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We demonstrate that toroidal shear Alfvén eigenmodes in dipolar magnetostatic plasma equilibrium are subject
to damping due to phase mixing. This result is of particular interest for the investigation of Pc5-6 geomagnetic
pulsations.
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introduction

The study of the generation of geomagnetic pul-
sations includes three distinct research topics: the
spectrum and the stability criterion, the propaga-
tion mechanism, and the energy balance (source vs.
sink). The �rst topic was addressed in [1, 2, 3, 6, 7, 8,
17], the second one was studied e. g. by Klimushkin
[13]. The third topic was considered by many au-
thors with respect to the source, but the damping
mechanisms were studied not so widely. The decay
due to the resistance of the ionosphere was consid-
ered in [3, 7, 11, 12, 17], and some other e�ects in
e. g. [9, 10, 18, 14, 19].

We demonstrate that there is another damping
mechanism, never considered before in magneto-
sphere studies � the damping due to phase mixing.
The physics behind this damping can be explained
in simple words in the following way. Consider a
small volume of plasma spanning across the mag-
netic surfaces, so that the eigenmode frequency is
slightly di�erent at its two edges. Then the phase
shift between the oscillations at these two edges will
grow, and with time they will oscillate in opposite
directions, e�ectively cancelling each other. Such ef-
fects are well-known in radioelectronics with regard
to open resonators, see e. g. [21, 22].

We study this e�ect only in the inner magneto-
sphere, which is well represented by an axially sym-
metric static plasma equilibrium, formed by a point
dipole in the origin and a toroidal ring current with
some spatial distribution (see Fig. 1). We also as-
sume that the �eld lines rest upon a perfectly con-
ductive ionosphere, which we place at the ground
level.

Fig. 1: A dipolar model of the inner magnetosphere.

As it was shown in [1], Alfvén waves in such geom-
etry can be polarised either toroidally (in this case
they are torsional) or poloidally (in this case they are
compressional). We demonstrate that Alfvén waves
are damped due to phase mixing, which is caused
by the continuity of their spectrum. In this arti-
cle we consider only toroidally polarised waves for
simplicity. The principal result holds for poloidally
polarised waves as well; this will be the subject of
the next article.

The article is organised in three sections. Firstly,
we brie�y summarize the derivation of the equa-
tions of small oscillations for ULF MHD eigenmodes.
Then we explain the phase mixing phenomenon and
apply it to the consider problem. And in the last
section we summarize the obtained results.
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equations of small perturbations

in dipolar field

To obtain the equations of small perturbations in
the dipolar magnetic �eld we use the equations de-
rived by Cheng and Chance [5] in the form given by
Cheremnykh and Danilova [6]:

ρ

|∇a|2
∂2ξ

∂t2
+ ~B · ∇

(
1

|∇a|2
~B · ∇ξ

)
+

s

αs
(γs − s)×

× ξ + 2
(
δp1 + p′ξ + γpdiv~ξ

) ~χ · ∇a
|∇a|2

+
(s− γs)

αs
×

× ~B · ∇η =
∇a · ∇δp1
|∇a|2

, (1)

ρ

αs

∂2η

∂t2
+ ~B · ∇

(
1

αs
+ ~B · ∇η

)
+ 2 (δp1 + p′ξ+

+γpdiv~ξ
) ~χ ·

[
~B ×∇a

]
∣∣∣ ~B∣∣∣2 = ~B · ∇

(
s

αs
ξ

)
−

− γs
αs

~B · ∇ξ +

[
~B ×∇a

]
· ∇δp1∣∣∣ ~B∣∣∣2 , (2)

ρ
∂2τ

∂t2
+ γp ~B · ∇div~ξ = 0. (3)

Here the following standard notations were used: ρ
is the plasma density, p is the plasma pressure, γ is

the ratio of speci�c heats, ~j is the current density, ~B

is the magnetic induction, αs =
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is the shear of the magnetic �eld,

δp1 = −γpdiv~ξ −
∣∣∣ ~B∣∣∣2 (div~ξ⊥ + 2~χ · ~ξ⊥

)

is the total perturbed plasma pressure, (· · · )′ =
∂

∂a
(· · · ), subscript ⊥ denotes a vector, perpendic-

ular to the magnetic �eld line.
The quantity a is called a label of the magnetic

surface and satis�es the following conditions:

~B · ∇a = 0, ~j · ∇a = 0. (4)

The magnetic surface [15] is a surface, which con-
tains magnetic �eld lines and current lines. At a
given magnetic surface, the value of a is constant.

