ВЛИЯНИЕ ПРЕДВАРИТЕЛЬНОГО ПОДОГРЕВА И ЛОКАЛЬНОЙ ТЕРМООБРАБОТКИ НА СТРУКТУРУ И СВОЙСТВА СОЕДИНЕНИЙ ДИСПЕРСИОННО-УПРОЧНЕННЫХ ЛЕГИРОВАННЫХ КРЕМНИЕМ ТИТАНОВЫХ СПЛАВОВ, ВЫПОЛНЕННЫХ ЭЛС

С. В. АХОНИН, Э. Л. ВРЖИЖЕВСКИЙ, В. Ю. БЕЛОУС, И. К. ПЕТРИЧЕНКО

ИЭС им. Е. О. Патона НАН Украины. 03680, г. Киев-150, ул. Казимира Малевича, 11. E-mail: office@paton.kiev.ua

Титановые сплавы имеют высокую прочность и коррозионную стойкость в широком диапазоне температур. При разработке перспективных сплавов необходимо повышать как рабочие температуры деталей и узлов будущих двигателей, так и их удельную прочность. В работе изучено влияние предварительного подогрева и локальной термообработки на структуру и свойства сварных соединений, выполненных электронно-лучевой сваркой экспериментальных титановых сплавов, легированных кремнием — псевдо α -сплава Ti-5,6Al-2,2Sn-3,5Zr-0,4Mo-1V-0,6Si и (α + β)-сплава Ti-4.3Al-4.4Sn-6Zr-1.6Mo-0.7V-4.3Nb-0.4Si. Сварные соединения дисперсионно-упрочненного титанового ($\alpha+\beta$)-сплава Ti-4,3Al-4,4Sn-6Zr-1,6Mo-0,7V-4,3Nb-0,4Si имеют более высокий предел прочности, достигающий 1277 МПа, что соответствует 90 % прочности самого сплава. Долговременная прочность σ₁₀₀ при температуре 600 °C сварного соединения титанового сплава Ti-4,3Al-4,4Sn-6Zr-1,6Mo-0,7V-4,3Nb-0,4Si составляет около 260 МПа, что находится на уровне 93 % длительной прочности основного металла. Библиогр. 12, рис. 4, табл. 3.

Ключевые слова: титан, титановые сплавы, дисперсионное упрочнение, электронно-лучевая сварка, структура, свойства, прочность, долговременная прочность

Титановые сплавы имеют высокую прочность и коррозионную стойкость в широком диапазоне температур. При разработке конкурентоспособных двигателей необходимо повышать как рабочие температуры деталей и узлов будущих двигателей, так и их удельную прочность [1]. В первую очередь этого можно достичь за счет повышения легирования титанового сплава. Традиционно жаропрочные титановые сплавы, такие как ВТЗ, ВТ9, ВТ8 относятся к группе псевдо α-сплавов, однако в последние годы проводятся исследования в направлении разработки и двухфазных жаропрочных $(\alpha + \beta)$ -титановых сплавов. Так, например, жаропрочный сплав ВТ25У [2], у которого $\sigma_{_{\rm B}} = 1080 \; {\rm M}\Pi {\rm a} \; {\rm при} \; 20 \; {\rm ^{o}C} \; {\rm u} \; \sigma_{_{\rm B}} = 784 \; {\rm M}\Pi {\rm a} \; {\rm при}$ 550 °C, что превышает соответствующие значения многих жаропрочных однофазных α-сплавов или псевдо α-сплавов [3]. В случае с дисперсионно-упрочненными (α+β)-титановыми сплавами их прочность также выше, что делает их потенциально более перспективными для применения в двигателестроении [4, 5]. Кремний как легирующий элемент повышает жаропрочность титановых сплавов за счет блокирования движения дислокаций. Однако растворимость кремния в α-титане очень небольшая — на уровне десятых долей процента (менее 0,2 % при 600 °C). Даже небольшие изменения концентрации кремния могут приводить к изменению свойств как основного металла (ОМ), так и их сварных соединений. Существенным недостатком дисперсионно-упрочненных титановых сплавов является сложность сварки, связанная с возникновением холодных трещин в сварных соединениях. Поэтому электронно-лучевая сварка (ЭЛС) таких сплавов требует применения дополнительных технологических операций, таких как предварительный подогрев и послесварочная термообработка. Усложнение процесса изготовления деталей из жаропрочных титановых сплавов требует совершенствования технологии их сварки, особенно титановых сплавов, дополнительно легированных кремнием.

