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На пiдставi подiбнiстi мiж вертикальними коливаннями рiдини в дво-
вимiрному вертикальному мунпулi та коливними течiями крiзь отвiр
перфорованої пластини запропоновано аналiтичну модифiкацiю лiнiй-
ної гiдродинамiчної моделi iдеальної течiї, яка враховує дисипацiю вна-
слiдок роздiлення рухiв рiдини навколо кромок мунпула. У наслiдок
цього теоретичнi результати кiлькiсно вiдповiдають ранiше проведе-
ним експериментальним тестам та розрахункам за нелiнiйними моде-
лями в’язкої рiдини.

Используя подобие между вертикальными колебаниями жидкости в
двумерном вертикальном мунпуле и колебательными течениями через
отверстие перфорированного экрана, предлагается аналитическая мо-
дификация линейной гидродинамической модели идеальной жидкости,
которая учитывает диссипацию вследствие разделения течений жид-
кости около кромок мунпула. Это делает теоретические результаты ко-
личественно соответствующими ранее выполненным експерименталь-
ным тестам и расчетам с использованием нелинейных моделей вязкой
жидкости.

1. Introduction

Three- and two-dimensional piston-type resonant sloshing in a moonpoon
(vertical opening through the deck and hull of ships or barges) was ex-
tensively studied from fundamental and practical points of view, e.g.,
in [2,3,6,12,13,15]. Perhaps, due to the trapped waves problem (reviews
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can be found in [10,11,14]) clarifying hydrodynamic resonances in moon-
pools within the framework of the inviscid potential flow model, various
potential flow solvers remain a generally accepted tool for describing a
resonant sloshing in moonpools (see, recent papers [9, 16–18]).

Paper [6] reported model tests and an accurate linear inviscid po-
tential flow solver (which handles singular behaviour at sharp edges) for
a two-dimensional rectangular moonpool. Focusing on this simple geo-
metric shape, [6] pursued addressing a fundamental question – to what
extend is the inviscid potential flow model applicable for quantifying the
resonance frequencies and the forced piston-type liquid motion? Con-
clusions were that the resonance frequencies are theoretically well pre-
dicted but there are discrepancies between theoretical and experimental
data for the forced resonant steady-state wave elevations in the moon-
pool opening. The discrepancies could be explained by a flow separation
at lower moonpool edges, a phenomenon, which was experimentally ob-
served in [8, 13].

Experimental results from [6] were further re-analysed in [2]. It was
found out that reflection of outgoing waves at the wave basin walls was
not negligible and may matter for the discrepancies. Paper [4] has done
additional model tests with the same input parameters for which, be-
lievable, the reflection effect is minimal. In addition, papers [2, 4] devel-
oped two different viscous solvers modelling the local flow at the lower
moonpool edges and, thereby, obtained a good agreement with the exper-
imental steady-state resonant response. This means that the moonpool
problem requires either creating appropriate viscous solvers or modify-
ing the existing inviscid potential flow model which should include the
vortex-induced damping effect.

Working on sloshing in a screen-equipped tank, paper [5] faced the
same need in modifying the multimodal method which is a kind of an
analytical inviscid potential flow solver. Handbook [1] lists formulas and
tables for coefficients in the pressure discharge condition due to flow sep-
aration on the screen. The coefficients can be effectively computed for
various screen patterns as functions of the screen solidity ratio and, if
needed, the Keulegan-Carpenter number. Discovering a similarity be-
tween the piston-type sloshing in a two-dimensional rectangular moon-
pool and oscillatory flows through a cell of a slat-type screen, the present
paper shows how to account for the vortex-induced damping in the res-
onant moonpool problem. The necessary components are (a) a potential
flow solver, (b) the pressure discharge condition following from that for
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Fig 1. A sketch of dimensional moonpool problem (panel a) and the left part of
the L1-normalised symmetric liquid domain as considered in [6] and suggested
in the quasi-linear statement (6)–(10), panel (b).

a screen whose cells has the same shape as the moonpool opening, and
(c) an estimate of an artificial (fictional) solidity ratio which can be ob-
tained by inverting Molin’s formula [12]. Mathematically, adopting (a)
and (b) leads to an extra nonlinear term in the dynamic boundary con-
dition on the ‘inner’ free surface (in the moonpool opening) within the
framework of a linear inviscid potential flow model. The coefficient in
front of this nonlinear term depends on the resonant frequency which
should be a priori computed. We illustrate how to solve the modified
problem with using the equivalent linearisation and the domain decompo-
sition scheme from [6]. The numerical results are well supported by earlier
experiments and the nonlinear steady-state viscous solutions from [2, 4].

