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We study approximate solutions of the gravitational lens equation and corresponding lens magnification factor

near the critical point.

This consideration is based on the Taylor expansion of the lens potential in powers of

coordinates and an introduction of a proximity parameter characterising the closeness of a point source to the
caustic. Second-order corrections to known approximate solutions and magnification are found in case of a general
fold point. The first-order corrections near a general cusp are found as well.
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INTRODUCTION

Main equation of gravitational lens theory (eq.
(1) below) sets a relation between the angular posi-
tion y of the point source and the observable position
x of its image [12]. The main interest is related to
critical points of the two-dimensional lens mapping,
i.e. the values of x., where Jacobian of the lens map-
ping vanishes: J (Xer) = D (y1,92)/D (21, 22)l
0. In its turn, the image of set of critical points is a
set of caustic curves. Each caustic typically appears
as a closed smooth curve with the so-called cusps at
some isolated points. Regular points of a caustic as
singularities of differential mapping are called folds.
When a point source crosses the fold caustic, the two
critical images either emerge or disappear. The crit-
ical images of the point source approach the critical
curve and their brightness tends to infinity when the
source comes close to fold. In the vicinity of a cusp
we have three critical images with infinite bright-
ness, but only two images disappear after crossing
the cusp. The details can be found in [12].

The singular properties of caustic points play a
key role in explanation of some qualitative features
and quantitative characteristics of the gravitational
lensing phenomenon. For example, the qualitative
picture of quadruple lensing can be modelled by a
singular isothermal ellipsoid [4]. Specifically, rela-
tive positions of four images and their brightness de-
pend on position of the source with respect to the
caustic [9, 10]. Another example is related to the
so-called strong microlensing events, which are inter-
preted as a crossing of a microcaustic by an extended
source. In this case astronomical observations give
us a chance to get some information about size of
the source and distribution of the brightness on its
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surface [5, 8, 11].

The well known approximate solutions of the lens
equation and expressions for magnification of each
image obtained in the lowest approximation [6, 7, 12]
have a sense of asymptotic relations, which are per-
formed the better, the closer the source is located
relative to the caustic.

In the case of a fold caustic, the first-order cor-
rections for approximate coordinates of the critical
images were found in [2]; corrections for the mag-
nification of separate images were obtained in pa-
per [10]. Note that it is possible to observe only a
total brightness of all microimages during a strong
microlensing event. In this case, the first-order cor-
rections for magnification of two critical images are
mutually cancelled. The second-order corrections for
image coordinates, as well as for the magnification,
were found in papers [1, 3]. Besides, it was demon-
strated on example of the strong microlensing event
in image C of gravitational lens system Q223740305
that the second-order corrections can be statistically
significant. It was made under the simplifying as-
sumption that there is no continuous matter near
the line of sight [1, 3]. Because of importance of ac-
counting dark matter, we generalize expressions for
the second- order corrections near the fold in the
present paper.

Concerning the cusp caustic, the first-order cor-
rections were considered in [4], but some expressions
in that paper require revisions. Moreover, calcula-
tions are missing logical conclusions, they were left
on some intermediate stage. Therefore, the second
part of our paper is dedicated to looking for com-
plete and more compendious expressions in the first-
order approximation for the coordinates of images



Advances in Astronomy and Space Physics

and magnification near the cusp.

LENS EQUATIONS NEAR CRITICAL POINT

The normalized lens equation has the form:

F=%-Vo (%), (1)
where @ (X) is the lens potential. This equation re-
lates every point X (x1,22) of the image plane
to the point ¥ = (y1,y2) of the source plane. In

the general case, there are several solutions X(l) (¥)

of the lens equation (1) that represent images of a
point source at y; we denote the solution number by
the index in parentheses.

Potential ® (X) satisfies equation A® = 2k, where
k (X) is the density of continuous matter on the line
of sight normalized on the so-called critical den-
sity. The magnification factor of each separate im-

age is K (V) = 1/‘J (i(l) (y)) , where J (X)
|D (¥)/D (X)| is the Jacobian of the lens mapping
1

Recall that, critical curves of mapping (1) are de-
termined with equation J (X) = 0. Caustics are im-
ages of critical curves obtained with mapping (1).
The stable critical points of a two-dimensional map-
ping can be folds and cusps only.

Using standard approach to examine neighbour-
hood of the caustic, potential near the point p.,. of
the critical curve can be approximated with the Tay-
lor polynomial. Let this point be the coordinate ori-
gin. We suppose that eq. (1) maps pe, onto the co-
ordinate origin of the source plane. Then, we rotate
synchronously the coordinate systems until the ab-
scissa axis on the source plane becomes tangent to
the caustic at the origin; the quantity |ya| defines
locally the distance to the caustic and y; is a dis-
placement along the tangent.