Целью работы является определение влияния предварительного подогрева и локальной термообработки в камере для ЭЛС на свойства сварных соединений экспериментальных титановых сплавов, легированных кремнием.

Изучались свойства сварных соединений, выполненных ЭЛС, двух типов титановых сплавов, которые относятся к псевдо α-сплавам и (α+β)-сплавам: сплав 1 (Ti-5,6Al-2,2Sn-3,5Zr-0,4Mo-1V-0,6Si - псевдо α-сплав с коэффициентом стабилизации β -фазы $K_{\rm g} = 0,1$); сплав 2 (Ti-4,3Al-4,4Sn-6Zr-1,6Мо-0,7V-4,3Nb-0,4Si — двухфазный (α + β)-сплав мартенситного типа с K_{β} = 0,33).

Выплавку слитков осуществляли на гарнисажной электронно-лучевой установке ИСВ-004

© С. В. Ахонин, Э. Л. Вржижевский, В. Ю. Белоус, И. К. Петриченко, 2017

Таблица 1. Химический состав дисперсионно-упрочненных титановых сплавов, легированных кремнием

				•			•	
Сплав	Содержание легирующих элементов, мас. %							
	Al	Sn	Zr	Mo	V	Nb	Si	Λ_{β}
1	5,6	2,2	3,5	0,4	1,0	-	0,6	0,1
2	4,3	4,4	6,0	1,6	0,7	4,3	0,4	0,33

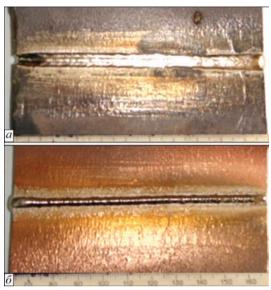


Рис. 1. Внешний вид сварного соединения титанового сплава 2 с предварительным электронно-лучевым подогревом при температуре 200 °С: a — лицевая сторона; δ — корень шва

[6]. Химический состав обоих сплавов приведен в табл. 1. Полученные слитки прокатывались до толщины 13 мм. После проката для стабилизации структуры и снятия напряжений пластины подвергались отжигу при температуре 800 °C на протяжении 1 ч.

Выполняли сварку образцов размером 150×70×13 мм. Сварку осуществляли за один проход на установке ЭЛА60/60. Для каждого из этих исследуемых сплавов были выполнены три разных предварительных нагрева до 200, 300 и 400 °C, контроль температуры осуществлялся с помощью термопар, прикрепленных с корневой

стороны шва. Подробная методика опубликована в работе [7]. Сварку выполняли на режиме: $U_{\text{ver}} =$ $=60~{
m kBr},\,I_{
m nyua}=80~{
m mA},\,V=7~{
m mm/c}.$ Внешний вид сварного соединения опытного (α+β)-титанового сплава с дисперсионным упрочнением, выполненного ЭЛС с предварительным подогревом и последующей локальной электронно-лучевой термообработкой, приведен на рис. 1.

Среди дефектов, которые чаще всего наблюдались в сварных соединениях обоих сплавов, были холодные трещины, причем трещины образовывались как в верхней части швов, так и в зоне термического влияния (ЗТВ). Эффективным технологическим приемом для предотвращения холодных трещин при ЭЛС является локальная термообработка непосредственно после сварки [8]. Поэтому для получения свободных от трещин качественных соединений непосредственно после сварки выполняли локальную термообработку (ЛТО) полученных соединений в лучевой камере. ЛТО включала нагрев до 900 °C и выдержку на протяжении 5 мин. После ЛТО холодные трещины в соединении отсутствуют.

