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Considered a boundary value problem (BVP) for monogenic functions
of biharmonic variable taking values in a two-dimensional commutative
Banach algebra. This BVP is associated with the main biharmonic problem
for biharmonic functions of two real variables. Developing a reduction's
scheme for this BVP for monogenic functions to BVP in a disk by using of
expansions in power series and conformal mappings in the complex plane.
For some particular cases this problem is solved in a complete form.

Ðîçãëÿäà¹òüñÿ êðàéîâà çàäà÷à äëÿ ìîíîãåííèõ ôóíêöié áiãàðìîíi÷íî¨
çìiííî¨ çi çíà÷åííÿìè â äâîâèìiðíié êîìóòàòèâíié àëãåáði. Äàíà çà-
äà÷à àñîöiéîâàíà ç îñíîâíîþ áiãàðìîíi÷íîþ çàäà÷åþ íà ïëîùèíi. Ðî-
çðîáëÿ¹òüñÿ ñõåìà ðåäóêöi¨ öi¹¨ çàäà÷i äëÿ ìîíîãåííèõ â îäíîçâ'ÿçíèõ
îáëàñòÿõ ôóíêöié äî âiäïîâiäíî¨ êðàéîâî¨ çàäà÷i â êðóçi áiãàðìîíi÷-
íî¨ ïëîùèíè, çàñòîñîâóþ÷è ðîçâèíåííÿ â ñòåïåíåâèé ðÿä àíàëiòè÷íèõ
ôóíêöié êîìïëåêñíî¨ çìiííî¨ òà êîíôîðìíi âiäîáðàæåííÿ êîìïëåêñíî¨
ïëîùèíè. Íàâåäåíî ÷àñòèííi âèïàäêè, êîëè äàíà çàäà÷à ðîçâ'ÿçó¹òüñÿ
ó çàìêíåíié ôîðìi.

1. Introduction. Monogenic functions in a biharmonic plane.
We say that an associative commutative two-dimensional algebra B with
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the unit 1 over the �eld of complex numbers C is biharmonic if in B there
exists a biharmonic basis, i.e., a basis {e1, e2} satisfying the conditions

(e21 + e22)2 = 0, e21 + e22 6= 0, (1)

In [1], I. P. Mel'nichenko proved that there exists the unique biharmonic
algebra B and all biharmonic bases form an in�nite collection belonging to
the algebra B, moreover, B is generated by a non-biharmonic bases {e1, ρ},
where ρ2 = 0.

Here and elsewhere we mean by the biharmonic bases {e1, e2} the
following:

e1 = 1, e2 = i− i

2
ρ, (2)

where i is an imaginary complex unit. Therefore, we have equalities
e22 = 1 + 2ie2 and

ρ = 2 + 2ie2. (3)

Consider a biharmonic plane µ := {ζ = x e1 + y e2 : x, y ∈ R} which is
a linear span of the elements e1, e2 of biharmonic basis over the �eld of
real numbers R.

Let D be a domain in the Cartesian plane xOy and Dζ := {ζ = x+ye2 :
(x, y) ∈ D} be a domain in µ, and Dz := {z = x + iy : (x, y) ∈ D} be a
domain in the complex plane C. In what follows, ζ = x + ye2, z = x + iy
and x, y ∈ R.

Inasmuch as divisors of zero do not belong to the biharmonic plane, one
can de�ne the derivative Φ′(ζ) of the function Φ: Dζ −→ B in the same
way as in the complex plane:

Φ′(ζ) := lim
h→0, h∈µ

(
Φ(ζ + h)− Φ(ζ)

)
h−1. (4)

We say that a function Φ: Dζ −→ B ismonogenic in a domainDζ if and
only if its derivative Φ′(ζ) exists in every point ζ ∈ Dζ . Note, that the limit

(4) can be considered according to the euclidian norm a :=
√
|z1|2 + |z2|2,

where a = z1 + z2e2 ∈ B, z1 and z2 in C.
In [2], it is established that a function Φ: Dζ −→ B is monogenic in

a domain Dζ if and only if the following Cauchy�Riemann condition is
satis�ed:

∂Φ(ζ)

∂y
=
∂Φ(ζ)

∂x
e2 ∀ζ = x+ e2y ∈ Dζ . (5)
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Note, that in [2] the condition (5) is written in an equivalent form by each
component.