2. Statement

We consider two-dimensional Oz̄-symmetric steady-state surface waves

excited by small-amplitude vertical harmonic motions of two rigidly-
connected rectangular hulls, η3(t) = η3a sin(σt), in the finite water depth
as shown in Fig. 1 a. At a certain forcing frequency σ∗, a resonant ver-
tical piston-type sloshing occurs between the hulls, − 1

2L1 < x < 1
2L1.

Paper [6] studied the potential inviscid liquid motions in a linear nondi-
mensional statement assuming L1 is the characteristic size and 1/σ is the
characteristic time. This implies the nondimensional variables

x = x̄/L1; z = z̄/L1; t = σt̄; Λ = σ2L1/g, ǫ = η3a/L1 ≪ 1, (1)
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Fig 2. Panel (a) schematically illustrates streamlines associated with the
steady-state resonant piston-type sloshing in a rectangular moonpool (z < 0)
with a finite water depth. A nondimensional view where the slot length is
the characteristic size. The vortices are assumed localised in zone Z between
two edges so that a pressure discharge occurs along the line connecting the
edges. The introduced vertical lines x = ±b∗ [approximately] bound fluid par-
ticles which determine an up-and-down flow through the moonpool opening,
i.e. these are the bounds of a global stream tube. Estimating b∗ is possible by
inverting Molin’s formula. Panel (b) schematically depicts an oscillatory invis-
cid potential flow through a cell of a slat-type screen with a uniform approach
velocity U(t). Fluid particles do not cross the vertical lines x = ±b∗ which
determine a global stream tube for a chosen cell. Points ±b∗ are normally at
the slat middle for a uniform screen geometry but their position may change
when the slat/slot lengths slightly vary away from the considered cell. The
actual screen solidity ratio at O can be approximated as Sn = (2b∗ − 1)/(2b∗).
In contract to the case (a), the vortices are localized at two (upper and lower)
zones Z so that the pressure discharge at the cell is twice larger than at the
moonpool opening.

where g is the gravity acceleration. As a consequence, the distance be-
tween the rectangular bodies and the Oz-axis (symmetry-axis) becomes
equal to 1

2 , the nondimensional water depth is h = h̄/L1, the scaled
dimensions of the stationary immersed rectangular body are d = d̄/L1

in vertical (draft) and B = B̄/L1 = b̄/L1 − 1
2 in horizontal direction,

respectively. The left normalised liquid domain is shown in Fig. 1 b.
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Paper [6] showed that an inviscid potential flow solution accurately
predicts the resonant frequency σ∗ (or the nondimensional value Λ∗ =
σ2
∗L1/g by (1)) of the piston-type sloshing in a rectangular moonpool. An

inviscid hydrodynamic model is also efficient in computing the resonant
sloshing frequencies in a screen-equipped tank [7]. The inviscid potential
liquid motions define in both cases an ambient flow for estimating an
overall damping due to the vortex shedding at the lower sharp edges.

In our analysis, the rigid block draft d is finite so that one can assume
that the vortices are localised in a zone Z between the edges as depicted
in Fig. 2 (a). The zone confines the transmission line T3 separating the
inner liquid domain IV and outer liquid in Fig. 1 (b). Fig. 2 (b) compares
inviscid potential flow expectations for a slotted screen with those for the
piston-type sloshing in a rectangular moonpool. An important fact is
that the liquid flow beneath the rigid rectangular hulls has normally a
nonzero horizontal component. This means that the global stream tube
for the piston-type sloshing flow inside and beneath the moonpool open-
ing has bounds far from the rigid hulls. The same conclusion comes from
analysis [12] which assumes a “frozen” external free surface but poses two
sinks with abscissas ±b∗, b∗ > b to compute the resonant frequency σ∗.
As matter of fact, the Molin theory approximately defines the stream-
tube bounds. We accept the Molin prediction. Finding the Molin sinks
position implies inverting his nondimensional formula

b∗ = 2 exp
(
(Λ−1

∗ − d)π − 3
2

)
, (2)

where Λ∗ should be a priori computed by using an inviscid potential flow
solver.

