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PosrisinyTo 3B0pOTHY B yaci 3a1ady st gudepeHIiaabHOro PiBHSIHHS ep-
IITOTO TIOPSIKY 3 HEOOMEXKEHNM OTIePATOPHUM KOediIieHTOM y 6GaHAXOBOMY
npocropi. [s1 3a1a1a moB’si3aHa 31 3BOPOTHOO y Yaci 3aa9€r0 TEIIOMPOBi -
HOCTI, sIKa& BITHOCUTBCsI JJO HEKOPEKTHO IMTOCTaBJIEHNX 3a AamMapoM 3a/1ad.
It poss’sizok (aKImIo icHY€) He 3aJ€KUTh HENEPEPBHO BiJ| MOYATKOBUX JIa-
Hux. [ljst perynsipusaiiil BUKOPUCTOBYEThCsT MeToj, Jlareca-JlioHca, skmit
€ CTIfiKUM IIO/0 O TOYHOrO Po3B’si3Ky. /lo perynsipm3oBaHOTO PO3B’SI3KY
3aCTOCOBY€EThCS 300pakeHHs 3a sonomoroo inrerpana lamndopaa—Kormri i
EKCITOHEHIaJIbHO 3612KHa Sinc-KBajpaTypHa popMyIa.

Paccmorpeno obparnyio mo Bpemenu 3anady s auddepeHnuaaIbHoro
YPaBHEHHs IIEPBOTO IOPsiJKa ¢ HEOTPDAHWYEHHBIM OIEPATPHBIM K03hdu-
IUEeHTOM B 0aHAaXOBOM IIPOCTPAHCTBe. DTa 3ajada CBI3aHa C ODPATHOIM
10 BPEMEHN 3a/[adeil TeIIOIPOBOHOCTH, KOTOPAasl sIBJIS€TCS HEKOPEKTHOM
no Anamapy 3anadeit. Ee pemmenne (eciu cyniecTByer) He 3aBHCUT HeIlpe-
PBIBHO OT HAYAJbHBIX YCJIOBUMA. JlJ1si perysisipusanum uCroib3yeTcss MeTO/T
Jlarecca-JInomnca, KOTOpBIil €CTh yCTONYIUBBIM II0 OTHONIEHUIO K TOYHOMY
pemenno. K perysisipusupoBaHHOMY PENIEHUIO MPHUMEHSIETCs IIPEeJICTaBIIe-
Hye ¢ roMolnpio uaTerpana Jandopaa—Komm u skcnoHeHIaIbHO CXOU-
Mast Sinc-KBaJiparypHasi GpopMyIa.

1. Introduction

In the last years, the field of inverse problems has certainly been one of
the fastest growing areas in applied mathematics. This growth has largely
been driven by the needs of applications in industry and sciences. Inverse
problems typically lead to mathematical models that are not well-posed
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in the sense of Hadamard, i.e., to ill-posed problems. This means espe-
cially that their solution is unstable under data perturbations. Numerical
methods that can cope with this problem are the so-called regularization
methods [1-3]. In many practical problems it is required to reconstruct
the distribution of the temperature of a body at a certain instant of time
t € (0,7T) from the temperature measured at ¢ = T'. Such problems are
called retrospective, initial boundary value problems for the heat conduc-
tion equation with reverse time or final value problem. Since industry
requires fast for given accuracy and simple algorithms for the solution of
a wide variety of inverse problems, this implies a growing need for con-
structing such numerical methods. Exponentially convergent algorithms
are widely developed in recent years. It is known that they are optimal
(or near optimal) for analytic solutions [4].

Exponentially convergent algorithms were proposed recently for vari-
ous problems [4-7]. The corresponding analysis is often carried out in an
abstract setting. This means that the initial value and boundary value
problems of parabolic, hyperbolic and elliptic types are formulated as
abstract differential equations with an operator coefficient A in Banach
space [3,4,8].