In [3], [4], there were established basic analytic properties of monogenic
functions similar to properties of holomorphic functions of the complex
variable: the Cauchy integral theorem and integral formula, the Morera
theorem, the uniqueness theorem, the Taylor and Laurent expansions, a
property of monogenic functions to be in�nitely times monogenic.

Any function of a type Φ : Dζ −→ B is expressed in the form

Φ(ζ) = U1(x, y)+U2(x, y) i+U3(x, y) e2 +U4(x, y) ie2, ζ = x+ye2, (6)

where Uk : D −→ R, k = 1, 4.
Every component Uk, 1 ≤ k ≤ 4, of monogenic function (6) satis�es in

the domain D the biharmonic equation

(∆k)
m
u(x, y) ≡

(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

)
u(x, y) = 0, m = k = 2, (7)

due to the relations (1), an existence of derivatives Φ(k) of the order k,

1 ≤ k ≤ 4, and the equality (∆2)
2

Φ(ζ) = (e21 + e22)2Φ(4)(ζ).
In [5], there were introduced hyperanalytic functions taking values in

real Cli�ord algebras of an arbitrary dimension, so-called, holomorphic
Cli�ordian functions. Any real component of holomorphic Cli�ordian
function (similar to Uk in (6)) satis�es the polyharmonic equation of the
type (7) with some m ≥ 2 and k = 2m.

In [6], V.V.Karachic and N.A. Antropova used Almansi representation
formula for solving the inhomogeneous Dirichlet problem for the
homogeneous biharmonic equation with polynomial boundary data.

2. Statement of (1-3)-Problem for monogenic functions.
Consider the following boundary value problem: to �nd a monogenic

function Φ: Dζ −→ B which is continuous in the closure Dζ of the domain
Dζ by given boundary values u1, u3, respectively, of the �rst and the third
components of the expansion (6):

U1(x, y) = u1(ζ), U3(x, y) = u3(ζ) ∀ ζ = x+ e2y ∈ ∂Dζ . (8)

Problems of this type was �rst considered by V.F. Kovalev [7] and
was called as the biharmonic Schwarz problem because it is analogous in
a certain sense to the classical Schwarz problem on �nding an analytic
function of complex variable when values of its real part are given on
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the boundary of domain. Note that V.F. Kovalev stated only a sketch
of solving of the biharmonic Schwarz problems in an integral form for
semi-plane and discussed a possibility of the reduction this problem for an
arbitrary domain to an integro-di�erential equation without investigation
conditions of solvability of these problems.

Certain relation between the (1-3)-problem and Theory of 2D-
elasticity is discussed in [8] for a case of a disk. Dwell on a case
of an arbitrary simply connected domain D ∈ R2 corresponding to
the domain Dζ in the biharmonic plane µ. The main biharmonic
problem (see, for example, [9, p. 202]) is to �nd a biharmonic function
V : D −→ R by given limiting values of its partial derivatives

lim
(x,y)→(x0,y0), (x,y)∈D

∂V (x, y)

∂x
= u1(x0, y0),

lim
(x,y)→(x0,y0), (x,y)∈D

∂V (x, y)

∂y
= u3(x0, y0) ∀ (x0, y0) ∈ ∂D.

(9)

In [7], there was considered a reduction scheme of the main biharmonic
problem to the (1-3)-problem. Consider a modi�cation of this scheme.

Let Φ1 is monogenic in Dζ function

Φ1(ζ) := V (x, y) e1 + V2(x, y) ie1 + V3(x, y) e2 + V4(x, y) ie2,

which has as the �rst component the required biharmonic function V (x, y).
It follows from the Cauchy�Riemann condition (5) with Φ = Φ1 that
∂V3(x, y)/∂x = ∂V (x, y)/∂y. Therefore,

Φ′1(ζ) =
∂V (x, y)

∂x
e1 +

∂V2(x, y)

∂x
ie1 +

∂V (x, y)

∂y
e2 +

∂V4(x, y)

∂x
ie2 ,

and the main biharmonic problem with the boundary conditions (9) can
be reduced to the (1-3)-problem on �nding a monogenic in Dζ function
Φ(ζ) := Φ′1(ζ), then, solving the latter problem, we recover functions

M(x, y) := ∂V (x,y)
∂x and N(x, y) := ∂V (x,y)

∂y de�ned in D. In a conclusion,
obtain a solution of the main biharmonic problem in the form of the
following curvilinear integral

V (x, y) =

∫ (x,y)

(x0,y0)

M(x, y) dx+N(x, y) dy,



Power series and conformal mappings 97

where (x0, y0) is a �xed point in D, integration means along any piecewise
smooth curve, which joints this point with a point with variable coordinates
(x, y).