For the screen-affected sloshing, paper [5] needed the following two
input parameters coming from the inviscid potential flow solution: (i) the
spatially-averaged (uniform) velocity U(t) associated with the liquid flux
through the screen openings, it defines the so-called approach velocity and
(ii) the solidity ratio Sn which is a geometric characteristics of the chosen
screen. When the slotted screen consists of slots with slightly varying
lengths, considering a single screen cell helps estimating the solidity ratio
via the formula Sn = (2b∗−1)/(2b∗) where−b∗ < x < b∗. For a uniformly
slotted screen, points ±b∗ lay in the slats middles. As for estimating U(t),
if u0(t) is the mean x-averaged relative velocity through the chosen cell
opening, the approach velocity within the streamtube −b∗ < x < b∗
can be found via U(t) = u0(t)/(2b∗). The output in the screen-affected
sloshing governs a spatially-averaged pressure jump between upper and
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lower liquid subdomains introducing an additional (to the hydrodynamic
pressure within the framework of the inviscid potential flow solution)
pressures p̄−(t) and p̄+(t) as shown in Fig. 2. The dimensional pressure
discharge condition is

∆p̄ = p̄+(t)− p̄−(t) = 1
2ρKŪ(t)|Ū (t)| (3)

where ρ is the liquid density and the nondimensional pressure drop (dis-
charge) coefficient K should be found from experiments as a function of
Sn and, generally, the Keulegan–Carpenter number. Paper [5] success-
fully employed the following formula

K = K(Sn) =

(
1

C0(1− Sn)
− 1

)2

, C0 = 0.405 exp(−πSn) + 0.595,

(4)
which assumes that K does not depend on the Keulegan-Carpenter num-
ber.

Hence, employing a certain potential flow solver can compute Λ∗ and
approximate b∗ by (2) which gives an artificial (fictional) solidity ratio
Sn = (2b∗ − 1)/(2b∗) for the piston-type resonant sloshing in a rectan-
gular moonpool. The same solver can be adopted to estimate the water
flux through the opening and, therefore, as explained above, one can
analytically express U(t) via an integral over the vertical derivative of
the velocity potential. Remembering (3) and (4) for the slotted screen
hydrodynamics, we can estimate the spatially averaged pressure drop in
zone Z (projected on T3) as

∆p = 1
16Λ

(
(C0(b∗))

−1 − (2b∗)
−1
)2
u0(t)|u0(t)|,

C0(b∗) = 0.405 exp
(
−π(2b∗)−1

)
+ 0.595,

(5)

where u0(t) is the nondimensional x-averaged vertical velocity of the
piston-type sloshing in the opening (− 1

2 ,
1
2 ); b∗ is computed by (2).

Let us modify the linear inviscid potential flow statement due to the
pressure discharge (5) through T3 (see, Fig. 1 b). As in [6], we intro-
duce the nondimensional velocity potential ψ(x, z, t) and focus on the
left symmetric mean liquid domain Q0. The velocity potential is as-
sumed be continuous together with its derivatives except on T3 where it
possesses the t-depending jump, ψIV (y, z, t) = ψ(y, z, t) + ∆p(t). The
following equation and boundary conditions with respect to ψ(x, z, t) are
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taken from [6]:

∇2ψ = 0 in Q0,
∂ψ

∂n
= 0 on SB + S + SS ,

∂ψ

∂z
= ǫ sin t on SD, (6)

Λ
∂2ψ

∂t2
+
∂ψ

∂z
= 0 on Σ01, (7)

where Σ01 is the unperturbed free surface outside the moonpool opening,
S is the mean wetted vertical walls of the stationary rectangle, SB is the
horizontal seabed, SD is the bottom of the rectangular body, SS is the
artificial vertical wall caused by the Oz-symmetry and n is the outer nor-
mal to the fluid boundary. The linear kinematic and dynamic conditions
on the mean free surface Σ02 inside the opening take, accounting for the
pressure discharge (5) on T3, the following form

∂ψ

∂z
=
∂f

∂t
and Λ

∂ψ

∂t
+ f = 1

16Λ
(
(C0(b∗))

−1 − (2b∗)
−1
)
u0(t)|u0(t)|, (8)

where z = f(x, t) defines the free surface elevation and the mean relative
velocity on T3 (see, Fig. 1 b)

u0(t) = 2

∫ 0

−1/2

∂ψ

∂z
(x,−d, t)dx − ǫ sin t. (9)

Finally, we need a condition at infinity (x → −∞) for outgoing waves
and should remember that the analysis is restricted to the steady-state
solutions, i.e.

