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Power series and conformal mappings
in one boundary value problem for
monogenic functions of the biharmonic
variable

Dedicated to the 80 ™ anniversary of Prof. D.Ya. Petrina

Considered a boundary value problem (BVP) for monogenic functions
of biharmonic variable taking values in a two-dimensional commutative
Banach algebra. This BVP is associated with the main biharmonic problem
for biharmonic functions of two real variables. Developing a reduction’s
scheme for this BVP for monogenic functions to BVP in a disk by using of
expansions in power series and conformal mappings in the complex plane.
For some particular cases this problem is solved in a complete form.

Posriismaersea kpaiioBa 3amada /i MOHOTeHHUX (MYHKIHH 6irapMOHIIHOL
3MiHHOI 31 3HAYEHHSIMM B JBOBHMIpHI# KOMyTaTwBHiil aare6pi. Jlana 3a-
Jada acoIiifoBaHa 3 OCHOBHOIO OIrapMOHIYHOMIO 33jadero Ha IuiomuHi. Po-
3pObJIAETHCA CXeMa PeayKIll 1€l 3a/1a4i 11 MOHOT€HHUX B OTHO3B A3HUX
obmactsax dyHKIiH 10 BiAMOBiAHOI KpaioBoi 3a1adi B Kpy3i GirapMoHid-
HOI TITONWHA, 3aCTOCOBYIOYH PO3BUHEHHS B CTEIIEHEBU PsiT AHAJI THIHUX
dbyHKIiil KOMIITTEKCHOI 3MiHHOI Ta KOH(OPMHI BimobpakeHHs KOMILIEKCHOL
mwromuan. HaBeerno 4acTuHHI BUIIAIKM, KON TaHa 33/7a9a PO3B SI3YE€THCS
y 3aMKHeHi#l dhopwmi.

1. Introduction. Monogenic functions in a biharmonic plane.
We say that an associative commutative two-dimensional algebra B with
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the unit 1 over the field of complex numbers C is biharmonic if in B there
exists a biharmonic basis, i.e., a basis {e1, ea} satisfying the conditions

(6% + 63)2 =0, e% + 6% 7é 0, (1)

In [1], I. P. Mel'nichenko proved that there exists the unique biharmonic
algebra B and all biharmonic bases form an infinite collection belonging to
the algebra B, moreover, B is generated by a non-biharmonic bases {e1, p},
where p? = 0.

Here and elsewhere we mean by the biharmonic bases {ej,e2} the
following:

=1 ex=i—zp, (2)

where ¢ is an imaginary complex unit. Therefore, we have equalities
e% =1+ 2ies and
p =2+ 2ies. (3)

Consider a biharmonic plane p:= {( = ze; + yeq : ,y € R} which is
a linear span of the elements ey, es of biharmonic basis over the field of
real numbers R.

Let D be a domain in the Cartesian plane 2Oy and D := {{ = z+yes :
(x,y) € D} be a domain in p, and D, := {z =z + iy : (z,y) € D} be a
domain in the complex plane C. In what follows, ( = = + yea, 2 = x + iy
and z,y € R.

Inasmuch as divisors of zero do not belong to the biharmonic plane, one
can define the derivative ®'({) of the function ®: D¢ — B in the same
way as in the complex plane:

/ . : —1

Y=l (2(C+HH) —BQ) A ()
We say that a function ®: D — B is monogenic in a domain Dy if and
only if its derivative ®’({) exists in every point ¢ € D.. Note, that the limit
(4) can be considered according to the euclidian norm a := /|21 |? + |22/2,

where a = z1 + z9e9 € B, 21 and 25 in C.
In [2], it is established that a function ®: D, — B is monogenic in
a domain D¢ if and only if the following Cauchy-Riemann condition is

satisfied: 08(0)  05(0)
92(¢) _ 92(¢) _
ay = Tor e V(=1x+ ey € Dc. (5)
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Note, that in [2] the condition (5) is written in an equivalent form by each
component.

