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Generalized kinetic equations for dense
gases and liquids far from equilibrium
in Renyi statistics

1

Dedicated to the 80 ™ anniversary of Prof. D.Ya. Petrina

Based on the Zubarev nonequilibrium statistical operator method and
the maximum entropy principle for the Renyi entropy the nonequi-
librium statistical operator and the generalized kinetic equations for the
nonequilibrium one- and two-particle distribution functions are obtained
for description of kinetic processes in gases and liquids far from equilibrium.

Jis onmcy KiHeTWYHHUX IIPOLECIB y radax Ta PiAMHAX JAJIEKHUX Bl PIBHOBa-
I'Y Ha OCHOBI MeTOy HEPiBHOBAYKHOT'O CTATHUCTUIHOIO OII€PATOpa 3ybapeBa
Ta MPUHITUITY MAaKCUMyMy eHTporii Peni orpuMano HepiBHOBaKHUM CTATH-
CTHUYHUI OTIEPATOp Ta y3arajbHEHI KiIHETWYHI DIBHAHHSA NI HEPIBHOBAaXK-
HUX OJHOYACTUHKOBOI Ta JBOYACTHHKOBOI (DYHKIIH PO3IOIiTy YaCTHHOK.

Introduction

The ideas of D.Ya. Petrina for investigation of urgent problems in
statistical theory of many-particle system based on the strict mathematical
approach to the Bogoliubov equations [1, 2, 3, 4] remain important
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Generalized kinetic equations in Renyi statistics 109

nowadays. The study of nonequilibrium processes in gases and liquids
far from equilibrium or in finite quantum systems (nanosystems) are
among them. These investigations are actively developed by the followers
of D.Ya. Petrina [5, 6, 7, 8].

Different models and approaches are applied for the study of nonlinear
kinetic fluctuations in dense gases, liquids and plasma far from equilibrium
with the typical long-range interactions which remains urgent in statistical
theory of nonequilibrium processes [9, 10, 11, 12, 13, 14].

In the present paper, for description of nonequilibrium processes in
dense gases and liquids we propose to use the Renyi entropy which depends
on parameter ¢ (0 < ¢ < 1) and coincide with the Shannon-Gibbs entropy
at ¢ = 1. In reference [14] based on the Zubarev nonequilibrium statistical
operator (NSO) method [15, 16] and the maximum entropy principle for the
Renyi entropy there were obtained the NSO and the generalized transport
equations for the parameters of the reduced-description of nonequilibrium
processes in extensive statistical mechanics. Here, we apply this approach
to description of kinetic processes in dense gases and liquids far from
equilibrium, when the nonequilibrium one- and two-particle distribution
functions are chosen for the reduced-description parameters.

2 Zubarev nonequilibrium statistical
operator in Renyi statistics

Within the framework of the Zubarevn NSO method, when the
basic parameters of a reduced description (P,)! are selected accor-
ding to N.N. Bogoliubov, the nonequilibrium statistical operator
p(x1,...,xN;t)=p (CIJN; t) can be presented in general form as a solution

of Liouville equation with taking into account a projection [15, 16]:

p(a™t) = pra(a®;t) (1)

t
- / DTt )1 — Py ()il prei(zN s ) dt.
Here, T (t,t') = exp, {— f:, [1— P (t)) iLth’} is the evolution opera-

tor with regard to projection, exp, is the ordered exponential, iLy is the
Liouville operator for a system of interacting particles, which in classical
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case has the following form:

. al o 0
iLy _]71 m arj Z a* <ap a;z)'
We use the following notations: z; = {pj,;} are the phase variables of
the particle j, ® (r;;) is the interaction energy of two particles, pj is the
j-particle momentum and m its mass, r; = |7, — 7| the distance between
a pair of interacting particles. P.;(t) is the generalized Kawasaki-Gunton
projection operator whose structure depends on the form of the relevant
statistical operator:

67‘9 5r€
Prelp/:<p7“el(t)_z prei( >/dr +Z P d /dr Pnp

prel(zN;1') is the relevant statistical operator which is equal to p(z";t)
at the initial moment of time. We will determine p,(z™V;t') using the
Lagrange method from the condition of entropy functional maximum for
the Renyi entropy [14]

Sr(p) = 1 ! qln/dFNpq(t).

