8xn+2m Dzn T
41 1 50 86772m+ 1 _, 85w2m+ R oro ™
mn Tin a mn — Ty a mn Tin a
onT  0dqy Ovu,, B
o0 G~ G g HOR= L (7D

where the notations
SRy, = Rin(f) — Rin(f), OR; = Ry(f) — Ri(f);

67Tln,m = 7Tln7m(f) — Tin,m (F)a 5an ={din (f) - an(f) (72)

are introduced. To continue the derivation of the time equations, one needs
to calculate DF f,(z,(,0¢°%, 67°) using the general theory developed in
Section 3 and substitute it into (72).

Here we restrict ourselves to the calculation of the contribution f,EO) of
zero order in gradients to this DF. According to (32) in this approximation
the DF f,(z, (,d¢°, dn°) has the structure

B9 = w31+ any 065 + auny 075, + O(6°A%) bpsp o,

Anp = QpPrs  Gnip = bp it (D) (73)

where a,, b, are some scalar functions. In view of (70)-(72), the time
equations for the deviations of the fluxes ¢f,, 77, in the zero order in
gradients have the form

ddqy
ot

= _)\q(sqlo + O(go)‘2agl)7
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5 o
ag;ln = 7}\7‘[’57‘[-?” + O(gOAz,gl) (74)
where ) )
)\q = %{plEp»Plap}O, A = %{pzpn, hl’n(p)bp}o. (75)

These quantities are written using the following bilinear form
{9ps hp}? = /dgdePInggp’gphp’ (76)

which is a specification of the form (14) {gp, h,} for the ARF (see also
(9), (11), (34)). According to formulas (32), (41) of the general theory, the
functions ay, b, from (73) satisfy the integral equations with the additional
conditions

Koappl = )\qappla <€pap>o =0, <€§ap>o = 3/2a (77)

o o 15
K°bphin(p) = Axbphin(p), <512sz> T 3m (78)
As would be expected, these equations are eigenvalue problems for the
operator K° defined in (34). According to the remark given after formulas
(16), its eigenvalues are positive and equations (71) describe attenuation
of the flux deviations ¢S (z,t), 077, (x,t) i.e. the processes

Q) =@, 1), (e ) o @ C(0).  (79)

This phenomenon is called the Maxwell relaxation. In the Grad theory
[13] relaxation equations of the type (74) for fluxes ¢2(z,t), f, (z,t) are
obtained too, but describe simple attenuation of these fluxes.

Equations (74) give contributions Ll(o’l), Ll(g’l) to the right-hand sides
Ly, Ly, of the time equations for RDP (70), (71). According to the general
theory, contributions to L;, Ly, that do not depend on the parameters dq2,
onp, are absent, and therefore
(20 — (80)

In

L =o0, LY=o,

3

LY =0, L

(see, for example, equations (66)). In the present paper other contributions
will not be discussed. Consider only approximate solution of the integral
equations (77), (78) using the Burnett method of a truncated Sonine
polynomial expansion.
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Solution of the equation (77) with account for its tensor dimensionality
is found in the form of the series

ap =D asSi%(Bey) (81)
s=0
(B =T~1). Additional conditions (77) thus give
ag =0, ay = —26%/5n. (82)

Integral equation (77) leads to the following infinite set of linear equations
for the coefficients a4

ZASS/aS = (83)
s'=1

where the notations

Agsr = {p153/2(ﬂ5P) plSs/ (6517)}0@515’)71/2,

12, N 2mn 2I'(s+5/2)

Ag = —Ag, Ty = RPSYE (84)

Qs = Q5T

are introduced. According to the properties of the bilinear form (76) the
matrix A,y is symmetric and positively defined. Solution of equations (83)
in one- and two-polynomial approximations gives

a[ll] =ay, S\E] = Au;

52
W g G2 2 A —An
! b 2 T2 A

APV = {(A11 + Ago) — [(Ann — Ago)® +4A3,)1/2}/2 (85)

ar,

(here A" is a quantity A taken in n-polynomial approximation). Note
that in the two-polynomial approximation eigenvalue 5\?] of the smallest
value was chosen.

