
The discrete dipole approximation code DDscat.C++ :

features, limitations and plans

V.Ya.Choliy∗

Advances in Astronomy and Space Physics, 3, 66-70 (2013)

© V.Ya.Choliy, 2013

Taras Shevchenko National University of Kyiv, Glushkova ave., 4, 03127, Kyiv, Ukraine

We present a new freely available open-source C++ software for numerical solution of the electromagnetic waves
absorption and scattering problems within the Discrete Dipole Approximation paradigm. The code is based upon
the famous and free Fortan-90 code DDSCAT by B.Draine and P. Flatau. Started as a teaching project, the presented
code DDscat.C++ di�ers from the parent code DDSCATwith a number of features, essential for C++ but quite seldom
in Fortran. This article introduces the new code, explains its features, presents timing information and some plans
for further development.

Key words: discrete dipole approximation, light scattering simulations, computer software

introduction

Electromagnetic �eld is scattered or absorbed by
targets. It is an isolated grain (of arbitrary geom-
etry and possibly with complex refractive index) or
1-d or 2-d periodic structure of unit cells. According
to discrete dipole approximation (DDA) paradigm,
the target is approximated with an array of polar-
izable particles (dipoles). The theory of DDA was
proposed by Purcell and Pennypacker [11] and de-
veloped by Draine and Flatau [3, 4]. Extension of
the theory to periodic structures was made in [5].
Calculations of the electric and magnetic �eld near
the target was introduced in [7].

All mentioned algorithms were implemented in
DDSCAT 1 and explained for users in [6]. Current ver-
sion of DDSCAT is 7.3.0 and here we refer this code as
the parent one. Its User guide [6] is a necessary and
excellent book to start using the code.

The presented code DDscat.C++ 2 is the
DDSCAT rewritten in C++. Current version of
DDscat.C++ is a clone of the parent code but it con-
tains some C++ speci�c features to make it easily
modi�able and portable. At the beginning the idea
was to have a good software for students to study
the photonics and IT in a single package. Step-
by-step the code has been changed, and now we
have the code with another design and architecture,
but mostly with the same functionality. That is
why we left behind the pages the DDA itself and
concentrated on the features and limitations of the

new code. User and programmer guide [2] of the
presented code explains mostly di�erences between
the codes and concentrates on the programming fea-
tures. The DDscat.C++ users are recommended to
read both manuals before start.

Here it is the place to mention another DDA
codes. Good but little outdated review is presented
in [10]. Among them the Amsterdam DDA code
ADD-A [13]: written in C and claimed [9] as an ex-
tremely advanced C code for the DDA, SIRRI [8], and
ZDD [14]. Only ADD-A and DDSCAT are open source
and free. There is yet another OpenDDA framework3,
with an open code accessible via registration on the
web-site. Please, refer to Scatterlib4 for the list of
another scattering codes.

features

The DDscat.C++ uses plug-in paradigm as a
main architectural principle. This means that
the code is build up with a blocks allowing the
lightweight replacement, modi�cation and refactor-
ing. DDscat.C++ is a set of dynamically linked li-
braries with strictly de�ned and �xed communica-
tion interfaces.

Examples and testing capabilities are an essential
part of the code. As running of all tests consumes
a lot of time, we do not use CppUnit but our own
code and scripts library to be run on request. All
DDSCAT tests work �ne in DDscat.C++ .

Overall view of the architecture and its main
∗Choliy.Vasyl@gmail.com
1http://code.google.com/p/ddscat/
2http://code.google.com/p/ddscatcpp/
3http://opendda.org
4http://code.google.com/p/scatterlib/

66

Advances in Astronomy and Space Physics V.Ya.Choliy

blocks are presented in Fig. 1.
The users familiar with the parent code may eas-

ily identify known code blocks. Asterisk as an up-
per index marks new code parts, introduced in C++
version. Every code portion is controlled with and
is communicated via the specially designed manager
components. These code snippets are singletons.

Input manager loads parameter �le, checks pa-
rameters compatibility and prepares the software to
run. There are two possibilities to store the pa-
rameters. DDscat.C++may load and understand the
parent code *.par �les without any changes, but it
might be controlled by xml �les. Xml is a �le for-
mat widely used in IT [1] and easily understandable
by humans and by computers. Please, refer to [2]
for explanation and discussion of the topic. We use
open-source third party xml software libXml25.

The input manager works together with the
restart manager � a code useful in restarting of the
calculations, for example, after sudden power failure.
It is clearly new feature as the DDscat.C++ restart
manager handles the attempts of the code to crash.
Strictly speaking, DDscat.C++ never crashes, it is
able only to �nish gently. This new feature is in
the testing phase now.