The corresponding functional at fixed parameters of the reduced descrip-
tion, taking into account the normalization condition, has the following

form:
iqln/dFNpq(t) - a/dFNp(t) - zn:Fn(t)/szanp(t)

where, F,,(t) are the Lagrange multipliers. Equalizing its functional
SLR(p) q
op

Lr(p) =

= 0 and determining parameter o = = -

don F,(t)(P,)! we obtain the relevant statistical operator in the form:

! > Fu(t)sP,

derivative to zero

1
q—1

: , @)

Prel (t) = ZR(t)

where

Z(t) = /dFN l1 - ‘%1 Y Fa(t)sh,
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is the partition function, 6P, = P, —(P,)*. The Lagrange multipliers F}, (t)
are defined from the self-consistency conditions:

<pn>t = <Pn>£el (3)

The variation derivative of the relevant statistical operator can be
presented in the form:

6prel(t) o 1 1 . 5Fn(t) ~
(B’ lqw W (Fm(t) 2 5<Pm>tépn>] ’

n

where 6[...] =[...] = (.. ])%,, and we use the notation
_q_ 1t :
v =1- ;Fn(t)éPn. (4)

We calculate the derivatives of the Lagrange multipliers with regard to
the reduced-description parameters in the following way:

SF,(t)  [6(Pn)'\
§(Py)t \ 0Fu(t)

This can be done in general case. Thus,

§<pm>t _ 5 Opre(t)
/ U P 6Fnl(t)

OF(t)
and after calculating 65[) ;Z’((tt)) in the right-hand side of relation we obtain

the set of equations for the desired derivatives

S(P)t a1 3(By)t T
5Fn(t) - <(5ng1/) (t)>T6l¥5Fn(t) - <(5ng¢ (t)(SPn)Tel

The solution in matrix form is
5(P)*
SF(t)

-1
- [I - <6P;w-1<t>>:ezF<t>} (BP0 (5P = S10),

where
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Thus, the functional derivative can be written in the form:

5Prel(t) - } - 1
m = Prel(t)5 |fj¢ ( me L(SP )

Then, the Kawasaki-Gunton projection operator has the following
structure:

Prel(t)pl = prel(t)/dFNP/
S WACH RIS WY

X (/drNﬁ%ph— (/dFNp>

It is further necessary to explore an action of the operators P,..;(t)iLy
on the relevant statistical operator. Since

iLNprel( ) = _p76l Z F p = )prel (t)a

then Prei(t)ilnprei(t) = Prei(t)A(t)pre(t) = [P(t)A(t)] prei(t), where
P(t) is the projection operator which now acts on dynamic variables:

Pt)... = (.,

+ Y6

m

(...0P,)!

) (qu) 3 fmw)aﬁn)

Since
A(::——w E:F

we can present [1 — Pre;(¢)]iLnprei(t) as follows:
(1 = Pra(t)]iLnpra(t) = [1— P(t)] iLNprel( ) (5)

= _ZI prel()

where

L(t) = [1 - P(t) gwum
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are the generalized flows. Taking into account (5), we can now write down
an explicit expression for the nonequilibrium statistical operator (1):

pNit) = prala™;t) (6)

Z/ W=D Y () Fo () prea(a™ ).

This allows us to obtain the generalized transport equations for the
reduced-description parameters. They can be presented in the form:

0, - R t - ,
S = Pafat Y [ R, ()

where
Pmn (t, t/) = /dFNPmT(tv tl)In(t/)pT'el(tl) (8)

are the generalized transport kernels (memory functions) — the time
correlation functions describing the dissipative processes in the system.
They are built on the generalized flows I,,(¢). Transport equations (7)
describe non-Markovian processes and when @, (t,t") = @mad(t — t')
describe Markovian processes. The set of transport equations is not
closed. The nonequilibrium Lagrange multipliers in it (the nonequilibrium
thermodynamic parameters in the case of hydrodynamic description) are
determined from the self-consistency conditions (3). From this point of
view, the set of transport equations is closed. Nonequilibrium statistical
operator (6) and transport equations (7) compose a complete instrument
for description of nonequilibrium processes when the reduced-description
parameters (P,)! are selected.