Экспериментальный сплав 1 в состоянии после проката и последующего отжига имеет пластинчатую структуру с концентрацией силицидов на границах пластин (рис. 2, a), что связано с тем, что содержание кремния в этом сплаве находится выше предела его растворимости в α-фазе. Как известно, максимальная растворимость кремния в α-фазе составляет 0,45 % при температуре 860 °C, а минимальная менее 0,2 % при 600 °C [9]. Кроме того, растворимость кремния в титане может снижаться при наличии других легирующих эле-

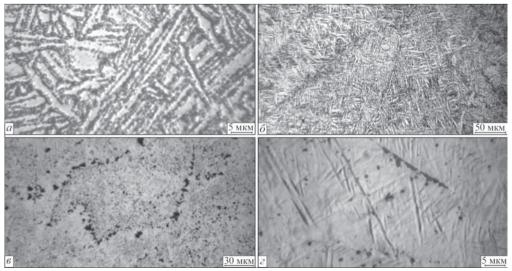


Рис. 2. Микроструктура OM (a) и металла шва дисперсионно-упрочненного титанового сплава 1, выполненного ЭЛС (δ – ϵ)

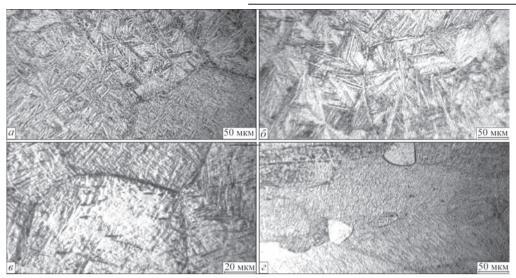


Рис. 3. Микроструктура метала ЗТВ дисперсионно-упрочненных титановых сплавов, выполненных ЭЛС: a, δ — сплав 1; a, ϵ — сплав 2 (a, δ, ϵ — после сварки; δ — после ЛТО)

ментов, таких как, например, алюминий [10, 11]. Исследования структуры выполненных сварных соединений показали, что металл шва экспериментального сплава 1 в состоянии после сварки и ЛТО состоит из удлиненных в направлении теплоотвода первичных β-зерен с пластинчатой α-фазой в объеме зерен (рис. 2, б). После сварки частицы силицидов локализуются как по границам β-зерен, так и в объеме зерна (рис. 2, в). Размер пластинчатой α'-фазы составляет 0,3...1,5 мкм, а силицидных выделений — 0,1...0,2 мкм. После термообработки частицы силицидов располагаются преимущественно на границах α-пластин (рис. 2, г) как и в ОМ. В околошовной зоне ЗТВ после нагрева до температур, превышающих температуру полиаморфного превращения (ТПП), формируются большие равноосные зерна β-фазы. При охлаждении до температур ниже ТПП в объеме первичных β-зерен также, как и в шве, происходит β→α′-превращение с формированием пластинчатой α΄-фазы (рис. 3, а). После термообработки силициды также преимущественно обрамляют границы α-пластин (рис. 3, δ).

В работе [12] показано, что для структурно-фазового состояния металла зоны сплавления сварного соединения титанового сплава 1 характерно формирование пластинчатых α - и β -структур вытянутой формы, при этом образуются фазовые выделения интерметаллидов различного стехиометрического состава, такие как $\mathrm{Ti}_3\mathrm{Si}$; $\mathrm{Ti}_5\mathrm{Si}_3$; (Ti , Zr)₅(Si , Al)₃; (Ti , Zr)₂(Si , Al) и TiSi . Эти интерметаллидные фазы существенно отличаются как по размерам, так и по их распределению. Средний диаметр интерметаллидных выделений составляет 0,1...0,2 мкм. Места фазовых выделений сопровождаются образованием в этих зонах плотных дислокационных скоплений. Наличие сильно вытянутых структурно-фазовых образований спо-

собствует снижению пластичности металла сварного соединения и, соответственно, увеличению склонности к образованию трещин [12].

Экспериментальный сплав 2 относится к $(\alpha+\beta)$ -сплавам мартенситного типа. Содержание кремния в этом сплаве находится несколько выше предела его растворимости в α -фазе. ОМ сплава 2 имеет тонкопластинчатую структуру (рис. 4, α). Сварной шов этого сплава состоит из первичных β -зерен различной формы (рис. 4, δ). В объеме первичных зерен фиксируется метастабильная мартенситная α' -фаза (рис. 4, δ). На фоне игольчатой структуры заметны очень дисперсные частицы силицидов титана, расположенные как на границах, так и в объеме зерна (рис. 4, δ).