In [8], investigated the (1-3)-problem for a case, when Dζ is an upper
semi-plane of the biharmonic plane or a unit disk {ζ ∈ µ : ‖ζ‖ ≤ 1}.
Solutions of these problems are found in an explicit form by means of
some integrals similar to a classis Schwarz integral in the complex plane.

Below we consider the (1-3)-problem for a su�ciently large class of
domains Dζ using the technique of conformal mappings Dζ to the disk
D1 := {ζ ∈ µ : ‖ζ‖ < 1}, which is generated by a conformal mapping of
Dz to the unit disk in C. We notice some su�cient condition to the domain
Dζ and boundary data u1 and u3 for a reduction of the (1-3)-problem to
a suitable boundary value problem on �nding some B � valued function
de�ned in D1. For some particular cases of domains Dζ this reduction
recover a solution of the (1-3)-problem in an explicit form.

Proposed method of solving boundary value problems for monogenic
functions of the biharmonic variable analogous to the method of
N. I. Muskhelishvili of solving boundary value problems of 2D-Elasticity
based on using a technique of conformal mappings of complex plane and
power series expansions of analytic functions of complex variable (cf., e.g.,
[10, �63]).

3. Using technique of conformal mappings for (1-3)-problem
in a simply connected domain. There is an expression (cf., e.g., [3] �
[12]) of an arbitrary monogenic function Φ : Dζ −→ B via two analytic
functions F, F0 of complex variable z ∈ Dz:

Φ(ζ) = F (z)e1 −
(
iy

2
F ′(z)− F0(z)

)
ρ ∀ζ ∈ Dζ . (10)

Consider a problem on solving of the (1-3)-problem in a domain Dζ ,
which is congruent to a simply connected domain Dz. Let N be a set of
natural numbers, N0 := N∪{0}, Z be a set of integer numbers. Taking into
account any conformal mapping of the type ω : D1 −→ Dz, we generale
a domain Dζ . Denote Γ1 := {z ∈ C : |z| = 1}. For any complex-valued

function of the type G(z), z = ω(τ), τ ∈ D1, we will denote by G̃(τ) an
expression G(ω(τ)). For any τ in the disk D1 denote by (η, ϕ) its polar
coordinates, i.å., τ = η exp{iϕ}, by (1, θ) we will denote polar coordinates
of points σ = exp{iθ} ∈ Γ1. Obviously, that if a function G is analytic in

Dz, then G̃ is analytic in D1.
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For any z ∈ C by Rez and Imz we mean, accordingly, real and imaginary
parts of z: z = Rez + i Imz. Denote Φ∗(τ) := Φ (Reω(τ) + Imω(τ) e2),
τ ∈ D1. Then the equality (10) transforms to the form

Φ∗(τ) = F̃ (τ)−
(
i

2
Y (τ) F̃ ′(τ)− F̃0(τ)

)
ρ ∀τ ∈ D1, (11)

where

Y (τ) :=
Imω(τ)

ω′(τ)
. (12)

Therefore, receive that the (1-3)-problem for monogenic function Φ
reduced to an auxiliary (1-3)-problem on �nding the �rst, V1, and the

third component, V3, for a function (11) ( F̃ , F̃0 are unknown analytic in
D1 functions of complex variable τ):

Φ∗(τ) = V1(τ) + V2(τ)i+ V3(τ)e2 + V4(τ)ie2, (13)

where τ = τ1 + iτ2, τk ∈ R, k = 1, 2, Vk : D1 −→ R, k = 1, 4,
furthermore, we assume, that Φ∗ is continuous in D1 and the following
boundary conditions ful�lled

Vk(σ) = ũk(σ), k = 1, 3, ∀σ ∈ Γ1, (14)

where ũk : Γ1 −→ R are given continuous functions. Boundary functions
ũk, k = 1, 2, are connected with boundary data u1 and u3 (see (8)) of the
(1-3)-problem for a function (6), which is monogenic in Dζ , by means of
the following relations:

ũk(σ) = uk(ζ), ω(σ) = z, k = 1, 3, (15)

where σ ∈ Γ1, z = ω(σ) := x+ iy ∈ C, ζ := x+ e2y ∈ ∂Dζ .
Using polar coordinates, deliver equivalent denotations for boundary

functions ũ1 and ũ3:

ũk(θ) ≡ ũk(cos θ + sin θ e2), k = 1, 3, 0 ≤ θ ≤ 2π. (16)

Let l1 is a totaly of consequences of the type (α0, α1, . . . , αk, . . . ), where
αk ∈ R, k = 1, 2, . . . , and

∑∞
k=1 |αk| <∞. Denote by {α}m, m ∈ N0, any

consequence of the type (αm, αm+1, . . . ) ∈ l1, and conversely.
We say, that the ordered quadruple of consequences(
{α(0)}0, {β(0)}0, {α}0, {β}1

)
belongs to the class E if and only if
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there exists a constant M > 0, natural number p and a sequence {υ}p, for
which the following inequality ful�lled

|αk|+ |βk| ≤M
|υk|
k

∀k ≥ p. (17)

This de�nition can be naturally generalized to an ordered quadruple of
consequences of the type

(
{α(0)}N1 , {β(0)}N2 , {α}N3 , {β}N4

)
, Nm ∈ N0,

m = 1, 4.
Theorem 2. Let the following conditions ful�lled :

1∗ conformal mapping ω : D1 −→ Dz is such, that the series

Imω(σ)

ω′(σ)
=

∞∑
n=−∞

δnσ
n ∀σ ∈ Γ1, (18)

is absolutely convergent on Γ1,

2∗ boundary functions ũ1, ũ3 of the auxiliary (1-3)-problem expressed
by absolutely and uniformly convergent on the segment [0, 2π] the
Fourier series:

ũ1(θ) =
a0
2

+

∞∑
k=1

(ak cos kθ + bk sin kθ) , (19)

ũ3(θ) =
a′0
2

+

∞∑
k=1

(a′k cos kθ + b′k sin kθ) . (20)

3∗ The system of equations

α0 + 2α
(0)
0 +

∞∑
k=0

(k + 1)
(
αk+1δ

′′
−k + βk+1δ

′
−k

)
=
a0
2
, (21)

αn+2α(0)
n +

∞∑
k=0

(k+1)
(
αk+1Λ+

2,n,k+βk+1Λ+
1,n,k

)
= an ∀n ∈ N, (22)

−βn−2β(0)
n +

∞∑
k=0

(k+1)
(
αk+1Λ−1,n,k−βk+1Λ−2,n,k

)
= bn ∀n ∈ N, (23)

−2β
(0)
0 +

∞∑
k=0

(k + 1)
(
αk+1δ

′
−k − βk+1δ

′′
−k

)
=
a′0
2
, (24)
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−2β(0)
n +

∞∑
k=0

(k+ 1)
(
αk+1Λ+

1,n,k−βk+1Λ+
2,n,k

)
= a′n ∀n ∈ N, (25)

−2α(0)
n −

∞∑
k=0

(k+ 1)
(
αk+1Λ−2,n,k + βk+1Λ−1,n,k

)
= b′n ∀n ∈ N, (26)

where δ′n, δ
′′
n are, respectively, a real and an imaginary parts of

coe�cients δn in expression (18): δn =: δ′n + iδ′′n for all n ∈ Z;
Λ±1,n,k := δ′n−k±δ′−n−k, Λ±2,n,k := δ′′n−k±δ′′−n−k for n ∈ N and k ∈ N0,
is solvable and its general solution belongs to the class E, if, besides,
the system of equations (21) � (26) with ak = a′k = bk+1 = b′k+1 = 0,
k = 0, 1, . . . , is solvable and its general solution belongs to the class
E.