ψ ∼ F (Kx + t, z) as x→ −∞; ψ(x, z, t+ 2π) ≡ ψ(x, z, t), (10)

where K is the wave number of the outgoing wave.
The problem (6)–(10) is a quasi-linear boundary value problem with

a single nonlinear integral term in the dynamic boundary condition (8).
Specifically, solving (6)–(10) implies a priori finding the nondimensional
resonant frequency Λ∗ and b∗ by (2) from the linearized statement. Ap-
propriate procedure is described in [6]. Furthermore, due to the non-
linearity, the steady-state (periodic) solution can be presented by a
Fourier series where higher harmonics may matter, but, generally speak-
ing, adopting the linear free-surface condition suggests the cos t and sin t
components are dominants. These components can be found based on
slightly modified solver from [6]. The obtained numerical results will be
compared with already-published experimental measurements and vis-
cous solutions in the next section.
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Fig 3. Experimental case 1 from [6] (B = 1, d = 1, and h = 5.72222). Theo-
retical and experimental maximum wave elevations of the piston-type sloshing
(‘Inside’) and the maximum wave elevations at x = w11 = 3.88889 (‘Far field’)
are scaled by the forcing amplitude in panel (a). Panel (b) present the corre-
sponding phase shifts relative to the input sinusoidal motions of the hulls. The
nondimensional forcing amplitude ǫ = 0.013889. The experimental data are
from [6]: △ corresponds to the maximum steady-state wave elevations inside
the moonpool opening (‘Inside’) (a) and the corresponding phase shifts (b); ◦
denotes the measured maximum wave elevation and phase shift at x = 3.88889
(‘Far field’), and ▽ marks the measured maximum elevations inside the opening
filtered against the reflection effect of the outgoing wave (done by in [2]). The
dashed lines are taken from [6] and denote the inviscid potential flow predic-
tion. The solid lines present our computations accounting for the sin t and cos t
harmonics. Other numerical results are marked by solid triangles.

3. Numerical steady-state solution

Comparisons of our dominant harmonic approximation (solid lines) with
experimental steady-state measurements (empty symbols), and nonlinear
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Fig 4. The same as in Fig. 3 but for ǫ = 0.027778.

viscous simulations (solid symbols) are presented in Figs. 3–8. In addi-
tional, the dashed lines denote numerical results from [6] obtained by
the linear inviscid potential flow solver. Focus is on the maximum wave
elevations inside the moonpool opening, the maximum wave elevations
far from the hulls (at the control point x = w11), and the corresponding
phase shifts (with respect to the sin t input signal for the forced mo-
tions of the hulls). More details on the experimental setup can be found
in [4, 6]. Papers [2, 4] also give an extended description of the employed
viscous solvers.

Figs. 3 and 4 present comparison results for the experimental case 1
of [6] where, under the same input geometric parameters, two differ-
ent forcing amplitudes were tested. The extended caption explains the
adopted notations. One must note that the measured maximum wave
elevation inside the moonpool opening is, according to [2], affected by
the outgoing waves reflection from a wall of the experimental wave basin.
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Fig 5. The same as in Fig. 3 (a,c) but in comparison with experiments re-
ported in [4] (empty symbols). As in the original experimental publication, the
amplitude and phase shift results are given versus the dimensional forcing pe-
riod T [s]. The solid symbols N (maximum wave elevation) and • (phase shift)
show the numerical results from [4] obtained by employing a viscous solver for
the liquid domain beneath of the hulls and inside the moonpool opening.

Other measurements, namely, the maximum wave elevation at w11 and
the phase shifts were almost not influenced by the reflection. Thus, along
with symbols △ illustrating the actual measurements of the maximum
wave elevation in the moonpool opening, we introduce inverted symbols ▽
which denote a filtered output signal that are, believable, not affected by
the reflection. What we see from the figure is that our theoretical results
are now in satisfactory agreement with both the filtered measurements
of the maximum wave elevations and with other measured outputs.