В ЗТВ сплава 2 можно выделить три структурно отличающиеся участка. Околошовная зона состоит из равноосных полиэдрических первичных β-зерен с игольчатой морфологией α'-фазы (рис. 3, в). Далее от шва расположен участок ЗТВ, где происходит частичная рекристаллизация с образованием мелких равноосных зерен. Вблизи ОМ находится участок ЗТВ, который нагревался до температур, ниже ТПП и температуры рекристаллизации, и наследует структуру ОМ, но имеет слабую травимость. В некоторых локальных местах ЗТВ мелкие равноосные зерна окружены эвтектикой (рис. 3, г) с высоким содержанием кремния. Микроструктура в зоне сплавления представлена также, как и для псевдо-α-сплава пластинчатыми α- и β-фазами мартенситного типа. В целом структура металла шва и ЗТВ сплава 2 более однородная и мелкодисперсная по сравнению со сплавом 1. Как показано в работе [12], главное отличие в структуре ЗТВ соединений этих сплавов состоит в меньших размерах (а, β)-составляющих и интерметаллидных фаз. Так, размеры пластинчатых структур составляют 0,2...0,5 мкм, а средний ди-

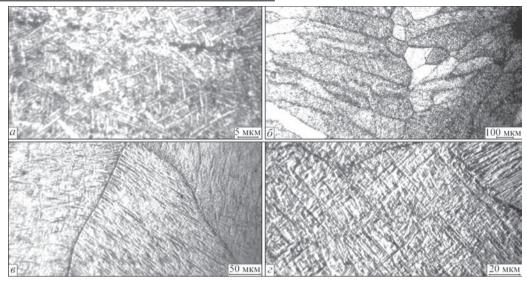


Рис. 4. Микроструктура ОМ (a) и металла шва дисперсионно-упрочненного титанового сплава 2, выполненного ЭЛС $(\delta-\epsilon)$

аметр интерметаллидных выделений составляет 0,01...0,06 мкм, что меньше в 2...3 раза в поперечном сечении по сравнению с соответствующей зоной псевдо-а-сплава. При этом распределение силицидных и интерметаллидных фаз более равномерное по объему всего металла.

Таким образом, дисперсионно-упрочненный титановый сплав 2 имеет меньшие размеры (а, в)-составляющих, а также силицидных и интерметаллидных фаз, по сравнению со сплавом 1, но наличие вытянутых пластинчатых структур будет способствовать, хотя и в меньшей степени, снижению пластичности и соответственно к появлению склонности к образованию трещин в сварном соединении, что указывает на необходимость локальной послесварочной термической обработки.

Анализ механических характеристик сварных соединений обоих сплавов представлен в табл. 2.

Прочность сварных соединений сплава 2 выше на 8 % прочности соединений сплава 1 при практически равной ударной вязкости образцов с острым надрезом. Увеличение температуры предварительного подогрева до 300 и 400 °C не сказывается благоприятно на свойствах сварных соединений, а приводит к снижению ударной вязкости соединений обоих сплавов.

Проведенные исследования позволили сделать вывод, что для ЭЛС сплава 2 оптимальной температурой предварительного подогрева является 200 °C. В этом случае прочность сварных соединений находится на уровне 90 % прочности ОМ.

Поскольку сварные соединения дисперсионно-упрочненного титанового сплава 2 имеют более однородную структуру с меньшими в 2..3 раза размерами (а, β)-составляющих и силицидных фаз, а также более высокие механические свой-

Таблица 2. Механические свойства основного метала и сварных соединений дисперсионно-упрочненных титановых сплавов, выполненных ЭЛС

Материал	Температура предварительного подогрева, °C	Температура (°С); продолжительность (мин) ЛТО	σT, ΜΠα	σ _в , МПа	Ударная вязкость KCV , Дж/см ²	Примечания	
	-	-	1106,4	1208,2	9,05	Основной металл	
	-	-		1309,7	-	Хрупкое разрушение	
	200	-		1187,6	5,4	Хрупкое разрушение	
Сплав 1	200	900; 10	810,5	1182,9	5,3	-	
Cilliab i	300	-	-	1167,7	5,1	-	
	300	900; 10	743,3	1089,0	4,9	-	
	400	-	-	1192,0	4,4	-	
	400	900; 10	789,8	1132,8	3,4		
	-	-	1329,2	1422,2	4,2	Основной металл	
	-	-	-	1360,2	2,2	Хрупкое разрушение	
	200	-	-	1293,0	4,7	-	
Сплав 2	200	900; 10	-	1277,8	4,6	-	
Cilliab 2	300	-	-	1241,6	4,8	-	
	300	900; 10	-	1219,8	4,5	-	
	400	-	-	1329,7	4,5	-	
	400	900; 10	-	1274,9	1,8	-	
*Приведенные средние значения после испытания трех образцов.							