With a sufficient accuracy, the lens equations
have the following form:

1 =2(1—ko)a1 + am:% - agxg 4 2box 29+

+ Czl‘? — 3611'11‘% — dlzz:g + 3d2:1:%x2 + glfc% + ...
Yo = bg.ﬁC% — blx% — 2a9x129 + dgl’?—
— 3dy 2123 + cors — 3c1xox? + faxs + ... (2)

Here kg = k(0) is the matter density at the origin
and the following notations are:

ar = —P®,111/2;a2 = ®,122/2; b1 = P,222/2;
b2 D,112/2;¢1 = ®,1122/6; c2 = —P,2222/6;
dy = ®,1222/6;d2 = —P,1112/6; 9 = —P,12022/24;
[ = —®,22900/24.
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When density k£ is constant, then a1 = as = a,
by =bs =0, c1 =co =c, di = do = d. Parameter da
will not appear in the following formulae; therefore
we put d; = d.

APPROXIMATE FORMULAE
NEAR FOLD CAUSTIC

One of the approaches for finding critical solu-
tions of eq. (1) involves an expansion of the image
coordinates into series in powers of some parameter
t, which demonstrates proximity to the caustic [1]-
[3]. If we put y; = t27;, then, as it was shown in
[1]-[3], the critical solutions of eq. (1) are analytical
functions of parameter t, and z1 = t2%1, To = tio,
where 1 (t), T2 (t) are zero-order functions. Putting
these expressions into Taylor expansion of eq. (1),
and restricting our solutions to second-order terms
inclusive, we get the following equations:

g1 =2 (1 — ko) &1 — as®3 + t (2boF1Z2 — dZ3) +
+ 1 (a3} — 3e17133 + gi3)
Jo = —b173 + t (—2a2F132 + c2d3) +
+ % (bo#] — 3d7135 + f73) . (3)

After performing calculations, it is enough to put
t = 1 and thus return to the initial variables y; and
Z;.
A condition that initial point p., is a fold is that
b1 # 0. Without losing generality of our approach,
we assume that b; < 0. When density k is constant,
then a1 = ao = a, by = by = b, ¢c1 = co = ¢. There-
fore, the system (3) includes four additional parame-
ters in comparison with previous case of [1]-|3] where
k(X) =0.

We seek solutions of equations (3) accurate within
second-order terms in a form: 7 = z19 + z11t +
.CC12t2, Fo = xag + Tort + Toot?. Imposing notations
R? = a§+blbg, o0 =1—kyand ¢ = £1 we find
the following expressions in the zero-order approxi-
mation:

T20 = 5\/m‘ (4)

Two signs of parameter € correspond to two critical
solutions. The first approximation gives:

e _
T =555V Ga2/|b1] {b1 R*1—
1

— [a2R2 — (b1d + azc2) U] .@2} , (9)

1 .
210 = 7 (41 — a2¥2/b1),

20

—azbi91 + (a3 — ¢20) Go

2b%0

(6)

x21 =
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Concerning the second-order approximation for the
first coordinate we found:

Mg} + Maijijs — Msy3
8bio3 ’

(7)

T12 =

where

M = b% (3a2b1b2 + 261% - alb%) ) (8)

My = 2b; [b% (alag — 2b% — 3610’) — b (7a§b2—
—(bacy + 6agd)o) — 4a3 (a% —c0)], (9)

My =b? [ala% — dagb? + (4byd — 6agey)o + 4902] +
+ by [*110,31)2 + (16a%d + 6&2()262)0’ — (4a2f +
+6c2d) 02] — 6ay (a% - 020)2 . (10)

And for the second coordinate:

_ N1ga + Nagji + N3i? /o
T92 = £/ Ta/|b1| o2 / ;
1

(11)

Ny = —5a3R* 4 10 (asbid + ajca) o—
— (53 +4fb1) 0?, (12)
Ny = 6by [aaR* — (b1d + azez) o], (13)
N3 = —b2R%. (14)

In its turn, for the Jacobian of the lens mapping,
calculated in points where images are situated, we
found:

J = tJy + t2J; + t3.0s, (15)
_ R? — ¢y0 _

Jo = deo/|b1| G2, J1 = 4T2y2, (16)
_ S19o + Saf1 — N3§? /G2

Jo = e/ Bt a0~ Nali [l g

Qb%d

S = —11a3b1by + 4ajash? + 30azbido—
-7 (a% — 620)2 — 4by (3b101 + boco + 3f0) o, (18)

SQ == 2b1 [3&% + 5a2b1b2 - 20,15%

-3 (GQCQ + bld) O'] . (19)
Take notice that formula for J; was found in [10]. Fi-
nally, for the total magnification factor of two critical
images, we obtained:

1 O()

cr —

2
K
1+Py2+62y1—7y—1

, (20
20' |b1’y2 4y2 ( )
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P = 2kby /by — T /8bi0?, (21)

T = by [19a3bs — darashy — (30azd + 12bacy —
—12b1¢1) 0 + 12f0?] +15 (a2 — ca0)?, (22)

_ 3&% - 2a1b% + Basb1by — 3 (CLQCQ + bld) o
N 4b302 ’

Q

R2
" 2|by| 02

In comparison with the formulae that were found un-
der assumption of k = 0, we shown that all functional
dependencies on the coordinates y; remain the same.
Only expressions of coefficients in terms of deriva-
tives of potential have changed.