In [3], [4], there were established basic analytic properties of monogenic
functions similar to properties of holomorphic functions of the complex
variable: the Cauchy integral theorem and integral formula, the Morera
theorem, the uniqueness theorem, the Taylor and Laurent expansions, a
property of monogenic functions to be infinitely times monogenic.

Any function of a type ® : D¢ — B is expressed in the form

®(Q) = Ui(z,y) +Us(z,y) i+ Us(x,y) e2 + Us(x,y) iea, ¢ =x+yes, (6)

where Up: D — R, k=1,4.
Every component Uy, 1 < k < 4, of monogenic function (6) satisfies in
the domain D the biharmonic equation

m o ot ot
(Ak)" u(z,y) = <8a:4 +2W + 8y4> u(z,y) =0,m=~k=2, (7)

due to the relations (1), an existence of derivatives ®*) of the order F,
1 < k < 4, and the equality (A2)* ®(¢) = (€2 + €2)20@W (().

In [5], there were introduced hyperanalytic functions taking values in
real Clifford algebras of an arbitrary dimension, so-called, holomorphic
Cliffordian functions. Any real component of holomorphic Cliffordian
function (similar to Uy in (6)) satisfies the polyharmonic equation of the
type (7) with some m > 2 and k = 2m.

In [6], V.V.Karachic and N.A. Antropova used Almansi representation
formula for solving the inhomogeneous Dirichlet problem for the
homogeneous biharmonic equation with polynomial boundary data.

2. Statement of (1-3)-Problem for monogenic functions.

Consider the following boundary value problem: to find a monogenic
function ®: D — B which is continuous in the closure D of the domain
D¢ by given boundary values u1, us, respectively, of the first and the third
components of the expansion (6):

Ui(z,y) = u1(C), Us(z,y) = us(C) V{=x+ey€dDc.  (8)

Problems of this type was first considered by V.F. Kovalev [7] and
was called as the biharmonic Schwarz problem because it is analogous in
a certain sense to the classical Schwarz problem on finding an analytic
function of complex variable when values of its real part are given on
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the boundary of domain. Note that V.F. Kovalev stated only a sketch
of solving of the biharmonic Schwarz problems in an integral form for
semi-plane and discussed a possibility of the reduction this problem for an
arbitrary domain to an integro-differential equation without investigation
conditions of solvability of these problems.

Certain relation between the (1-3)-problem and Theory of 2D-
elasticity is discussed in [8] for a case of a disk. Dwell on a case
of an arbitrary simply connected domain D € R? corresponding to
the domain D¢ in the biharmonic plane p. The main biharmonic
problem (see, for example, [9, p. 202]) is to find a biharmonic function
V : D — R by given limiting values of its partial derivatives

(z,y)=(x0,Y0), (z,y)ED ox 1\%o, Yo) (9)
oV (z,y)

im ——> = ug(xp, Y (o, € dD.
(@.9) = (z0.00), (w)eD Oy (@0, 30) (o, 30)

In [7], there was considered a reduction scheme of the main biharmonic
problem to the (1-3)-problem. Consider a modification of this scheme.
Let ®; is monogenic in D¢ function

(I)I(C) = V($7y> er + ‘é($7y) Z.el + V3($7y) €2 + Vzl(xay) 7;627

which has as the first component the required biharmonic function V (x, y).
It follows from the Cauchy-Riemann condition (5) with ® = &; that
OVs(x,y)/0x = OV (x,y)/0y. Therefore,

1% Vs % 0)%
(I)/]_(C) _ éz7 y) e + 2((§§7y) iel + éZ7 y) es + 4a(§7y) i€2 ,

and the main biharmonic problem with the boundary conditions (9) can
be reduced to the (1-3)-problem on finding a monogenic in D, function
®(¢) := P1(¢), then, solving the latter problem, we recover functions
M(z,y) := W and N(z,y) :== %Z’y) defined in D. In a conclusion,
obtain a solution of the main biharmonic problem in the form of the
following curvilinear integral

(z,y)
Via,y) = /( M(z,y)dz + N(z,y) dy,

Z0,Y0)
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where (29, yo0) is a fixed point in D, integration means along any piecewise
smooth curve, which joints this point with a point with variable coordinates
(@,9)-

In [8], investigated the (1-3)-problem for a case, when D, is an upper
semi-plane of the biharmonic plane or a unit disk {¢ € p : ||¢|| < 1}.
Solutions of these problems are found in an explicit form by means of
some integrals similar to a classis Schwarz integral in the complex plane.