In the following section we apply the presented approach to description
of nonlinear kinetic fluctuations in gases and liquids far from equilibrium.

3 Generalized kinetic equations
in Renyi statistics
For description of kinetic processes in classical gases and liquids far

from equilibrium the nonequilibrium one- and two-particle distribution
functions can be selected as the basic parameters of the reduced description

Alat) = (@), folz,2it) = (a(z,2")), (9)
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are the microscopic phase densities of N particles in volume V. The
latter completely satisfy conservation laws of particles density, momentum
and energy since they define microscopic densities of particles number,
momentum and energy:

i) = [, 50 = [
i) = [l
gint( /@/@/M@ 7| ) (7,

() = / i D / A5 (7. 7O,

%1
ﬁl
%L

and

@) = [doh g

(£ (7)) / /dp/dT@\T—T ) fo (7, 057, 55 1).

Conservation laws for average particles number, momentum and total
energy have the following form:

7 (UM) =——V- (B, (10)

S EEN == (G @) + (™))

(
where (£(7))" = <A’“”(7“)>t + (e
of total energy density and V = (%.
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is the nonequilibrium average value of the kinetic part of stress tensor
density,

(Tt = ;/d*/dﬁ/dr"w@(h?ﬂ) (11)
X

is the nonequilibrium average value of the potential part of stress tensor

density,
2

gy = [ar - pnea

is the nonequilibrium average value of the kinetic part of energy flow
density,

is the nonequilibrium average value of the potential part of energy flow
density. It follows from the above relations that the nonequilibrium
one-particle distribution function defines the macroscopic nonequilibrium
densities of particles number, momentum as well as kinetic part of
total energy, stress tensor and energy flow. Whereas, the two-particle
nonequilibrium distribution function defines potential part of total energy,
stress tensor and energy flow. Thus, in systems far from equilibrium
the nonlinear hydrodynamic fluctuations are caused by the nonlinear
fluctuations of nonequilibrium one- and two-particle distribution functions
for which the kinetic equations should be built. Therefore, in the case when
the nonequilibrium one- and two-particle distribution functions fi(z;t) =
(1 (2))t and fo(z,2';t) = (Ra(x,2))t are selected as the parameters of the
reduced description, according to (2) the relevant distribution function has
the following form:

Prei(t) = ZRl(t){l — ql[/daza(x;t)éﬁl(x;t) (12)

q
1

+ / dw/ d“"b@w’;t)am(%f”'?t)}}q ’
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where

Zr(t) /dI‘N{l - q_l[/dxa(m;t)éﬁl(z;t)

q
+ /dm/dx’b(x,x’;t)éﬁg(x,x’;t)] }q

is the partition function of the relevant distribution function. The para-
meters a(z;t) and b(z, 2’; t) are determined from the self-consistency condi-
tions:

(i1 (2))' = (M (@))rers  (P2(z,2)))" = (A2(,27)) - (13)

The relevant distribution function (12) can be presented in a slightly
different way

p,.emt):l{l - q‘ql[ [ doat i) (14)

ZR(t) 1
+ / da / 'V (2, 2'; t)ia(a, x’)} }“

writing down the Lagrange parameters in the form:

a'(x;t) = a(x;t){l + %

y [/dma(m;t)fl(x;t)+/dx/dac’b(x,x’;t)fg(x,x’;t)]}_17

V(z,2';t) = b(l‘,x’;t){1 N %
X {/dma(x;t)fl(x;t) +/d:c/dx/b(x,x';t)fQ(x’x/;t)]}1.