The target manager manipulates the targets.
The target explains the grains geometry or repre-
sents elementary cell to build 1-d or 2-d in�nite pe-
riodic arrays of targets. The parent code contains
a lot of di�erent geometries already implemented.
These are ellipsoids (spheroids), prisms, cylinders,
disks, slabs, tetrahedra, possibly with holes and their
simple joints. Some of the targets are just a combi-
nation or multiplications of existing ones. There is
a CallTarget component in the parent code which
helps users to create new targets by specifying the
positions and compositions of the target dipoles in
the �le. The new code CallTarget2 written in
wxPython will allow users to create targets interac-
tively.

The solver manager is an interface for linear
system solvers. The parent code uses conjugated gra-
dient (CG) method. A lot of CG codes are collected
by P. Flatau in Complex Conjugate Gradient Meth-
ods library CCGPACK. Current version of the CCGPACK
library is 2.06. Very little but useful User guide may
be found in the same place. As a parent code the
C++ version uses only a little subset of the routines
from CCGPACK. Reimplementing of all CCGPACK rou-
tines is in our to-do list.

The FFT manager is an interface for Fast Fourier
Transform routines. Only two of the parent code
possibilities are implemented in C++ version. These
are FFTW7 and Gpfaft, C++ version of the famous

Fortran Temperton8 FFT code [12]. Other possi-
bilities, based upon Intel MKL or Inter Performance
Primitives are implemented only as interfaces due to
licensing shortcomings.

New linear system solvers (not mandatory CG),
FFT routines and targets may be added to the code
without rebuilding it. During the initialization of
the code, the managers check whether the addi-
tional libraries are present and load them if they are.
By default target manager and all targets reside in
targetlib. New targets and additional target man-
ager code may be put into targetlibpp library for
testing. During the code debug it is necessary to re-
build only targetlibpp. When the testing of the
new target is �nished, the code may be moved to
targetlib, and again, to run the code we need to
rebuild only targetlib.

The dielectric manager is a little database
managing system (DBMS) assigned to manipulate
the dielectric data. Those data are normally stored
in �les with read-only access. It might be a real
DBMS, for example, based on Sqlite, with all nec-
essary access codes. It is also possible to keep di-
electric data into xml �les and use universal acces-
sors like in the Input manager. The data stored in
those databases might be accessible from any other
applications. The manager can also handle magnetic
data.

The parent code was implemented in a paral-
lel mode to be used with MPI and OpenMP. It is
able to process di�erent target orientations in par-
allel but inside the orientation the program works
as a sequential one. OpenMP and MPI codes are tem-
porary disabled in C++ version. The feature of the
DDscat.C++ is the usage of the CUDA9 to achieve
parallelism inside the elementary task. For that pur-
pose CUDA-based FFT (CUFFT) and linear solver
(CUBLAS) are included in DDscat.C++ .

DDscat.C++ contains two Readnf executables.
The �rst, Readnf1 should be used to prepare the
near-�eld results for visualization. It is controlled
with Readnf1.par (or xml) which consists of the
1st, 2nd and 3rd lines of Readnf.par of the parent
code. The second one, Readnf2, is used only to make
the cross section of the �eld along the line. User may
specify a lot of lines in the Readnf2.par (or xml) �le.
The code will create as many �les as the lines given:
one cross line per the output �le. DDpostprocess
software is identical to the parent code in functional-
ity. All those codes use the same library Processlib.

The usage of CallTarget and CallTarget2 are
explained in [6] and [2], correspondingly.

There is only one Windows speci�c code included
into the delivery package, namely the Profiler. The

5http://www.xmlsoft.org
6http://code.google.com/p/conjugate-gradient-lib/
7http://www.fftw.org
8possibly our code is the �rst C/C++ clone of Gpfaft
9http://nvidia.com/CUDA/

67

Advances in Astronomy and Space Physics V.Ya.Choliy

open source code from the Code Project10 was prin-
cipal for code refactoring. The Profiler helped us
to recognise the code bottlenecks and to direct the
refactoring e�orts.

quick start

DDscat.C++ code is freely downloadable from the
Google code site11. The package contains all neces-
sary *.h and *.cpp �les (and does not contain any
binary �les) to build the software under Windows
XP, Mac OS X, or Linux (checked at Debian and
Ubuntu) operating systems. We succeeded in com-
piling the code under Raspbian at Raspberry Pi
model B12, but we have very little expertise of the
usage of the code there.