Below we consider the (1-3)-problem for a sufficiently large class of
domains D, using the technique of conformal mappings D, to the disk
Dy :={¢ € p: ||¢|| < 1}, which is generated by a conformal mapping of
D, to the unit disk in C. We notice some sufficient condition to the domain
D¢ and boundary data u; and ugz for a reduction of the (1-3)-problem to
a suitable boundary value problem on finding some B — valued function
defined in D;. For some particular cases of domains D, this reduction
recover a solution of the (1-3)-problem in an explicit form.

Proposed method of solving boundary value problems for monogenic
functions of the biharmonic variable analogous to the method of
N. I. Muskhelishvili of solving boundary value problems of 2D-Elasticity
based on using a technique of conformal mappings of complex plane and
power series expansions of analytic functions of complex variable (cf., e.g.,
[10, §63]).

3. Using technique of conformal mappings for (1-3)-problem
in a simply connected domain. There is an expression (cf., e.g., [3] —
[12]) of an arbitrary monogenic function ® : D, — B via two analytic
functions F, Fy of complex variable z € D,:

B(C) = F(2)e, — (Zg F'(z) — Fo(z)> p  VCeD. (10)

Consider a problem on solving of the (1-3)-problem in a domain D,
which is congruent to a simply connected domain D,. Let N be a set of
natural numbers, Ny := NU{0}, Z be a set of integer numbers. Taking into
account any conformal mapping of the type w: D; — D,, we generale
a domain D;. Denote I'y := {z € C : |z| = 1}. For any complex-valued
function of the type G(z), z = w(r), 7 € Dy, we will denote by G(7) an
expression G(w(7)). For any 7 in the disk D; denote by (7, ¢) its polar
coordinates, i.e., 7 = nexp{ip}, by (1,6) we will denote polar coordinates
of points o = exp{if} € I'y. Obviously, that if a function G is analytic in
D., then G is analytic in Dj.
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For any z € C by Rez and Imz we mean, accordingly, real and imaginary
parts of z: z = Rez 4 iImz. Denote ®,(7) := @ (Rew(7) + Imw(7) e2),
7 € D;. Then the equality (10) transforms to the form

®,(r) = F(1) — <; Y(r)F'(1) - ﬁ0(7)> p VreDy, o (11)

where Imw(r)
Y(r):= e

Therefore, receive that the (1-3)-problem for monogenic function ®
reduced to an auziliary (1-3)-problem on finding the first, V7, and the
third component, V3, for a function (11) ( ﬁ, F, are unknown analytic in
D, functions of complex variable 7):

(12)

D.(7) = Va(7) + Va(7)i + Vs(7)ez + Va(r)ies, (13)

where 7 = 7 + i1, 7 € R, k = 1,2, Vi : D1 — R, k = 1,4,
furthermore, we assume, that @, is continuous in D; and the following
boundary conditions fulfilled

Vi(o) = @n(0), k=1,3, Voel, (14)

where uy : I'y — R are given continuous functions. Boundary functions
U, k = 1,2, are connected with boundary data u; and ug (see (8)) of the
(1-3)-problem for a function (6), which is monogenic in D¢, by means of
the following relations:

ﬂk(o) = uk(C)v w(o) =z, k=13, (15)

where 0 €', z =w(o) ==z +iy € C, ( :=x + exy € ID,.
Using polar coordinates, deliver equivalent denotations for boundary
functions u; and us:

U (0) = ug(cosf +sinfes), k=1,3,0< 0 < 2r. (16)
Let I, is a totaly of consequences of the type (ag, aq,...,ag,...), where
ar €R, k=1,2,...,and >, |ag| < co. Denote by {a},,, m € Ny, any

consequence of the type (a, m1,...) € 11, and conversely.
We say, that the ordered quadruple of consequences
({2}, {8}, {a}o, {B}1) belongs to the class & if and only if
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there exists a constant M > 0, natural number p and a sequence {v},, for
which the following inequality fulfilled

v
joul 186 < 1 v > a7)

This definition can be naturally generalized to an ordered quadruple of
consequences of the type ({a@}n,, {BO}n,, {a}n,, {BIN.), Nim € N,
m=1,4.

