REVIEWS

https://doi.org/10.15407 /biotech14.02.005

GIBBERELLINS IN REGULATION
OF PLANT GROWTH AND DEVELOPMENT
UNDER ABIOTIC STRESSES

I1.V.KOSAKIVSKA,V.A.VASYUK

UDC 577.175.1:58.02:661.162.65

Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv

E-mail: irynakosakivska@gmail.com, vasyuk@ukr.net
Received 29.01.2021
Revised 08.02.2021
Accepted 30.04.2021

Background. Gibberellins ( GAs), a class of diterpenoid phytohormones, play an important role in
regulation of plant growth and development. Among more than 130 different gibberellin isoforms, only
a few are bioactive. GA;, GA3, GA,, and GA; regulate plant growth through promotion the degradation
of the DELLA proteins, a family of nuclear growth repressors — negative regulator of GAs signaling.
Recent studies on GAs biosynthesis, metabolism, transport, and signaling, as well as crosstalk with other
phytohormones and environment have achieved great progress thanks to molecular genetics and
functional genomics.

Aim. In this review, we focused on the role of GAs in regulation of plant gtowth in abiotic stress
conditions.

Results. We represented a key information on GAs biosynthesis, signaling and functional activity;
summarized current understanding of the crosstalk between GAs and auxin, cytokinin, abscisic acid and
other hormones and what is the role of GAs in regulation of adaptation to drought, salinization, high and
low temperature conditions, and heavy metal pollution. We emphasize that the effects of GAs depend
primarily on the strength and duration of stress and the phase of ontogenesis and tolerance of the plant.
By changing the intensity of biosynthesis, the pattern of the distribution and signaling of GAs, plants are
able to regulate resistance to abiotic stress, increase viability and even avoid stress. The issues of using
retardants — inhibitors of GAs biosynthesis to study the functional activity of hormones under abiotic
stresses were discussed. Special attention was focused on the use of exogenous GAs for pre-sowing
priming of seeds and foliar treatment of plants.

Conclusion. Further study of the role of gibberellins in the acquisition of stress resistance would contribute
to the development of biotechnology of exogenous use of the hormone to improve growth and increase plant
yields under adverse environmental conditions.

Key words: gibberellins, DELLA, phytohormones, abiotic stresses, retardants, growth,
stress resistance.

Plant growth and development are forms [2]. GAs regulate plant growth and

regulated and coordinated by the interaction
of phytohormones — low molecular weight
compounds that act directly or remotely
from the site of their synthesis, and mediate
genetically programmed developmental
changes and respond to environmental
challenges [1]. GAs form the most numerous
class of plant hormones and number more
than 130 isoforms, but physiological activity
is typical only of certain gibberellic acids
(GA;, GA;, GA,, GA;, GA4 and GA;), while
others belong to their precursors and inactive

development by affecting the degradation
of DELLA (aspartic acid-glutamic acid-
leucine-leucine-alanine) proteins, a family
of transcriptional repressors that inhibit cell
proliferation and elongation [3]. GAs content
reduction resulting from stressors effects
limits growth, while enhanced hormone
biosynthesis preventspossibledamage toplants
[4]. Regulation of endogenous GAs levels and
the use of their synthesis inhibitors are among
the main strategies for the formation of stress
resistance of crops. Because one of the key
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functions of GAs is to determine plant height,
they are a major target for stress-induced
growth modulation. It is important that the
expression of genes encoding the synthesis of
enzymes that catalyze the main stages of GAs
synthesis, such as soluble GA2-oxidases, is
normally regulated by environmental signals,
making endogenous GAs extremely sensitive
to environmental changes [4].

Biosynthesis and Signalling

GAs biosynthesis (Fig. 1) consists of three
stages that occur in plastids, endomembranes
and cytosol. GAs are synthesized from
trans-geranylgeranyl diphosphate through
methyl erythritol phosphate pathway due to
the sequential action of two plastid terpene
cyclases with subsequent oxidation on the
endoplasmic reticulum by cytochrome P450
monooxygenases and subsequent dissolution
by 2-oxoglutarate-dependent dioxygenases
GA20ox and GA3ox. Under the action of
abiotic stresses, GA2o0x are activated, which
inhibit the synthesis of GAs [4].