The development of DDscat.C++was done with
Qt Creator and Qt 4.7.4 under Windows and Linux
Ubuntu (two OSes used the same code). The
�nal code then was recombined into MSVC 7.1
projects with Intel C++ compiler13 and into Xcode
3.0 projects under Mac OS X 10.5.8. All project
�les for Qt Designer, MSVC, Xcode and normal
makefiles are included into the delivery package.
Opening project �les and rebuilding the code will
result in binary distribution in BinQt (for Qt),
Bin (for MSVC), BinX (for Xcode), BinA (make�les).
All intermediate �les are left in Debug or Release
sub-directories inside sub-project directories. The
binary distribution contains DDscat.C++ , Readnf,
CallTarget, DDpostprocess, VTRConvert, and a list
of libraries.

Any third party binary �les (for example, xml li-
braries) should reside in an appropriate bin directory
to run the code. It is on the user responsibility to
download and install them.

The DDscat.C++may be controlled with parame-
ter �le of the parent code, but some additional free-
dom in the parameter �le is allowed. All string
parameters may be presented without putting into
apostrophes. Thus, `GPFAFT', like in the parent
code, and just GPFAFT are identical and allowed.
Target name may be a single word of any length
and free capitalization with all underscore symbols
ignored by DDscat.C++ . That is why SPH_ANI_N and
SphaniN or even S__p_HAn___iN__ are identical for
the Target manager and are allowed.

DDscat.C++makes memory allocation only once
during target loading. That is why 8th and 9th lines
of parameter �le are ignored but should be present
in the �le.

In the de�nition of composition �les after the 13-
th line there might be a lot of �le names given in the
parameter �le. DDscat.C++ allows using the equal-
ity sign after some amount of composition �les given.

It means that all already given �le names will be
cyclically copied until their amount become equal to
NCOMP. There are two special �le name stubs: Water
and Ice (case insensitive). They represent water and
ice dielectric properties, built into the code.

results

Two new targets TarNel and AniElN were added
to DDscat.C++ and used here for demonstration pur-
poses. The targets consist ofN ellipsoids of identical
sizes aligned along the X-axis. The ellipsoids can
be anisotropic and touch each other. Anyway, ev-
ery ellipsoid can have its own composition. In the
`heaviest' case, there should be 3*N di�erent or equal
composition �les listed in the parameter �le.

The targets have 5 parameters. These are
x-length/d, y-length/d, z-length/d, number of
ellipsoids, distance between their surfaces along the
X-axis. The �rst three parameters are identical to
ELLIPSO_2.

Fig. 2 presents the electric �eld | ~E|/| ~E0| on two
planes, both passing through the centres of three el-
lipsoids with a = 0.398 µm 24 × 36 × 30. The �fth
parameter is equal to 6. The incident wave is prop-

agating with ~k0 ‖ ~xTF and ~E0 ‖ ~yTF . The geometry
is identical to the ELLIPSOID_NEARFIELD example of
the parent code. Large arrow shows the direction
of the X-axis and the incident wave. This �gure was
generated with MayaVi2 software. A lot of other �g-
ures for di�erent particles are given in the Appendix
of the electronic version of the article.

To test the CUDA-based algorithms we used
quite old-fashioned self made computer with AMD
Phenom 9850, 8Gb memory, 8Tb HDD and four
GeForce GTX-260 installed on Platinum K9A2
motherboard under WinXP 64 with DDscat.C++ 32-
bit code compiled with MSVC 7.1. General testing
of the code was done on the same computer with
CUDA disabled.

Table 1: The timing results of the DDscat.C++ code (sec-
onds) for the ELLIPSON example.

CUDA
Size Solve Scat Near�eld Near�eld

2 16.3 - 16.6 9.5 23.3 9.2
3 28.6 - 30.7 14.1 27.7 9.2
5 47.1 - 52.7 23.7 51.0 9.6
8 80.0 - 89.4 38.1 97.2 10.0
12 113.7 - 116.2 56.8 146.2 10.8

The run times of the di�erent DDscat.C++ code
portions for di�erent examples are given in Table 1.

10N. Soman, http://codeproject.com/Simple Profiler using the Visual Studio C C++ Compiler and DIA SDK - CodeProject.html
11http://code.google.com/p/ddscatcpp/
12http://www.raspberrypi.org
13thanks a lot to the sponsor who want to stay anonymous

68

Advances in Astronomy and Space Physics V.Ya.Choliy

The results are given here only to review the in�u-
ence of CUDA on routine Nearfield. The discussion
of the results and deep analysis of the parallelisation
technology will be explained with DDscat.C++ 7.3.1
and in the future papers.

discussion

There was no idea to make the comparison of the
DDscat.C++ against DDSCAT . Anyway if we recall the
DDSCAT pros and cons from [10] and shortly comment
them here, some comparison happens by itself, de-
spite of identical functionality.