Paper [2] conducted nonlinear simulations accounting for the vortex
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Fig 6. The same as in Fig. 3 but for the experimental case 2 from [6] (d = 1.5).

shedding at the sharp lower edges of the rigid hulls. Their numerical
results are shown by solid triangles: symbols H denote numerical maxi-
mum wave elevations inside the moonpool opening and symbols N mark
numerical results for the phase shifts. Again, we see a good agreement
with our theory (compare the solid symbols and the solid lines) but our
theoretical data are slightly lower of those following from simulations
in [2]. A difference may be due to the fact that out theoretical values
account only for the sin t and cos t components, but higher harmonics,
e.g., cos 3t and sin 3t, yielded by the (| · |·)-nonlinearity can matter in a
certain forcing frequency range.

Paper [4] describes additional model tests with the same input pa-
rameter as in case 1. These model tests pursued minimizing the above-
mentioned reflection effect. They also proposed a domain decomposition
method which suggests a viscous solver for the fluid domain beneath and
inside of the rectangular moonpool. We compare our theoretical out-
put (solid lines), the inviscid potential flow solution (dashed lines) and
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these additional experimental and numerical results in Fig. 5. Again,
we see that our single harmonics approximation of the steady-state so-
lution gives slightly lower values for the maximum wave elevations in
the moonpool opening with respect to those in [4]. However, agreement
looks satisfactory accounting for the hydrodynamic model simplicity and
many extra factors which may contribute the maximum wave elevation
but are ignored by our theory. An example is the aforementioned higher
harmonics.
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Fig 7. The same as in Fig. 4 but for the experimental case 2 from [6] (d = 1.5).

Experimental cases 2 and 3 from [6] are analyzed in Figs. 6, 7 and 8.
Again, our approximation is in a satisfactory agreement with model tests
(filtered against the outgoing wave reflection) and nonlinear simulations
in [2]. This is especially for simulations in case 3.
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Fig 8. The same as in Fig. 3 but for the experimental case 3 (B = 1, d =
0.5, h = 2.86111, ǫ = 0.006944 and w11 = 1.94444).

4. Conclusions

Describing the piston-type resonant sloshing in a moonpool tradition-
ally involves inviscid potential flow solvers (see, [9, 16–18], and reference
therein) which give an accurate prediction of the resonant frequencies
but may cause differences from experimental measurements in quantify-
ing the resonant response amplitudes. A reason is the vortex-induced
damping at the lower moonpool edges visualized in experiments [8, 13].
A straightforward way for getting an accurate theoretical prediction con-
sists of using viscous solvers, at least, for the liquid domain beneath the
hulls and inside the moonpool opening. Studies [2, 4] (two-dimensional
moonpool) followed it.

We discover a similarity between the inviscid potential flows in a rect-
angular moonpool and those at a cell of a slat-type screen. An extra drag
[pressure drop] force term counteracting the piston-type liquid motions
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inside the moonpool opening was derived. As a consequence, we have got
an extra nonlinear quantity in the dynamic boundary condition on the
inner (with respect to the moonpool) free surface. The quantity contains
an auxiliary (fictional) solidity ratio coming from the screen problems.
For rectangular two-dimensional moonpool, this ratio can be estimated
by inverting Molin’s formula for the resonant frequency assuming that the
frequency is found by using another numerical method, e.g., [6]. Com-
paring the numerical results with experimental data from Part 1, other
experimental and numerical results in [2,4] (obtained by adopting viscous
solvers) showed a satisfactory agreement. This is even though our com-
putations are based on equivalent linearization and account only for the
first harmonics in a Fourier solution of the derived quasi-linear boundary
problem.

Even though employing an inviscid potential flow solver from [6] makes
it possible to get results only for the two-dimensional rectangular moon-
pool, we see a perspective of using the proposed analytical approach
for other moonpool shapes facilitated by existing potential flow solvers.
First, there is a variety of formulas for estimating the pressure drop [drag
force] coefficients for screens which, hopefully, may cover all practical
moonpool shapes. This implies that formula (4) should change. Sec-
ondly, [15] discussed generalizations of Molin’s formula [12] for different
two- and three-dimensional moonpools. This implies that one can esti-
mate the fictional solidity ratio Sn.
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