Theorem 2. Let the following conditions fulfilled:

1* conformal mapping w: D1 — D, is such, that the series

oo

11;1/0{0(';-) = Y 60" Voely, (18)

n=—oo
s absolutely convergent on I'y,

2* boundary functions uy, us of the auziliary (1-3)-problem expressed
by absolutely and uniformly convergent on the segment [0,27] the
Fourier series:

= 50 +Z a, cos kO + by, sin k6) (19)
k=1
ag = .
= 50 + Z ay, cos kO + b, sin k0) . (20)
k=1
3* The system of equations
> a
a0+ 200" + 3 (k+ D) annnd + By ) = T, (21)

k=0

a,+2a O)—|—Z /{:—i—l (ak+1A2nk+ﬁk+1Alnk) =a,Vn €N, (22)
k=0

~Bu=280+ 3 (k1) (41T g Brs1AT, ) = ba ¥V € N, (23)
k=0
o0 a/
25 + ’;)(k +1) (ak+16Lk — 5k+15ﬁk) = 307 (24)
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-280) + Z(k’ +1) (akﬂl\fn,k - Bk+1A;n’k) =al, VYneN, (25)

k=0
220 =Y (k+1) (ak+1A; - +Bk+1Ain7k> —0, VneN, (26)
k=0

where 8,,,0! are, respectively, a real and an imaginary parts of
coefficients 6, in expression (18): &, =: &/, + 0 for all n € Z;
A, =00 k0 A =00 k6" forn € N and k € Ny,
is solvable and its general solution belongs to the class &, if, besides,
the system of equations (21) — (26) with a, = aj, = bry1 = by =0,
k=0,1,..., is solvable and its general solution belongs to the class

£.

Then a general solution of of the auxiliary (1-3)-problem is expressed
by the following formula

iImw(r) ~,

®,(r) = F(r) — (2 o L ﬁ0(7)> p  VreDy,  (27)

where
ﬁ(T) = Z ", ﬁo(T) = Z 0510)7'" V7 € Dy, (28)
n=0 n=0

and an ordered quadruple of consequences ({a®}o, {8}, {a}o, {B}1),
formed by real components «,, a%o), T(LO), Bn+1, n=0,1,..., of complex
coefficients ¢, = oy, + 153, 9 =0+ zﬂ?(lo) in the expression (28), is a
general solution of the system (21) — (26).

Proof. Expansions (28) of the Taylor series hold for functions F and Fy
in the disk Dy with unknown coefficients ¢, = o, 4165, c%o) = aSLO) —Hﬂ,(@O),
where «a,, = Rec,, 8, = Imc,, a%o) = Rec%o), ,(LO) = Imcf), n=20,1,....

It follows from (28) that

F'(r) = i(n + 1)eptr ™ V7 € Dy (29)

n=0

Assume, that the series (28) and (29) are absolutely and uniformly
convergent on D1, and further, verify the validity of our assumption.
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Using the following equalities for products of absolutely convergent on
'y series > p g ako®, Y0 s bpo®, S0 hogo*