Тип образца	Нагрузка σ, МПа	Время до разрушения, т, ч	Относительное удлинение δ, %	Относительное сужение ψ, %
	650	2,15	9,2	18,6
	600	3,10	14,6	39,2
Основной металл	450	19,00	26,9	50,6
	400	19,30	22,0	61,6
	350	26,30	26,4	54,9
	300	58,00	21,3	69,7
	260	87,00	11,9	18,3
Сварное соединение	260	120,00	9,2	6,75
	300	37,00	10,4	13,9

Таблица 3. Длительная прочности титанового сплава 2 и его сварных соединений при температуре 600 °C

ства, то для этого сплава были выполнены исследования на длительную прочность как самого сплава, так и его сварных соединений. Испытания проводили согласно ГОСТ 10145-81 «Металлы. Метод испытания на длительную прочность». Для этого были изготовлены стандартные образцы типа МИ-83 с цилиндрической частью диаметром 5,0 мм, которые устанавливали в захваты разрывной машины МП-3Г (ГОСТ 1533–81). Температура испытаний образцов составляла 600 °C и поддерживалась постоянной с точностью ± 2 °C. Полученные результаты приведены в табл. 3.

Анализ полученных результатов позволил построить зависимость: нагрузка (о, МПа) — время до разрушения (т, ч) и сделать следующие выводы: долговременная прочность σ_{100} OM титанового сплава 2 с дисперсионным упрочнением составляет около 280 МПа, долговременная прочность σ_{100} сварного соединения титанового сплава 2 составляет около 260 МПа.

Таким образом, проведенные исследования позволили сделать вывод, что длительная прочность сварного соединения титанового сплава 2 с дисперсионным упрочнением, полученного методом ЭЛС с предварительным подогревом при температуре 200 °C и ЛТО электронным лучом в сварочной камере при температуре 600 °C находится на уровне 93 % длительной прочности ОМ.

Выводы

- 1. Сварные соединения, выполненные ЭЛС, дисперсионно-упрочненного титанового псевдо α-сплава Ti-5,6Al-2,2Sn-3,5Zr-0,4Mo-1V-0,6Si имеют размеры α' -фазы в пределах 0,3...1,5 мкм, силицидных выделений 0,1...0,2 мкм, при этом предел прочности соединений достигает 1182 МПа, что составляет 97 % прочности самого сплава.
- 2. Сварные соединения дисперсно-упрочненного титанового ($\alpha+\beta$)-сплава Ti-4,3Al-4,4Sn-6Zr-1,6Mo-0,7V-4,3Nb-0,4Si имеют высокий предел прочности, достигающий 1277 МПа, что соответствует 90 % прочности самого сплава, а также в 2...3 раза меньшие размеры (α, β)-составляющих и интерметаллидных фаз, однако склонны к обра-

зованию трещин и требуют проведения локальной послесварочной термической обработки.

- 3. Оптимальная температура предварительного подогрева при ЭЛС жаропрочных титановых α-сплава Ti-5,6Al-2,2Sn-3,5Zr-0,4Mo-1V-0,6Si и (α+β)-сплава Ti-4,3Al-4,4Sn-6Zr-1,6Mo-0,7V-4,3Nb-0,4Si составляет 200 °C.
- 4. Долговременная прочность σ_{100} при температуре 600 °C сварного соединения титанового сплава Ti-4,3Al-4,4Sn-6Zr-1,6Mo-0,7V-4,3Nb-0,4Si составляет около 260 МПа, что находится на уровне 93 % длительной прочности ОМ.