Then a general solution of of the auxiliary (1-3)-problem is expressed
by the following formula

Φ∗(τ) = F̃ (τ)−
(
i

2

Imω(τ)

ω′(τ)
F̃ ′(τ)− F̃0(τ)

)
ρ ∀τ ∈ D1, (27)

where

F̃ (τ) =

∞∑
n=0

cnτ
n, F̃0(τ) =

∞∑
n=0

c(0)n τn ∀τ ∈ D1, (28)

and an ordered quadruple of consequences
(
{α(0)}0, {β(0)}0, {α}0, {β}1

)
,

formed by real components αn, α
(0)
n , β

(0)
n , βn+1, n = 0, 1, . . . , of complex

coe�cients cn = αn + iβn, c
(0)
n = α

(0)
n + iβ

(0)
n in the expression (28), is a

general solution of the system (21) � (26).

Proof. Expansions (28) of the Taylor series hold for functions F̃ and F̃0

in the disk D1 with unknown coe�cients cn = αn+ iβn, c
(0)
n = α

(0)
n + iβ

(0)
n ,

where αn = Re cn, βn = Im cn, α
(0)
n = Re c

(0)
n , β

(0)
n = Im c

(0)
n , n = 0, 1, . . . .

It follows from (28) that

F̃ ′(τ) =

∞∑
n=0

(n+ 1)cn+1 τ
n ∀τ ∈ D1. (29)

Assume, that the series (28) and (29) are absolutely and uniformly
convergent on D1, and further, verify the validity of our assumption.
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Using the following equalities for products of absolutely convergent on
Γ1 series

∑∞
k=0 akσ

k,
∑∞
k=0 bkσ

k,
∑∞
k=1 h−kσ

−k:

∞∑
k=0

akσ
k
∞∑
k=0

bkσ
k =

∞∑
n=0

( n∑
k=0

akbn−k

)
σn,

∞∑
k=1

akσ
k
∞∑
k=1

h−kσ
−k =

∞∑
n=1

( ∞∑
k=1

akh−k−n

)
σ−n+

∞∑
n=0

( ∞∑
k=n

ak+1hn−k−1

)
σn,

multiply series (29) and (18), obtain the equality

F̃ ′(σ)
Imω(σ)

ω′(σ)
=

∞∑
n=−∞

c∗nσ
n ∀σ ∈ Γ1, (30)

where for any integer n:

c∗n :=

∞∑
k=0

(k + 1)ck+1δn−k =: c∗n,1 + ic∗n,2,

c∗n,1 :=

∞∑
k=0

(k + 1)
(
αk+1δ

′
n−k − βk+1δ

′′
n−k

)
, (31)

c∗n,2 :=

∞∑
k=0

(k + 1)
(
αk+1δ

′′
n−k + βk+1δ

′
n−k

)
. (32)

Using the Moivre formula rewrite the equality (30) in the form

F̃ ′(σ)
Imω(σ)

ω′(σ)
= c∗0,1 +

∞∑
n=1

(
c∗−n,1 + c∗n,1

)
cosnθ+

+
∞∑
n=1

(
c∗−n,2 − c∗n,2

)
sinnθ+

+ic∗0,2 + i

∞∑
n=1

(
c∗−n,2 + c∗n,2

)
cosnθ+

+i

∞∑
n=1

(
c∗n,1 − c∗−n,1

)
sinnθ ∀σ = exp{iθ} ∈ Γ1. (33)
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Then using the equalities (3) deliver formulas for components V1 and
V3 from the expression (13) on Γ1:

V1(θ) := V1(σ) = α0+2α
(0)
0 +c∗0,2+

∞∑
n=1

(
αn + 2α(0)

n + c∗−n,2 + c∗n,2

)
cosnθ+

+

∞∑
n=1

(
−βn − 2β(0)

n + c∗n,1 − c∗−n,1
)

sinnθ, (34)

V3(θ) := V3(σ) = c∗0,1 − 2β
(0)
0 +

∞∑
n=1

(
−2β(0)

n + c∗−n,1 + c∗n,1

)
cosnθ+

+

∞∑
n=1

(
−2α(0)

n + c∗−n,2 − c∗n,2
)

sinnθ. (35)

Equating coe�cients near cosnθ and sinnθ, respectively, in the
qualities (34) and (19), (35) and (20), receive, using the denotations (31)
and (32), a system of equations (21) � (26) according to coe�cients of
required series (28).

Summarize obtained results, we have that restricting a solvability of
the system (21) � (26) in the class E , that means, �rstly, a condition to
the geometry of the domain Dζ and, secondly, a condition to the choice
of the boundary functions u1 and u3, obtain, that the series (28) and (29)
are absolutely and uniformly convergent on D1 and a function (27) is a
general solution of the auxiliary (1-3)-problem. The theorem is proved.