It is important to note that in the case of ¢ = 1, d/(z;t) = a(x;t),
b(x,2';t) = b(x,2';t) and we obtain the relevant distribution function
corresponding to Gibbs statistics.
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Now we can present the nonequilibrium statistical operator as follows

t
prei(t) + / da’ / DTt ) a(a! s t) I (25 ) pres (t)dt’ (15)

t
+ /dx’/dx"/ DT b, 2 ) I (!, 2”5t ) pre(t)dE .

p(t)

Here,
I0(t) = [1 - P(1)] %w”@)mm(m),
I®(a,2/:1) = [1 — P(#)] éw_l(t)iLNﬁg(x,x’)

are the generalized flows in which the function ¢ (t) equals to

P(t)=1- % {/daz a(z;t)ong (z;t) + /da: /dx'b(x,x';t)dﬁg(x,x’;t)

Using the NSO (15) we obtain a set of the generalized kinetic
equations for the reduced-description parameters (9) fi(z;t) = (fq(z))!
and fg(l’ 2';t) = (fe(z,2’))" according to (7):

/dx O (z, 2 t)a(a';t) (16)
/dx /dm”@:fn xya’ a s )b(x 2 t)
/dx / W=D (0 ot a2 ) dt!
/dx /dm”/ W=D 12 (g 2t 4 )b(a!, 2 ) dt
9 2L ( "
angxx /da:‘I) (x,2"52";t)a(x";t) (17)

/d.r// / dl:///‘I)22 x 1: x .TN/ t)b(z//7 J:/N; t)
/dm”/ =021 (g o2t a2 ) dt!
/dx”/dx”’/ V022 (ol 2"t )b(a 2 ) dt
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Here,

1 .
q);f(xaxl;t) = /dFNPa($)§¢7IZLNP5($/)PWZ($N§t)a (18)

cp?flp (x;2"5t,t') = /dPNiLNpa(x)T(t, VI (s ) pra(zNst'),  (19)

are the kinetic transport kernels, where we use the notation p,(x) =
{n1(z), N2 (x,2’')}. Neglecting the two-particle correlation at ¢ = 1 the
generalized kinetic equation in Renyi statistics transforms into the kinetic

equation within Gibbs statistics [16] with the transport kernel calculated
using the relevant distribution function p,..;(t) = H;\Ll h (Ie“ ) In this case,
at ¢ = 1, within the NSO method [15, 16] the Liouville equation should be

solved with the boundary condition

N
. x ’
&p(mN;t)—&—zLNp(xN;t) =—¢ | p(x H e

that corresponds to the Bogolyubov hypothesis of weakening of correla-
tions between particles.

For a more detailed calculation of structure of correlation functions
(18) and transport kernels (19) let us consider an action of the Liouville
operator on 71 () and 7 (x, 2’):

L B o 1> 0 =
ZLan(LU) = _371?. E](Tym F F(ramu (20)
where
) N
J(7p) =Y 58 (7 = 75)8(5 — 5j) (21)
j=1

is the microscopic momentum density in the space of coordinates and
impulses,

F(7.5) = Z A3 = 75)3(7 — ) (22)

I#j

is the microscopic force density in the space of coordinates and impulses.

o o 1= o 13
iLyny(z,2') = o EJ(T p)na(x )—n1($)a7'a.7(7ﬂ,ﬁ) (23)
0 5, ) J =
+8_, F(7,p)ha(z )—&—nl(a:)@-F(F”,ﬁ').
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Taking into account calculations (20)-(23) we obtain, particularly:
Ol (x, 25 t) = [an(x, x'st) - % — Qup(z,2'5t) - % (24)
Pih@alst, ) == | L Dy it,t) - (25)
f§,~DFj(x,z’;t,t') . % - %~Djp(x,9: it ) %
—s—agﬁ Dpp(z,2';t,t') - % ,
02 (z, 2 2" 2"t t) = (26)
;~[Djnjn(z, o2’ x it tl)'ai‘" + Djpn(z, 2", 2" 2" ¢, t/)~a7z”}
—;-[Dnjjn(x 2,2t t’)-% + Dyjnj(x, 2, 2" 2"t t’)-ag”]
+§p- Dppjn(z, 2’2", 2"t t’)-aiw + Dpppj(x, o’ 2" 2"t t/).é)?’”:
—5—6(;~:an]”($ o2 2t — 57 + Dypnj(z, 2’ 2", 2"t t’)-agﬂ:
+§F~:Dmpn(x a2t 82’” + Djnpp(z, o', 2", 2"t tl)'ag,,,:
+£-:DnJF7L($ P A AT 82”’ + Dpjnp(x, o', 2" 2"t t/)'ag//:
_aaﬁ.-DFnFn(x,x',x”,x”;t,t’)-aﬁ, + Dppnrp(z, 2’2" 25t t')~a§m:
_8(;~:DnFFn(x7x/,x”7x”;t,t/)~aﬁ/ + Dppnrp(z, 2’ 2" 25t t/)-agm ,
where