Список литературы

- 1. Мухин В. С. (2007) Основы технологии машиностроения (авиадвигателестроения). Уфа, Изд-во УГАТУ.
- Ильенко В. М., Шалин Р. Е. (1995) Титановые сплавы для авиационных газотурбинных двигателей. Титан (ВИЛС), 1-2, 25.
- 3. Ильин А. А., Колачев Б. А., Полькин И. С. (2009) Титановые сплавы. Состав, структура, свойства: Справочник. Москва, ВИЛС – МАТИ.
- 4. Иванов В. И., Ясинский К. К. (1996) Эффективность применения жаропрочных сплавов на основе интерметаллидов Ti₃Al и TiAl для работы при температурах 600...800 °С в авиакосмической технике. Технология легких сплавов, 3, 12-25.
- 5. Солонина О. П., Глазунов С. Г. (1996) Жаропрочные титановые сплавы. Справочник. Москва, Металлургия.
- 6. Левицкий Н. И., Матвинец Е. А., Лапшук Т. В. и др. (2012) Получение сложнолегированных титановых сплавов методом электронно-лучевой гарнисажной плавки. Металл и литье Украины, **4**, 6–9.
- 7. Вржижевский Э. Л., Сабокарь В. К., Ахонин С. В., Петриченко И. К. (2013) Влияние локальной термической обработки при ЭЛС титановых сплавов с силицидным упрочнением на механические свойства металла швов. Автоматическая сварка, 2, 21–24.
- Лясоцкая В. С., Лысенков Ю. Т. Герасименко А. В. и др. (1985) Влияние локальной термической обработки на структуру и свойства сварных соединений сплава ВТ6ч. Авиационная промышленность, 11, 57-59.
- 9. Аношкин Н. Ф., Сигалов Ю. М. (2002) Титановые сплавы с повышенной жаропрочностью. Технология легких сплавов, 1, 38-50.
- 10. Цвиккер У. (1979) Титан и его сплавы. Москва, Метал-
- 11. Корнилов И. И., Будберг П. Б. (1961) Диаграммы состояния двойных и тройных систем. Москва, ВИНИТИ.
- 12. Маркашова Л. И., Ахонин С. В., Григоренко Г. М. и др. (2012) Структура и свойства сварных соединений титановых сплавов, легированных кремнием. Автоматическая сварка, 11, 7–17.

Preferences

- 1. Mukhin, V.S. (2007) Principles of technology of machine building (aircraft engine building). Ufa, UGATU.
- 2. Ilienko, V.M., Shalin, R.E. (1995) Titanium alloys for aircraft gas-turbine engines. Titan (VILS), 1-2, 25.
- Iliin, A.A., Kolachev, B.A., Polkin, I.S. (2009) Titanium alloys. Composition, structure, properties: Refer. book. Moscow, VILS-MATI.
- 4. Ivanov, V.I., Yasinsky, K.K. (1996) Efficiency of application of heat-resistant alloys based on Ti3Al and TiAl intermetallics for operation at temperatures of 600-800 °C in aerospace engineering. Tekhnologiya Lyogkikh Splavov, 3, 12-25.
- Solonina, O.P., Glazunov, S.G. (1996) *Heat-resistant titanium alloys*: Refer. Book. Moscow, Metallurgiya.
- Levitsky, N.I., Matvinets, E.A., Lapshuk, T.V. et al. (2012) Producing of complexly-doped titanium alloys by method of electron-beam skull melting. Metall i Lityo Ukrainy, 4, 6-9.
- 7. Vrzhizhevsky, E.L., Sabokar, V.K., Akhonin, S.V. et al. (2013) Influence of local heat treatment at EBW of titanium alloys with silicide strengthening on mechanical properties of weld metal. The Paton Welding J., 2, 20-23.
- 8. Lyasotskaya, V.S., Lysenkov, Yu.T., Gerasimenko, A.V. et al. (1985) Influence of local heat treatment on structure and properties of VT6ch alloy welded joints. Avitsionnaya Promyshlennost, 11, 57-59.
- 9. Anoshkin, N.F., Sigalov, Yu.M. (2002) Titanium alloys with higher heat resistance. Tekhnologiya Lyogkikh Splavov, 1, 38-50
- 10. Zvikker, U. (1979) Titanium and its alloys. Moscow, Metallurgiya.
- 11. Kornilov, I.I., Budberg, P.B. (1961) State diagrams of binary and ternary systems. Moscow, VINITI.
- Markashova, L.I., Akhonin, S.V., Grigorenko, G.M. et al. (2012) Structure and properties of welded joints on titanium alloys containing silicon additions. The Paton Welding J., 11, 6-15.