The DDscat.C++ is the most accurate. With the
same parameters it converges to a little better preci-
sion (20%) with the same or even less amount of iter-
ations, than DDSCAT . It is de�nitively due to di�erent
languages, more advanced IT technologies used, and
modi�ed architecture.

The DDscat.C++ is the fastest code, as it is sev-
eral times faster than the parent code (this statement
is quite preliminary, it holds only for our examples
with CUDA enabled and only for Near�eld). Fully
`CUDA-�ed' DDscat.C++ should be 50-150 times
faster than the sequential parent code for single pre-
cision. But this comparison is not quite honest as
the DDscat.C++ and the DDSCAT make use of di�erent
parallelization schemes. Only di�erent orientations
are parallelized in the DDSCATwith MPI. These are
like di�erent tasks. They are absolutely autonomous.
In contrary to that the DDscat.C++with CUDA par-
allelizes every numerical algorithm used to its deep.

The DDscat.C++ is very e�ective in memory man-
agement. Existing code of DDscat.C++ never keeps
unused memory allocated and can use GPU (graph-
ical cards) memory to store the target data. That
is why the DDscat.C++ can manage the targets with
greater sizes. We have succeeded with ELLIPSON tar-
get of 120 ellipsoids, which is impossible with the
DDSCAT .

The DDscat.C++ code is written in C++ and does
no need recompiling for di�erent size geometries any-
more. Strictly speaking, it does not need recompiling
at all as it does not contain any static arrays inside.
The code is written not in maniac-style C++, but in
C++ with a lot of C code in it. That should help users
to start using the code. In some places the code re-
ally needs a refactoring and polishing the style, and
these are our tasks for the next steps.

The DDscat.C++ is still free with full code avail-
able including parallelized parts. DDscat.C++will
follow the releases of the parent DDSCAT code and
will always provide the same functionality with ad-
ditional features clearly stated.

The DDscat.C++ uses �xed parameter �le names
but may use any parameter �le or even xml param-
eter �les. Xml is a famous �le format readable by

humans. There is a lot of software using xml as the
main input or output format. In any case it does
not contradict with the possibility to run a lot of
DDscat.C++ instances at the same time. But from
our point of view it is much productive to run them
in the sequence: one after one and then post-process
the results with the specially designed post-process
codes.

The DDscat.C++ never crashes. In practice it is
stopped by restart manager with accident �ag on.
But if it happens, it might be restarted without loss
of the results.

The DDscat.C++ internal design is specially as-
signed for easy extension and adding some features.
We have a lot of plans to make the code very in-
teresting for scienti�c community. Magnetic dipoles
and magnetic properties, surfaces of di�erent geome-
try near the target, fractal targets, huge targets and
non-cubic lattices are the nearest future steps.

In our opinion, the DDscat.C++ is a good platform
to start implementing new scienti�c tasks on it.

acknowledgements

We would like to thank the DDSCAT parent code
owners B.Draine and P. Flatau for warm attitude
to newborn code, their answers and useful critics of
our e�orts. Another thanks we would like to express
to the students of the Department of Experimental
Physics of the Taras Shevchenko National University
of Kyiv, especially to S.Gorbyk, who were involved
into the project.

references

[1] CholiyV. 2011, in Journees'2011 Proceedings, 160
[2] CholiyV. 2013 (in preparation)
[3] DraineB.T. 1988, ApJ, 333, 848
[4] DraineB.T. & FlatauP. J. 1994, Journal of the Optical

Society of America A, 11, 1491
[5] DraineB.T. & FlatauP. J. 2008, Journal of the Optical

Society of America A, 25, 2693
[6] DraineB.T. & FlatauP. J. 2012, [arXiv:1202.3424]
[7] FlatauP. J. & DraineB.T. 2012, Optics Express, 20,

1247
[8] LummeK. & Rahola J. 1998, J. Quant. Spec. Radiat.

Transf., 60, 439
[9] Mc Donald J., GoldenA. & Jennings S.G. 2009,

[arXiv:0908.0863v1]
[10] PenttiläA., ZubkoE., LummeK. et al. 2007, J. Quant.

Spec. Radiat. Transf., 106, 417
[11] Purcell E.M. & PennypackerC.R. 1973, ApJ, 186, 705
[12] TempertonC. 1992, SIAM Journal on Scienti�c Com-

puting, 13, 676
[13] YurkinM.A., MaltsevV.P. & HoekstraA.G. 2007,

J. Quant. Spec. Radiat. Transf., 106, 546
[14] ZubkoE., ShkuratovY., HartM., Eversole J. &

VideenG. 2003, Optics Letters, 28, 1504

69

Advances in Astronomy and Space Physics V.Ya.Choliy

Fig. 1: General view of the code architecture.

Fig. 2: The electric �eld around the chain of three ellipsoids.

70