Zaka Zbka Z(Z akbnk>0"7
k=0 k=0

oo o0 oo oo oo oo
S adt St = Y (S ahoion )o 3 (L i )"
k=1 k=1 n=1 “k=1 n=0 ‘k=n

multiply series (29) and (18), obtain the equality

(o) () /S Z o™ Yo eTy, (30)

n=—oo

where for any integer n:

oo
Z k + 1 Ck+16n k= Cn 1 +ch 2
k=0

Cha = Z(k +1) (hs10y 1, — Brr10, ) 5 (31)
k=0

Cho = Z(k + 1) (4105 g, + Brr18y_y) - (32)
o

Using the Moivre formula rewrite the equality (30) in the form

~, Imw(o) o >
F,(U)Ta) o Z ¢ 1+ ¢y cosnf+
+ Z o — ) sin nf+

oo
ticyo +1 Z (¢" o+ o) cosnb+

n=1

Z ¢*,1)sinnd Vo =exp{if} € I'1. (33)
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Then using the equalities (3) deliver formulas for components V; and
V3 from the expression (13) on I'y:

Vi(0) == Va(o) = ao+2a8"+¢5. 0+ (an +20) + 7,5 + ¢, 5 ) cosnd+

n=1

+ Z (—5n - 289 + Ch1— c*,nd) sin nf, (34)
n=1
V3(0) :=V3(0) = cg1 — 25(()0) + Z (—267(10) +clq+ 0271) cos nf+
n=1

(o)
+ Z (—204;0) +el,a— CZ7Q> sin nd. (35)
n=1

Equating coefficients near cosmf and sinn#, respectively, in the
qualities (34) and (19), (35) and (20), receive, using the denotations (31)
and (32), a system of equations (21) — (26) according to coefficients of
required series (28).

Summarize obtained results, we have that restricting a solvability of
the system (21) — (26) in the class £, that means, firstly, a condition to
the geometry of the domain D, and, secondly, a condition to the choice
of the boundary functions u; and wug, obtain, that the series (28) and (29)
are absolutely and uniformly convergent on D; and a function (27) is a
general solution of the auxiliary (1-3)-problem. The theorem is proved.

Remark. A choice of the class £ can be done by any another way,
choosing conditions for functions of the class for which series (28) and (29)
are absolutely convergent on I';.

Theorem 3. Let conditions of Theorem 1 are satisfied, then the formula

O(() =Pu(1) Y(=z+4yes € D¢, 7€ Dy :w(r) =2 :=a+ies € C (36)

generates a general solution of the (1-3)-problem.

Examples.

1. Let a domain D¢ be a unit disk D;. Then a mapping w is the identity
mapping, i.e., w(z) = z for all z € D, Imw(c) = sinf. The auxiliary
(1-3)-problem coincides with the the (1-3)-problem for D;. Furthermore,
&, = 4,07 = —3, 6/ = 0 for another integer n, and &, = 0 for all
integer k. It is easy to check, that for this particular case the system
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of equations (21) — (26) transforms to the system (22) — (31) from the
paper [13] for » = 1, a condition of solvability of which can be written
in the form b; = a}. The proposed method gives a required solution of
the (1-3)-problem, for example, if boundary functions u; and wug satisfy
conditions of Theorem 1 in the paper [13]. Note, that for our case in (17):
vp = k=0T k =1,2,..., a > 0, and a general solution of the (1-3)-
problem with zero data u; = uz = 0 is a function ®(¢) =i (b — aea + (),
where a, b and c are arbitrary real numbers.

2. Let a boundary of the domain D¢ be the Pascal’s limacon D¢ := {z+
eoy}, where x = R(cos@—i— %00529), Yy = R(sin9—|— isinZH), 0<60 <2,
and any fixed constant R > 0. Then a function w has a form

1 _
w() =R (c + 4<2> V¢ € De. (37)
Consider the (1-3)-problem with boundary conditions, for which
ap=ay =0,k=01,2, by =b, =0,k =1,2, (38)

and the following inclusions holds

({a'}o, {b}1, {a}o, {0'}1) € &, ({a}o, {0'}1,{a'}o, {b}1,) € &. (39)

In this case an expression (18) has a form

Imw(o) 1 ., 7T 4 25 9 1\"
= 71— - Tl T LAy ED) D) ! T
o) R0 it g imotig () en
Then

O =0Vk€Z &, =0Vne {34, } (40)

no_ - s _ s e Y
572 = 8, 5,1 16, 50 32? 61 647 (41)