Dyt t) = / AT x ()T (8, 1) (1 — P(t'))>
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Drr(z, o't t') = / dT N F(2)T(t,#)(1 — P(t'))%w_l(t)ﬁ(x’)prel(:c]v;t’),

are the generalized diffusion and friction coefficients in the spatially-
impulse space within Renyi statistics. Herewith,

/dﬁ/dﬁDjj(Q?,,’B/;t7t/) = Djj(F,F"';t,t/),

/dﬁ/dﬁDFF(I,I/;t,t/) = DFF(T?,’F/;t,t/)

which at ¢ = 1 become the generalized diffusion and friction coefficients
in Gibbs statistics. The obtained kinetic equations contain correlation
functions of the second, the third and the fourth order €,;, Qur,

Qnjs Qunry Qonjny Qnnrrn in dynamic variables 7(z), j(:c), f(x) Q are
the correlation functions describing nondissipative processes. D are the
generalized memory functions — the time correlation functions built on the
dynamic variables 2(z), j(z), F(z), [1 — P(t)]j(z), [1 — P(t)]F(z) — and
describe non-Markovian dissipative processes in the system. At ¢ = 1 they
transform to the memory function of Gibbs statistics. Memory functions
like Dy, ;n; and D, rpnr have an interesting structure

Dnjnj (%,{E/, $H,$/”; t,t/) _
N 1 2
- / A0 (@) VT ()L = P (O} e (a5,
DnFnF(xv ZL'/, (E”, x//l; ta tl) =

- / dT () F (@'Y T (¢, ¢)[1 - P(t')]éw*<t>ﬁ<x">ﬁ<x"'>pm<ﬂ;t'>,

they can be approximated in the following way:
Dnjnj ~ D'rijj + Dnijny DnFnF ~ DnnDFF + DnFDFn-

This corresponds to the ideology of the mode-coupling theory.
Generalized kinetic equations (16), (17) with regard to (24)-(26) by
their structure are the equations of Fokker-Planck type. They can serve as
a basis for transition to the generalized hydrodynamic equations which are
based on the set of equations of conservation laws for particles number,
momentum and energy densities (10). Indeed, multiplying the set of
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transport equations (16), (17) by the first moments of the nonequilibrium
one-particle distribution function fy(7,7;t): (1,7, p?/2m) and by (|7 —
7'|), we obtain the generalized equations of hydrodynamics with the defined
generalized viscosity and heat conductivity coefficients having separated
kinetic and potential contributions.

4 Summary

By means of the Zubarev NSO method and the maximum entropy principle
for the Renyi entropy we obtained the nonequilibrium statistical operator
and the generalized kinetic equations for the nonequilibrium one- and
two-particle distribution functions fi(z;t) = (fy(x))t and fo(x,2';t) =
(fg(z, 2"))t for description of kinetic processes in gases and liquids far from
equilibrium. We investigated an inner structure of generalized memory
functions which permitted to show that the kinetic equations contain
correlation functions of the second and higher order (Q,;, Qnr, Qnnj,

Qnr, Qnngn, Qunrrn) in dynamic variables 7(z), f(x), ﬁ(x) By contrast
to Q describing non-dissipative processes, the dissipative processes in the
system are described by the memory functions of the kinetic equations D

=

built on the variables #(z), j(z), F(z), [L — P(t)]j(x) and [1 — P(t)]|F().
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