With account for the tensor dimensionality of equation (78) its solution

is found as the following series expansion

= b.SY2(Bep). (86)
s=0



Nonequilibrium processes in the vicinity of hydrodynamic states 89

Additional condition (78) define the first coefficient of the expansion
bo = 3%/2mn. (87)

Integral equation (78) leads to the infinite set of linear equations for the
coefficients b,

Z BSS/BS' = 5\7\’65 (88)
s'=0
where the notations

By = {hln(p)SSS/Q(/BEp)a hln(p)S§/2(65p)}o(ysys’)_1/2a

_20(s+7/2)

_ 8m2n)\
Ty yS —_— 8!7'['1/2

b =b? he=

are introduced. According to the properties of the bilinear form (76) the
matrix By is symmetric and positively defined one. Solution of equations
(88) in one- and two-polynomial approximations gives

(89)

b([jl] = bo, AN = Boo;

212 _ 21/2 3 _ By,
1 712" By, 0>

M = {(Boo + B11) — [(Boo — Bi1)* + 4B5;]/*}/2. (90)

b([)2] = bo,

Note that in the two-polynomial approximation the eigenvalue S\E I of the
smallest value was chosen.

So, in the one-polynomial approximation the following expression for
DF (73) of the zero order in gradients is obtained

1
0) o o
fz(J ) — w? {1 + 72mnT2p"pl67Tl” +

1 2¢p 02

—zPn(z 75 — 1)dg; + O(g7\7) (91)
nI2" "5 T " s pm

For the selected independent variables this expression coincides with the
Grad DF (20). Therefore, the statement given at the end of section 2 is
confirmed and his DF contains only contributions of the orders g°A%, g° !
and takes them in the one-polynomial approximation.
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In the one-polynomial approximation our attenuation constants are
given by the formulas

2 5 nT
m__ 2 o_ 0 nT
Ad' = Tgngs PiEn PiEn}” = 5
1 nT
n_ o_
Ael = 10m2nT?2 {hin(p), hin(p)}° = 77[1] (92)

where the expressions for the heat conductivity x*) and the shear viscosity
1]

n!1 in the same approximation are used to compare. Famous result of the
theory [3] is given by the formula
kM = 15pM1 /am (93)
which leads to the relations
AT = 2AM/3. (94)

Note that the Grad theory [12] gives also expressions (92) for attenuation
constants. However, in his theory this constants describe unphysical
attenuation of the fluxes ¢f(x,t), 7}, (x,t) to zero and cannot be corrected.

As the final remark note that it is not possible to rigorously prove the
method of a truncated polynomial expansion for solution of eigenvalue
problem for operator K. However, the proposed calculations additionally
show limitation of the Grad method as an alternative to the Bogolyubov
reduced description method.

5 Conclusion

The Chapman-Enskog method has been generalized for the investigation
of processes in the vicinity of hydrodynamic states of a gas. The genera-
lization is made on the basis of the Bogolyubov idea of the functional
hypothesis. A theory that describes a nonequilibrium state of a gas
by the usual hydrodynamic variables (,(x,t) and arbitrary additional
local variables 6;(x,t) has been constructed. The gradients of all these
parameters and the deviations ¢;(z,t) of the variables 6;(z,t) from their
hydrodynamic values 6;(z, ((t)) are assumed to be small and are estimated
by two independent small parameters g, A. The proposed theory is
nonlinear in the variables p;(x,t) too.
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The usual Chapman—FEnskog method leads to the solution of Fredholm
integral equations of the first kind with an operator K given by the
linearized collision integral. The proposed theory leads to the solution
of linear integral equations of a more complicated nature with the same
operator K. Some of them are eigenvalue problems for the operator K and
describe the kinetic modes of the system.

The proposed theory is applied to the solution of a modified Grad

problem. Grad formulated his problem in his 13-moment approximation
for the solution of kinetic equations. In his theory nonequilibrium states
of a gas are described, in addition to the usual hydrodynamic variables,
by the fluxes of energy ¢f(z,t) and traceless momentum =}, (z,t) =
o(x,t) — 10, (z,t)01,/3 in the accompanying reference frame. In fact
these fluxes are considered as small quantities of the same order A and
the Grad distribution function includes only terms of the orders g°\°,
g°AL. Moreover, it corresponds to the one-polynomial approximation. In
our modification of the Grad problem a nonequilibrium state of a gas
is described by the usual hydrodynamic variables and small deviations
0q2(x,t), omf (x,t) of the above-mentioned fluxes from their hydrodynamic
values ¢2(z,((¢)), 72, (z,¢(t)). In the simplest approximation this leads to
a theory of the Maxwell relaxation.

The consideration shows that in the 13-moment Grad approximation
the investigation of the relaxation phenomena in the system is reduced to
a very approximate solution of the eigenvalue problem for the operator
K. The Bogolyubov reduced description method, based on his idea of the
functional hypothesis, gives an adequate solution of the problem.

The proposed theory can be applied to evolution described by arbitrary
kinetic equations, and to the evolution of dense systems described by the
Liouville equation.
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