When deriving the equations (1)�(3) we took into

account that the vectors∇a,
[
~B ×∇a

]
and ~B are or-

thogonal. For simplicity, we used Lorentz-Heavyside

units for ~B and ~j, normalising the latter by c as well:

~B =
~B(CGS)

√
4π

, ~j =

√
4π

c
~j(CGS), (5)

where ~B(CGS) and ~j(CGS) are the magnetic induction
and the current density respectively in Gauss units.

Equations (1) � (3) do not depend on the par-
ticular coordinate system, since they were obtained
using the general properties of di�erential operators.
For this reason they are exact and represent arbi-
trary MHD perturbations in ideal plasma and do not
impose any restrictions on the pressure, current and
electromagnetic �elds.

In spherical coordinates (r, θ, ϕ) with θ = 0 at
the equator an axially symmetric dipolar magnetic
�eld can be de�ned as

~B = [∇ψ ×∇ϕ] , (6)

where ψ =M cos2 θ/r is the poloidal magnetic �ux,
M is the terrestrial magnetic dipolar momentum, ϕ
is the toroidal (longitudinal) angle. The equation (6)
is the simplest curvilinear three-dimensional model
of the geomagnetic �eld. The �eld line equation of
the dipolar �eld is

r = L cos2 θ, (7)

where L is the equatorial distance to the �eld line
measured in terrestrial radii [16].

Choosing the function ψ as the magnetic surface
label, and considering that for such a �eld the fol-
lowing conditions hold true:

γs = 0, ~χ ·
[
~B ×∇ψ

]
= 0, (8)

from the equations (1)�(3) and (8) we get a set of
equations of small perturbations [1]:
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ρ
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∂t2
+ γp ~B · ∇div~ξ = 0. (11)

These equations describe all three MHD modes � a
shear Alfvén mode, a compressional Alfvén mode,
which splits into a shear Alfvén mode and a slow
magnetoacoustic mode in the limit of zero curvature,
and a fast magnetoacoustic mode.

Setting δp1 = 0 in equations (9)�(11), we drop
out the fast magnetoacoustic mode, since the remain-
ing two modes do not perturb the total pressure.
This yields a condition

div~ξ =
1

1 + β

 ~B · ∇

 τ∣∣∣ ~B∣∣∣2
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|∇ψ|2
ξ
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(12)

where β =
γp∣∣∣ ~B∣∣∣2 . In the β � 1 limit the equation

(12) tends to a well-known relation div~ξ⊥ ∼ −2~χ·~ξ⊥,
which is commonly used in energy analysis to cancel
the fast magnetoacoustic mode [4].

By the de�nition of divergence we can also write
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|∇ψ|2
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+
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+
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 τ∣∣∣ ~B∣∣∣2
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Note that the second right-hand term contains a
derivative in the ∇ψ direction, perpendicular to a
magnetic surface. Since such a derivative does not
appear elsewhere in the equations, the condition (13)
can be always satis�ed by this term alone by a proper
choice of this derivative. Nevertheless, it is impor-
tant to consider this condition, because it means that

for div~ξ to be de�ned we have to consider the three-

dimensional vector �eld ~ξ and not just a single mag-
netic surface.

As a result, we obtain the exact equations of small

perturbations in the dipolar magnetic �eld:
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ρ

αs

∂2η

∂t2
+ ~B · ∇

(
1

αs

~B · ∇η
)

= 0. (16)

These equations coincide with those obtained in the
articles [8] using the ballooning approximation. Note
that we made only two assumptions: that the am-
bient magnetic �eld is dipolar, and that the total
pressure is not perturbed. Boundary conditions for
this system of equations are determined by ideal con-
ducting ionsphere and by condition

ξ
∣∣∣
θ=±θ0

= η
∣∣∣
θ=±θ0

= τ
∣∣∣
θ=±θ0

= 0, (17)

where θ0 = cos−1
(
L−1/2

)
is the latitudinal angle at

which the �eld line crosses the boundary.

damping due to phase mixing

Equations (12), (13) and (16) can be considered
separately from equations (14) and (15) by formally
setting ξ = 0 and τ = 0. Speaking strictly, they both
can be non-zero, but their input in the condition (12)
can be negated by a proper choice of the term with
a transverse derivative in the equation (13). In this
case