С. В. Ахонін, Е. Л. Вржижевський, В. Ю. Білоус, І. К. Петриченко

IEЗ ім. €. О. Патона НАН України. 03680, м. Київ-150, вул. Казимира Малевича, 11. E-mail: office@paton.kiev.ua

ВПЛИВ ПОПЕРЕДНЬОГО ПІДІГРІВУ І ЛОКАЛЬНОЇ ТЕРМООБРОБКИ НА СТРУКТУРУ І ВЛАСТИВОСТІ 3'ЄДНАНЬ ДИСПЕРСІЙНО-ЗМІЦНЕНИХ ЛЕГОВАНИХ КРЕМНІЄМ ТИТАНОВИХ СПЛАВІВ, ВИКОНАНИХ ЕПЗ

Титанові сплави мають високу міцність і корозійну стійкість в широкому діапазоні температур. При розробці перспективних сплавів необхідно підвищувати як робочі температури деталей і вузлів майбутніх двигунів, так і їх питому міцність. В роботі вивчався вплив попереднього підігріву та локальної термообробки на структуру і властивості зварних з'єднань,

виконаних електронно-променевим зварюванням експериментальних титанових сплавів, легованих кремнієм α-сплаву Ti-5,6Al-2,2Sn-3,5Zr-0,4Mo-1V-0,6Si i (α+β)-спла-Ti-4,3Al-4,4Sn-6Zr-1,6Mo-0,7V-4,3Nb-0,4Si. з'єднання дісперсійно-зміцненого титанового (α+β)-сплаву Ti-4,3Al-4,4Sn-6Zr-1,6Mo-0,7V-4,3Nb-0,4Si мають більш високу межу міцності, що досягає 1277 МПа, що відповідає 90 % міцності самого сплаву. Довготривала міцність σ_{100} при температурі 600 °С зварного з'єднання титанового сплаву Ті-4,3A1-4,4Sn-6Zr-1,6Mo-0,7V-4,3Nb-0,4Si становить близько 260 МПа, що знаходиться на рівні 93 % тривалої міцності основного металу. Бібліогр. 12, рис. 4, табл. 3.

Ключові слова: титан, титанові сплави, дисперсійне зміцнення, електронно-променеве зварювання, структура, властивості, міцність, довготривала міцність

> S. V. Akhonin, E. L. Vrzhizhevskii, V. Yu. Belous, I. K. Petrichenko

E. O. Paton Electric Welding Institute of NASU. 11 Kazimir Malevich str., 03680. E-mail: office@paton.kiev.ua

INFLUENCE OF PREHEATING PARAMETERS AND LOCAL HEAT TREATMENT ON STRUCTURE AND PROPERTIES OF DISPERSION-STRENGTHENED JOINTS OF SILICON-CONTAINING TITANIUM ALLOYS MADE BY ELECTRON BEAM WELDING

Titanium alloys have high strength and corrosion resistance in a broad temperature range. When developing promising alloys, it is necessary to increase both working temperatures of parts and components of future engines, and their specific strength. The work is a study of the influence of preheating and local heat treatment on the structure and properties of EB welded joints of experimental silicon-containing titanium alloys, namely pseudo α -alloy Ti-5.6Al-2.2Sn-3.5Zr-0.4Mo-1V-0.6Si and $(\alpha+\beta)$ -alloy Ti-4.3Al-4.4Sn-6Zr-1.6Mo-0.7V-4.3Nb-0.4Si. Welded joints of dispersion strengthened titanium ($\alpha+\beta$)-alloy Ti-4.3Al-4.4Sn-6Zr-1.6Mo-0.7V-4.3Nb-0.4Si have higher ultimate strength, reaching 1277 A that corresponds to 90% of that of the alloy proper. Longterm strength ~100 at 600 C temperature of welded joint of Ti-4.3Al-4.4Sn-6Zr-1.6Mo-0.7V-4.3Nb-0.4Si titanium alloy is equal to about 260 MPa that is on the level of 93% of long-term strength of base metal. 12 References, 4 Figures, 3 Tables.

Keywords: titanium, titanium alloy, dispersion strengthening, electron beam welding, structure, properties, strength, long-term strength

Поступила в редакцию 15.05.2017