9 [ 1\"

5;::32(_2> vn € {2,3,...}. (42)

Denote for any symbol variable v the expression

n—2 n—~k
(V) 1= 9 Z(k +1) (—;) Ugt1 — Z—invn—
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7 7 1
fﬁ(n + Doy + E(n + 2)vp42 + g(n + 3)vp43Vn > 3. (43)

Taking into account relations A" , = Ay, , = 0forn € Nand k € Ny,

A=A, =00 forn >3 and k € Ny, formulas (38) — (43), obtain,

2,n,k
that the system of equations (21) — (26) transforms to a form
7 7 3
0¢0+2a(()0)—3—2041+§a2+§(1320, (44)
67 (0) 3 21 1
- 2 - — —_ — = 4
pa @1 t2m —qgoat gaat 5 =0, (45)
25 25 21 7 5
0[2+204g0)+58a17372@27§a3+10[4+§045:0, (46)
an +209 + 94, () =a,Vn € {3,4,...}, (47)
11 o 11 21 1
_ 2 - — — — =
6461+ By 1652+1653+254 0, (48)
7 (0) 7 21 7 5
— LB+ L By Byt S Byt 2By = 4
128514— B +32ﬂ2 3253-1-454-1-855 0, (49)
B+ 28 + ¢n(B) = —bpVn € {3,4,...}, (50)
o 7 7.3
Bo 3251+8ﬁ2+853 ; (51)
© 3 3 21 1
2 N - JR— o =
By +64ﬁl 1652+1653+254 0, (52)
() 25 25 21 7 )
2 _ —_ — —_ — — — =
B b i - S Byt Bt S =0, (53)
2ﬂ£0) +wn(ﬂ) = 7(Z;IV7L € {374a~"}7 (54)
0 93 11 21 1
2 - - _— —_ =
o 61 O 16a2+16a3—|—2a4 0, (55)
0 7 25 21 7 5
2é)—@al—3—2a2—§a3+1a4+§a5:0, (56)
200 4 p, () = b, ¥n € {3,4,...}. (57)

Solving obtained system (44) — (57) conclude, that a solution of the
required (1-3)-problem has the form:
®(Rer + eolmr) = F(7) — (; Y () F'(1) — ﬁ0(7)> p  VreDy, (58)
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where coefficients of expansions (28) are expressed by the formulas

—2A+iC VAand C € R,

¢, = 4iB, cy =iB  VBER,
Cn=an+b,+ila, —by),n=34,...,

3
céo):—ﬁ(a3+b’)+A+z (bs —a})  VAER,
21 1 21 1
R IR AR {ORRARE] ECRVARS O

0 7 5
o) = 2 (a4 0) — £ (aa + ) — 1 (a5 + )+

(21 7 5
Hi (B =)+ L=+ s b)),

16
) = 177580@,4- 1128 by + 76(a4+b4) g; (a5 + b5) — Z(a6+bg)+
+i (11218 az — 17258 bs + 176 (ay — bs) — g% (a5 —bs) — g (ag — b6)> ;
o) = g an 8+ BUT B s ) -
21 (ag +bg1)6 (ar +15) (22576 (b — o) 11a;3—225b4+

35 2, 7,
+ 2 (a0 = B e t0) - 5 (&5 - ).

o 9 n 1 n—k+1 25
o)) = 32 Z(k‘f' 1) (—2) (aks1 +bhpn) + o0
2

128 "t

25n — 64 7
+T b;l 64(7’L+1) (an+1+b{n+1)—

1
_ﬁ(n + 2) (U,n.:,_z + b;H-Q) 16 (TL + 3) (an+3 + bf,l+3) +

9 n—2 1 n—k+1
+i <32 Z(k—f—l)( 2) (Ahgr — brt1) +
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25m — 64 25 7
+T a,/n — @nbn + 62(77; + 1) (a/n_‘_l — bn+1) —

7 1
- 33(71—&- 2) (ap 4o — bny2) — TG(n+3) (ahys — bn+3)> Vn > 5.
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