The main goal of this paper is to construct exponentially convergent
method for the following final value problem:

du
— + Au = t T
7 + Au =0, €[0,7),

u(T) = ur,

(1)

where ur € X. The operator A with the domain D(A) in a Banach space
X is assumed to be densely defined strongly positive (sectorial) operator,
i.e. its spectrum X(A) lies in a sector of the right half-plane with the
vertex at the origin. The resolvent of A decays inversely proportional to
|z| at the infinity

—1 M
1RAEN = G147 < 17

(2)
To construct exponentially convergent method we use Lattes-Lions

quasi-reversibility method [3, 9] with representation of solution by

Danford-Cauchy integral and then by applying sinc-quadrature rule.
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2. Regularization and representation of the solution

Inhomogeneous problem related to (1) can be reduced to the homoge-
neous one by change of function in the following way. If we have

T + Au = f(z), =z €][0,X],

u(T) = ur,

(3)

with f(x) being vector-valued function in the Banach space X then we
consider a function

t

vi(t) = /e_A(t_s)f(s)ds,

0

that can be efficiency calculated using algorithm from [4] and a function
u(t)
dv

— + Av = t T
dt+v 0, €[0,7),

v(T) = up — v (T).
Further
u(t) = v(t) + v1(t).

So, let us consider problem (1). Suppose, as it is common in the
theory of ill-posed problems, that for some exactly given final value up
there exists a solution to problem (1) for ¢t = 0. Let u(0) € D(A?). Using
theory of operator-valued functions we have from (1)

u(t) = e A Dy p,

So, we have || A7u(0)| = |[eAT A%ur|| < C < oo.
When the final value is given with an error we assume that

HUT - ’LL(S” S 63
and consider the following problem instead of (1)

d“;;t) + Aug(t) =0, telo,T),

us (T) = Uus.
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This problem is ill-posed. We must to use regularization method to
find solution to this problem. One of the ways to do that is to change
the operator A in (4) by some ”close” operator A, such that our new
problem is well posed and its solution u.(t) — u(t) for ¢ — 0. Besides
this, e — 0 for § — 0.

We use Lattes-Lions method of regularization for problem (4) in the
case when the spectrum of operator A is situated in a sector of angle 5
in the right-half plane. Let us suppose that spectrum of the operator A
is inside of

Glz{zeC: Re z > ay, |argz|<ga<g}.

Due to Lattes-Lions regularization method we consider the following

problem instead of (4).

WsTfﬂ + (A=A uos(t) =0, te0,T), 5
ue s(T) = us,

where € > 0. For the error estimate we obtain
[u) —ues (N < [[ut) —ue@ + lus(t) — ue,s (O] = A1 + Ao,

where u.(t) is a solution to problem (5) with a final value u.(T") = ur.
From (1) and (5) we have

A = H [G—Aa—T) - e—(A—sA%(t—T)} “TH -
— H |:I _ e—aAz)(T—t):| A—ae—A(t—T)AUuTH <

< H |:I . e—aA2)(T—t):| A—°

for o > 2. Here we have used our assumption about regularity of ur. We
use an estimate form [3] for As:

He_A(t_T)A”uTH < (T - GG,

T

Ay < LS 2 S —
2= eXp{élg(l — tan? )

} ., L=M>
So, we have

T Q
t) — )| <eC + Lo — Y =¢cC + Loe=
s fu(t) — ()] < 20+ exp{%(l_mnw)} <O+ L6e?,
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T
4(1 —tan? )
Further we describe how to chose the parameter ¢ for an arbitrary

d. Recall that we must choose £(d) such that £(5) — 0, for § — 0. We
propose to choose

Q=

= angmin {/()}. ©)

where f(e) = eC' + Lée? for an arbitrary 6 > 0. The function f(g) is
continuous for € > 0. It is easy to see that

_ L6Qe= (2 + Q)

> 0.
e

f(e)
So, it is convex downward and, therefore, it has a unique minimum. The
minimum of the function f can be found from the equation f’(g) =0 or
C— L§%e? =0.

Let ¢ be a minimum of the function f(e) for an arbitrary dp. Further
let us show that eg — 0 for §o — 0. We suppose that d, < d; and
let g4 = argmin. {f,(€)}, where fo(e) = eC + Lége?, a = 1,2. &,
is a solution to equation f!(¢) = 0. Namely, ¢, satisfies the equation
C - Léa%e% = 0. We must to show that 5 < £1. Indeed, we have

Q
from the equation that 6, = %Eiefa. So, due to our assumption

_Q _Q . _Q . .
we have eze” %2 < gre” 1. The function g(z) = xe™ = is monotonically

increasing for x > 0 because ¢'(z) = (1 + %) e=% > 0. Therefore we

obtain g9 < £7.
Further let us show that f(e.) — 0 for 6, — 0 in the case when
e. = argmin. {f(e)}, with f(e) = eC + Lé.e?, for an arbitrary 0.