Remark. A choice of the class E can be done by any another way,
choosing conditions for functions of the class for which series (28) and (29)
are absolutely convergent on Γ1.

Theorem 3. Let conditions of Theorem 1 are satis�ed, then the formula

Φ(ζ) ≡ Φ∗(τ) ∀ζ = x+ye2 ∈ Dζ , τ ∈ D1 : ω(τ) = z := x+ie2 ∈ C (36)

generates a general solution of the (1-3)-problem.
Examples.
1. Let a domain Dζ be a unit disk D1. Then a mapping ω is the identity

mapping, i.e., ω(z) = z for all z ∈ Dz, Imω(σ) = sin θ. The auxiliary
(1-3)-problem coincides with the the (1-3)-problem for D1. Furthermore,
δ′′−1 = 1

2 , δ
′′
1 = − 1

2 , δ
′′
n = 0 for another integer n, and δ′k = 0 for all

integer k. It is easy to check, that for this particular case the system
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of equations (21) � (26) transforms to the system (22) � (31) from the
paper [13] for r = 1, a condition of solvability of which can be written
in the form b1 = a′1. The proposed method gives a required solution of
the (1-3)-problem, for example, if boundary functions u1 and u3 satisfy
conditions of Theorem 1 in the paper [13]. Note, that for our case in (17):
υk = k−(1+α), k = 1, 2, . . . , α > 0, and a general solution of the (1-3)-
problem with zero data u1 = u3 ≡ 0 is a function Φ(ζ) = i (b− ae2 + cζ),
where a, b and c are arbitrary real numbers.

2. Let a boundary of the domainDζ be the Pascal's limaconDζ := {x+
e2y}, where x = R

(
cos θ + 1

4 cos 2θ
)
, y = R

(
sin θ + 1

4 sin 2θ
)
, 0 ≤ θ < 2π,

and any �xed constant R > 0. Then a function ω has a form

ω(ζ) = R

(
ζ +

1

4
ζ2
)
∀ζ ∈ Dζ . (37)

Consider the (1-3)-problem with boundary conditions, for which

ak = a′k = 0, k = 0, 1, 2, bk = b′k = 0, k = 1, 2, (38)

and the following inclusions holds(
{a′}0, {b}1, {a}0, {b′}1

)
∈ E,

(
{a}0, {b′}1, {a′}0, {b}1,

)
∈ E. (39)

In this case an expression (18) has a form

Imω(σ)

ω′(σ)
= i

1

8
σ−2 + i

7

16
σ−1 − i 7

32
− i25

64
σ + i

9

32

∞∑
n=2

(
−1

2

)n
σn ∀σ ∈ Γ1.

Then
δ′k = 0 ∀k ∈ Z, δ′′−n = 0 ∀n ∈ {3, 4, . . . }, (40)

δ′′−2 =
1

8
, δ′′−1 =

7

16
, δ′′0 = − 7

32
, δ′′1 = −25

64
, (41)

δ′′n =
9

32

(
−1

2

)n
∀n ∈ {2, 3, . . . }. (42)

Denote for any symbol variable υ the expression

ψn(υ) :=
9

32

n−2∑
k=0

(k + 1)

(
−1

2

)n−k
υk+1 −

25

64
nυn−
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− 7

32
(n+ 1)υn+1 +

7

16
(n+ 2)υn+2 +

1

8
(n+ 3)υn+3 ∀n ≥ 3. (43)

Taking into account relations Λ+
1,n,k = Λ−1,n,k = 0 for n ∈ N and k ∈ N0,

Λ+
2,n,k = Λ−2,n,k = δ′′n−k for n ≥ 3 and k ∈ N0, formulas (38) � (43), obtain,

that the system of equations (21) � (26) transforms to a form

α0 + 2α
(0)
0 −

7

32
α1 +

7

8
α2 +

3

8
α3 = 0, (44)

67

64
α1 + 2α

(0)
1 −

3

16
α2 +

21

16
α3 +

1

2
α4 = 0, (45)

α2 + 2α
(0)
2 +

25

128
α1 −

25

32
α2 −

21

32
α3 +

7

4
α4 +

5

8
α5 = 0, (46)