∇ϕ · ∇η
|∇ϕ|2

=

[
~B ×∇ψ

]
∣∣∣ ~B∣∣∣2 · ∇η = 0 (18)

and describes toroidal Alfvén modes. The relation
(18) means that the toroidal amplitude η does not
depend on the longitudinal angle ϕ. This was taken
into account when analysing the equation (16) in the
article [8]. All spatial gradients in this equation are
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multiplied by the magnetic �eld and have the form
~B ·∇, so it is convenient to switch to the �eld-aligned
derivative. Since this is a one-dimensional problem,

we can consider a single harmonic by replacing
∂2

∂t2
with −ω2. Now we can rewrite the equation (16) in
the form

Ω2η +
1

cos13 θ

∂

∂θ

(
1

cos θ

∂η

∂θ

)
= 0, (19)

where Ω = ω/ωA is the dimensionless frequency,
ωA = B0/L

√
ρ is the Alfvén frequency, B0 = M/L3

is the equatorial magnetic �eld. We assume the
plasma density ρ to be constant along the �eld line.

Adding ideal conductive boundary conditions for
toroidal modes (17), we can easily get a WKB solu-
tion to the Sturm-Liouville eigenvalue problem (19),
(17):

Ωm =
πm

+θ0∫
−θ0

cos7 θdθ

, m = 1, 2, 3, . . . ,

ηm =
1

Ωm cos3 θ
sin

Ωm

+θ0∫
−θ0

cos7 θdθ

 . (20)

As one can see, Ωm and thus ω are continuous func-
tions of θ0 and thus of L. Let us follow the approach
of [20]. Consider two neighbouring magnetic surfaces
with slightly di�erent equatorial distances L − ∆L
and L + ∆L. Assuming ∆L to be small, let us cal-
culate the average perturbed toroidal magnetic �eld
δBϕ in this region:

〈δBϕ (L, θ, t)〉L =
1

2∆L

L+∆L∫
L−∆L

δBϕ (L, θ, t) dL =

=
1

2∆L

L+∆L∫
L−∆L

a (L, θ) e−iω(L)tdL. (21)

Here ω(L) is de�ned by equation (20) and a(L, θ) is
de�ned by the initial conditions at t = 0. Switching
the integration variable from L to ω, we obtain

〈δBϕ (L, θ, t)〉ω =
1

2∆L

ω+∫
ω−

b (ω, θ) e−iωtdω, (22)

where b(ω, θ) =
a(L(ω), θ)

∂ω/∂L
, L(ω) is a function, in-

verse to ω(L), ω± = ω(L ± ∆L). Note that the

function b(ω, θ) exists only when
∂Ω

∂L
6= 0.

Integrating the right-hand side of equation (22)
by parts, we get

〈δBϕ (L, θ, t)〉ω =
1

2∆L

[
ib(ω)e−iωt

t

∣∣∣∣ω+

ω−

−

− i
t

ω+∫
ω−

∂b(ω, θ)

∂ω
e−iωtdω

 . (23)

As one can easily see, this expression tends to zero
at t→ ∞, i. e. the perturbations are damped.

summary

In the case of dipolar magnetic �eld con�gura-
tion, it is not necessary to apply the ballooning ap-
proximation and the equations of small perturba-
tions can be derived exactly (in the linearised sense,
of course). These equations describe all three MHD
modes � shear Alfvén mode, compressional Alfvén
mode, which splits into a shear Alfvén mode and
a slow magnetoacoustic mode in the limit of zero
curvature, and a fast magnetoacoustic mode, which
we manually cancelled from the equations. These

equations contain a term div~ξ, which has the phys-
ical meaning of plasma compressibility. This term,
by de�nition of a divergence, contains a derivative in
the∇ψ direction, transverse to the magnetic surface.
This derivative thus describes the transverse struc-
ture of the perturbations, i. e. the interaction be-
tween the perturbations localised at the neighbour-
ing magnetic surfaces.

Due to this interaction and a continuous depen-
dence of eigenmode frequencies on the label of the
magnetic surface, the phase di�erence between the
perturbations on the neighbouring magnetic surfaces
will build up with time and their amplitude will de-
crease with time as 1/t.
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