Really, we have that J, = Lisfe_a. We obtain after it substitution
into the function f that

C
2
fles) E*C+€*Q.
Due to the previously proved fact that €, — 0 for §, — 0 we have that
f(g+) = 0 for 8, — 0.

For example let us consider the case when C' = L = Q = 1. The plot
of f(e) for various ¢ is presented on figure 1. Results of calculation are
shown in table 1.
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— 607 - 6=0.1 ——5=0.01

Fig 1. Plot of f(e) for various §.

Table 1. Choice of &

0 Ex flex)
0.7 | 1.248678557 | 2.807876694
0.1 | 0.6682589247 | 1.114828915
0.01 | 0.3768679464 | 0.5188973953
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3. Operator representation of solution

Further we change u. s(t) by v(t) for convenience. Then a solution to
problem (5) can be written as follows:

’U(t) _ ef(AfsAQ)(th)uls'

We write the solution of this problem using Danford-Cauchy presen-
tation for operator-valued functions in the form

1
v(t) = —/e_(z_azz)(t_T)RA(z)ugdz,
r

211

where integrating path envelopes spectrum of the operator A.
Let

Iy = {z(s) = agcoshs —ibysinhs : s € (—00,00), bg = agtanp} (7)

be a spectral hyperbola. It has a vertex at (ag,0) and asymptotes that
are parallel to the rays of the spectral angle of 3.

We choose a path of integration I'; and replace resolvent R(z) by
RY(2) (see [4] for details) where

'y ={z(s) = aycoshs —ibrsinhs: s € (—00,00)}, (8)
1
Then v(t) can be written down after parametrization as follows

1 e 9] o0
v(t) = 2—/ e_(Z(S)_EZ(S)Z)(t_T)z'(s)Rh(s)qus :/ F(t,s)ds,
T ) —00
9)

with
2'(s) = ay sinh s — iby cosh s.

The next step toward a numerical algorithm is an approximation of (9)
by an efficient quadrature formula. For this purpose we need to estimate
the width of a strip around the real axis where the integrand in (9) admits
analytical extension (with respect to s). The integration hyperbola I';

will be translated into the parametric set of hyperbolas with respect to
v after changing s to s + iv

T'(v) = {z(s,v) = asycosh (s + iv) —ib;sinh (s +iv) : s € (—00,00)} =

= {z(s,v) = a(v)coshs —ib(r)sinhs: s € (—o0,00)},
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with
a(v) =ajcosv +brsinv = y/a? + b?sin (v + ¢/2),

b(v) = brcosv — arsinv = y/a% + b? cos (v + ¢/2),
br ar

COs — = ————, sin —

2 a2+ 2 A+
The analyticity of the integrand in the strip
Dy, ={(s,v): s € (—00,00), || < dy/2},

with some d; could be violated if the resolvent become unbounded or
exponential function increases. To avoid this we have to choose d; in a
way such that for v € (—dy/2,d;1/2) the hyperbola I'(v) remains in the
right half-plane of the complex plane. For v = —d; /2 the corresponding
hyperbola has asymptotically an angle 5. For v = d; /2 it coincides with
the spectral hyperbola. Therefore for all v € (—dy/2,d1/2) the set I'(v)
does not intersect the spectral sector. For v = 0 we have I'(0) = I';.
Such requirements for I'(v) are fulfilled when

a;cos% + bfsin% = ag,
—ar sind—21 + by cos % = by,
a;cos% fb[sin% :ajsind—;er]cos%.
The solution of this system is
d1 ] dl
cos (4 + ) sin (% + ¢) T
2 2
aI:a07,bI:a07;d1:——@- (10)
cos @ cos ¢ 4

Taking into account (10) we can similarly write the equations for a(v),
b(v) on the whole interval —4 < p < &

d
a’(y):a/ICOSV+b[SiHV: %0 COS(_l‘f'QD—V)’
COs © 2

ap . <d1 >
sm|{—-+ep—v|,
cos @ 2

b(v) = bycosv — aysiny =

with dy, defined by (10).
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4. Uniform numerical algorithm for a regular pertur-
bation