FIRST APPROXIMATION NEAR CUSP

We assume that the origin of coordinates in eq. (2)
is a cusp: by = 0. In this case, parameter of
proximity is introduced by the following relations:
y1 = t201, Yo = 30, 1 = t231, 19 = tTo. It can
be shown that coordinates of image Z; (with param-
eterization proposed above) are analytical functions
of t. To return to initial coordinates, it is enough to
put t = 1. We can find from formulae (2), accurate
within first order terms, that the lens equations near
cusp caustic are

1 = 20%) — aZ3 + (20313, — dF3) - ¢,
Jo = —2ai1 %y + i3 + (biF — 3di175 + f3) - t,
(25)

where a = az, b = by, ¢ = ca.

We looked for solutions in the form: 1 = z19 +
tr11, To = x20 + taxo1. The basis for solutions con-
struction is a cubic equation for xz9q:

C’a:%o — aﬂlxgo — Ugg = 0, (26)

where C' = co — a?.

Equation (26) has one or three real roots depend-

B it
c? 2703

real root when ¢ > 0 and three real roots when
@ < 0. And explicit expressions for solutions of
eq. (26) are given with Cardano formulae.

For the first coordinate in zero order approxima-
tion, we found:

ing on the sign of expression () = one

1
10 = — (Ql + aw%o) . (27)

20
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We do not present intermediate formulae for the first
order corrections in form that repeats results of [4].
Instead, we give final and simplified expressions at
once, which can be checked using substitution into
eq. (25). Hence, we have:

Blglxgo + BQ@Q%‘QQ + Cbﬂ%

= 40CE @8

- CB1ga3, +4§éj%%;20 + Astifz (29)
Here the following notations are imposed:

E = ajj; — 3Cx3, (30)

B = 6oabc — a3b — 40a’d — 60%cd + 402af, (31)

By = 0 (5a*b — 100ad + 40° f) (32)

Al =oa (5b02 — 10acd + 4a2f) , (33)

Ay = a*b—20a*bct-0? (6b02 — 10acd + 4a2f) . (34)

For Jacobian components J = 2 (Jo+ tJ;) we
found the following expressions:

Jo = —2FE, (35)
I (3Cx3, + af1) §2 + Iaxaoy?
Iy = 1 ( 20 Z/l) Y2 2 201/1, (36)
CE
where
I = a®b + o (10ad — 6bc) — 40 f, (37)

I = 16a°d—8a*bc—o? (6acd — 3bc* + 4af) . (38)

The magnification factor of each image in the first
approximation is given by the expression:

(1=

While finding last equality, we took into account that
|tJ1/Jo| < 1 (for small values of parameter t).

RESULTS AND CONCLUSIONS

The obtained formulae (7)-(19) represent expres-
sions of the second-order corrections for image coor-
dinates and Jacobian near fold caustic in the case of
general eq. (1). Formulae (20)-(24) describe the to-
tal magnification of two critical images in the second-
order approximation with respect to proximity to the

1 _ 1 1 _ 1
|J| N t2|J0+tJ1| N t2’<]0

S
Jo

K =

) . (39)
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caustic. It is important to note that the functional
dependence on the coordinates y; and on fitting pa-
rameters remain the same, as in the case of k (X) = 0.
All the differences are in expressions for the fitting
parameters; these expressions have four additional
constants when a continuous matter is distributed
near the line of sight. The same situation will be with
formulae for the magnification factor of extended
sources [1, 3| provided that we correspondingly re-
place coefficients P, @), x and take into account that
o # 1. Coefficients that are discussed in the present
paper play a role of adjustable parameters in mod-
elling observable light curves. Specifically, taking
into account a continuous matter does not change
anything in previous treatment of the strong magni-
fication event in Q2237+0305 [1, 3]. Explicit depen-
dencies of coefficients (21)-(24) on the derivatives of
potential ®(X) will be important in case of modelling
deflector mass distribution.

In the last section we obtained the first-order cor-
rections for the image coordinates and the Jacobian
near a cusp caustic (28)-(38). Some inaccuracies of
paper [4] have been corrected, and explicit expres-
sions of the corrections are found in terms of the
potential expansion parameters and the roots of the
cubic equation (26).
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