αn + 2α(0)
n + ψn(α) = an ∀n ∈ {3, 4, . . . }, (47)

11

64
β1 + 2β

(0)
1 − 11

16
β2 +

21

16
β3 +

1

2
β4 = 0, (48)

− 7

128
β1 + 2β

(0)
2 +

7

32
β2 −

21

32
β3 +

7

4
β4 +

5

8
β5 = 0, (49)

βn + 2β(0)
n + ψn(β) = −bn ∀n ∈ {3, 4, . . . }, (50)

2β
(0)
0 − 7

32
β1 +

7

8
β2 +

3

8
β3 = 0, (51)

2β
(0)
1 +

3

64
β1 −

3

16
β2 +

21

16
β3 +

1

2
β4 = 0, (52)

2β
(0)
2 +

25

128
β1 −

25

32
β2 −

21

32
β3 +

7

4
β4 +

5

8
β5 = 0, (53)

2β(0)
n + ψn(β) = −a′n ∀n ∈ {3, 4, . . . }, (54)

2α
(0)
1 −

53

64
α1 −

11

16
α2 +

21

16
α3 +

1

2
α4 = 0, (55)

2α
(0)
2 −

7

128
α1 −

25

32
α2 −

21

32
α3 +

7

4
α4 +

5

8
α5 = 0, (56)

2α(0)
n + ψn(α) = −b′n ∀n ∈ {3, 4, . . . }. (57)

Solving obtained system (44) � (57) conclude, that a solution of the
required (1-3)-problem has the form:

Φ(Reτ + e2Imτ) = F̃ (τ)−
(
i

2
Y (τ) F̃ ′(τ)− F̃0(τ)

)
ρ ∀τ ∈ D1, (58)
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where coe�cients of expansions (28) are expressed by the formulas

c0 = −2A+ iC ∀A andC ∈ R,

c1 = 4iB, c2 = iB ∀B ∈ R,

cn = an + b′n + i (a′n − bn) , n = 3, 4, . . . ,

c
(0)
0 = − 3

16
(a3 + b′3) +A+ i

3

16
(b3 − a′3) ∀A ∈ R,

c
(0)
1 = −21

32
(a3 + b′3)− 1

4
(a4 + b′4) + i

(
21

32
(b3 − a′3) +

1

8
(b4 − a′4)

)
,

c
(0)
2 =

21

64
(a3 + b′3)− 7

8
(a4 + b′4)− 5

16
(a5 + b′5) +

+i

(
21

64
(a′3 − b3) +

7

8
(b4 − a′4) +

5

16
(b5 − a′5)

)
,

c
(0)
3 =

75

128
a3 +

11

128
b′3 +

7

16
(a4 + b′4)− 35

32
(a5 + b′5)− 3

8
(a6 + b′6) +

+i

(
11

128
a′3 −

75

128
b3 +

7

16
(a′4 − b4)− 35

32
(a′5 − b5)− 3

8
(a′6 − b6)

)
,

c
(0)
4 = − 27

256
(a3 + b′3) +

25a4 + 9b′4
32

+
35

64
(a5 + b′5)−

−21 (a6 + b′6) 7 (a7 + b′7)

16
+ i

(
27

256
(b3 − a′3) +

11a′4 − 25b4
32

+

+
35

64
(a′5 − b5)− 21

16
(a′6 − b6)− 7

16
(a′7 − b7)

)
,

c(0)n =
9

32

n−2∑
k=2

(k + 1)

(
−1

2

)n−k+1 (
ak+1 + b′k+1

)
+

25

128
nan+

+
25n− 64

128
b′n +

7

64
(n+ 1)

(
an+1 + b′n+1

)
−

− 7

32
(n+ 2)

(
an+2 + b′n+2

)
− 1

16
(n+ 3)

(
an+3 + b′n+3

)
+

+i

(
9

32

n−2∑
k=2

(k + 1)

(
−1

2

)n−k+1 (
a′k+1 − bk+1

)
+
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+
25n− 64

128
a′n −

25

128
nbn +

7

64
(n+ 1)

(
a′n+1 − bn+1

)
−

− 7

32
(n+ 2)

(
a′n+2 − bn+2

)
− 1

16
(n+ 3)

(
a′n+3 − bn+3

))
∀n ≥ 5.
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