Further we estimate the function F(t,s) from (9). In the case when
us € D(A%) we have (see [4])

b 2\“
Ryl < (14 K (2] et g,
argr ar

’e—(z(s)—az(s)z)(t—T)’ — e—(a(a? cosh? s—b? sinh? s)—az coshs)(T—t) —

= exp {— (em1 cos(2¢) cosh® s — cos(¢) cosh s + emy sin® (1)) mq (T — 6},

where a -
_ 0 S
mlicos(go)’ v 2 Ty
Therefore, we obtain
IF (L, 5)|| < Cp, a)e™ (e cosh®smas cosha) (T=alsl | goy 5 (11)

where
g1 = m? cos(2v), g2 = my cos(1),

b 2\ s 5
0(905 Oé) - (1 4+ M)K—I <_) e*Eml sin (ﬂ))(T,t) _
ar \ar

2 8 £

= (14 M)K tan (f + f) L‘pw a—emi sin® (V) (T—t)
agcos (5 + §)

We choose d = di — ¢ for an arbitrarily small positive ¢; and for
w € Dy get the estimate

. b (2 ) e,
IF (¢ w)| < (1+M)Ka(u) (a(V)>

Xef{g(aQ(V)sz(l/))cosh2 s—a(v) coshs}(Tft)fa\s| |‘Aau6|| <

< (14 M)K tan (f + I 1/) 2C08 9 e (T =)
2 8 aocos(f22+§fy)

><e—{&(a2(1/)—b2(u))Cosh2 s—a(v) coshs}(T—t)—oz\s| HAa'U«SH <
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p 2cosp
<1+ MKt (— T ) x
< (1+ M)K tan 2+8 v <a0c08(%+§y)>

2 v
{7€b2(u)+W(ij(u))}(Tft)fa|s\

X e lA%us]|, Yw € Dy.

Taking into account that the integrals over the vertical sides of the rect-
angle Dg(e1){z € C: |Rz|] < 1/€1,|32] < (1 — €1)d/2} vanish as 3 — 0
(D4(e1) — Dg) this estimate leads us to

IF(E a g < Cles s ense)l|A%us, (12)

with 5
C(‘Pa Q, €1, 5) = E[CJr(wv Q, €1, 5) =+ C*(‘Pa Q, €1, 5)]5

9 «
C:t(%a,fl,a?) (1+M)Ktan(f+iiy)< cos ) o
ag Cos )

P jus
2 8 (2 +3tv
_ aacosz(%«#%j:u) COSQ(%+%iu)COS(kp) (T_t
€ cos2(¢) 4deaq cos(2p+dE2v) )
X e

Note that C(¢, a, €1,¢) tends to oo if & — 0 or e — 0, ¢ — 7/4.
We approximate integral (9) by the following Sinc-quadrature

_ % S F(, 2 (kh)), (13)

un (t) -
k=—N

with the error
[ (F, R = (o) —on ()] <

h h
<folt) = 5m S0 Flt )+ l5s S0 F(t2(h)] <
k=—o00 |k|>N
1 e—ﬂ'd/h
< - - @
~ 27 2sinh (7d/h) 1l o0y

C(p, a)h||A%us]| i o~ (291 cosh? (kh) —ga cosh (kh)) (T—t)—akh

+ 2

k=N+1

- CHAQUOH efwd/h
- « sinh (wd/h)

+
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+ o~ (91 cosh? (N+1)h)—g3 cosh ((N+1)h))(T7t)fa(N+1)h} ,

where the constant ¢ does not depend on h, N,t. Equalizing the both

exponentials for ¢t =T by % = (N + 1)h, we get for the step size

2mwd

"= aw T

With this step-size the following error estimate holds true

¢ _ [wda(N+1D)
I (F, Bl < ~e Tox
><e_ <8g1 cosh \ w—fh cosh 4/ w) (T_t)HAO‘u
5

(14)
||’

with a constant ¢ independent of ¢, N. We must to take N taking into

2
account that maximum of function f(s) = —eg; cosh? s4 gy cosh s is 4521 ,
for cosh s = 2-;7;1 . So, we have the following condition:
N > arccosh-22-. (15)
2eq1

Theorem 4.1. Let A be a densely defined strongly positive operator
and us € D(A%), a € (0,1), then Sinc-quadrature (13) represents an
approximate solution of the regularized final value problem (5) and pos-
sesses a uniform with respect tot < T exponential convergence rate with
estimate (14) with condition (15).

Therefore, we look for an approximate solution to problem (1) with
the help of (13) and in the case when us € D(A%), a € (0,1) we obtain
the following error estimate:

Ju(t) = ox (O] <A1+ Ag + nn (F, )| < £(8)C + Lo+

c _\/m
+ —e = [|A%usl,
«

where ¢ is defined by (6).
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5. Numerical algorithm for a plain perturbation

Further, let us consider the case when us is an arbitrary from Banach
space X and t < T. Due to [4] we have

, 1’ (s)| _ =(s)
[2'(s)Ra(2(s))us|| < Mm us|| = M

— oo lusll < cflus|-
1+ Z(s)’

So, we have

(s) (RA<z<s>> - %) us

’e_(z(s)_gz(s)z)(t_T)’ is estimated as in the case us € D(A®)

Therefore, we obtain

a
< o1+ 25 Jusl,
I

IF (8, 5)[| < C(p)e (201 cosh® s=gzcosh ) (T=0) 111 (16)
where
g1 = m? COS(21/})5 g2 = my COS(i/J),

C((p) _ C(l—f—%)eismf sinZ(qp)(Tft) —c (1 + tan (g + %)) efsmf sinz(d})(Tft).
7

We choose d = d; — €; for an arbitrarily small positive €; and get the
estimate for w € Dy

b 2 2 2 2
H-F(taw)H <c <1 + a((l;))) ef{s(a (v)—b (V))COSh s—a(v) cosh s+eb (V)}(T*t) ||U5H

<c (1 + tan (g + g - V)) e ((T—1)

xe—{a(aZ(u)—bZ(V)) cosh? s—a(v) cosh s}(T—t) ||U6|| , Yw € Dy.

Taking into account that the integrals over the vertical sides of the
rectangle Dy(e1) vanish as €1 — 0 this estimate leads us to

H]:(ta ')HHI(Dd) < C((p,el,s)Hu(;H, (17)
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with
C((‘D, €1, E) = C+(90a €1, 5) + C—((pa €1, E)a
o ﬁefst(:tu)(Tft) cos(y)
Ci(p,er,e)=c|l+tan =+ = +v X
+(prerre) ( (2 8 )) Ve(T — t)a3 cos(d + 2p + 2v)
X exp (1 + cos(d + 2¢p £ 2v))(T — t)
4e cos(d + 2¢ £ 2v)

We use here the following estimate:

/ e cosh?(s)+b cosh(s) ds = 2/ e~ @ cosh?(s)+b cosh(s)dS <
—o00 0

oo o0
< 2/ e—acosh2(s)+bcosh(s) sinh(s)ds — 2/ e—am2+bmdl, —
0 1

oo oo
2, b2 b2 2 b2 2./
= 2/ e ¥ Ty < 26%/ e ™ dxr =e2a \>/__
1

a

b
b o
Note that the constant C'(peq,€) tends to oo if € — 0, or ¢ — 7/4.
We approximate integral (9) again by the Sinc-quadrature (13) with
the error

[nn (Fs R) || = [[o(t) —on (B[] <

< olt) ~ g D2 Fl k) + e 3 Ft (k)| <
k=—o0

|k[>N

efwd/h

Teinb (rd/h) | F e (pg)+

1
<
- 27
C(‘Pa oz)hHu(;H S — cosh? (kh)—g2 cosh (kh))(T—t)
+ o Z e (891 92 ) <

k=N+1

o—md/h e—(egl cosh? (hN)—gs cosh(hN))(T—t)
< cllusl § = + —
sinh (wd/h) = hsinh(hN) (2eg1 cosh(hN) — g2) (T —t)

where ¢ does not depend on h, N, t.
Equalizing the both exponentials by

7lnN

h
N 3

(18)

we obtain
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_ mdN_ c2e7°3(€91N2*92N)(T*t)
F.h)|| < In(N) 19
i F = el {e i In(N)(2eq1 N — g2)(T' —t) | (19)

with various ¢; independent of ¢, N. We must to choose N taking into

2
account that maximum of function f(s) = —eg1s® + gas is 4‘;%, for s =
522-. So, we have the following condition:
g1
92
== 20
2eq1 (20)

Theorem 5.1. Let A be a densely defined strongly positive opera-
tor, then Sinc-quadrature (13) represents an approzimate solution of the
regularized final value problem (5) and possesses exponential convergence
rate with estimate (19) for h defined in (18) taking into account condition

(20).

Therefore, we look for an approximate solution to problem (1) with
the help of (13) and in the case when us € X, 0 <t < T we obtain the
following error estimate:

[u(®) = on ()| AL+ Ag + [y (F, h)|| < e(6)C + Lo%+
6267C3(EQIN2792N)(T7t) }

In(N)(2eg1 N — g2)(T — t)

+ cl|us]| {eﬁ:?f% +

where ¢ is defined by (6).
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