Since the biosynthesis of active GAs is
a complex multistage process involving the
formation of various intermediates [5, 6], it is
quite difficult to accurately identify tissues or
organs, in which the hormone is synthesized or
localized. Genes involved in the biosynthesis of
GAs are localized in different cells and tissues

and their activity depends on the stage of
ontogenesis. The maxima of local accumulation
of GAs correspond to the active growth of root
and hypocotyl cells and flower formation.
Long-distance transportation is mainly limited
to inactive GAs precursors [ 7]. Genetic studies
have identified components of gibberellin
signaling [5, 8]. DELLA proteins, which form
one of the subfamilies of GRAS transcription
factors, have been universal participants in
signaling pathways that coordinate plant
growth and development [9]. The involvement
of DELLA proteins in the formation of the
responses of plants to external influences has
been established [3, 4]. Five DELLA proteins
(RGA, GAI, RGA-LIKE1 (RGL1), RGL2, and
RGL3) have been identified for Arabidopsis
thaliana plants that inhibit GAs activity [10].
At the N-terminal of DELLA proteins is a
conservative amino acid sequence for all higher
plants — DELLA domain. It is responsible
for binding to activated gibberellin receptors
(GA INSENSITIVE DWARF1, GID1). DELLA
proteins serve as negative regulators of genes
whose expression is activated by GAs[3, 4, 11].
It has been found that increasing the content
of GAs and their binding to the GID1 receptor
causesdegradation of DELLA proteins, inhibits
their action and releases the GID1 receptor,
which interacts with other DELLA protein
molecules[12]. DELLA proteins areinvolved in
maintaining gibberellin homeostasis through
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Fig. 1. Scheme of gibberellins synthesis:
ent-kaurene, the universal precursor of GA, is formed in plastids, and GA;5-aldehyde is formed in the
endoplasmic reticulum. The synthesis branches into the Non Hydoxylation and Hydoxylation pathways
in cytosol. Precursors and inactive forms of GAs, which have weak physiological activity, and active forms
(highlighted in red) are synthesized. Arrows indicate the different stages of synthesis, which are catalyzed by

individual enzymes
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inhibition the expression of GA deactivation
genes. Thus, in della mutants, the expression
level of genes responsible for the synthesis
of GAs was significantly lower [13]. The
DELLA protein antagonist SCARECROW-
LIKE 3 protein (SCL3) is activated under
shading and flooding conditions that lead to
the accumulation of GAs and elongation of the
stem. SCL3 expression is induced by DELLA
and repressed by GAs. SCL3 regulates its own
transcription by interacting directly with
DELLA [14].

Therefore, DELLA proteins are the main
negative regulators of gibberellin signaling.
They interact with transcription factors and
modulate gene expression, which allows us
concluding about their involvement in the
cross-system interaction between GAs and the
environment.

Functional activity

The main functions of gibberellins are the
regulation of seed germination, and seeds’
embryogenesis, coordination of cell division
and elongation, sex determination, pollen and
flower development, flowering induction, seed
and fruit formation [15,16, 17]. GAs activate
the so-called «initial effects» of germination of
cereal grains: they stimulate the linear growth
of organs and leaf surface. The effects of GAs
on embryo growth are due to the induction
of hydrolytic enzymes, which are involved in
starch conversion, protein and lipid cleavage,
and seed coat softening by GA20-oxidase and
GA3-oxidase gene expression [18]. These genes
are expressed in the epithelium of the embryo
during germination and induce the synthesis
of active GAs [19]. GAs are transported to
the aleurone layer, where they express the
a-amylase gene through the transcription
factors SLN1 and GAMYB [20], while DELLA
SLN1 inhibits the activity of GAs [21]. GAs
play an important role in cell elongation and
internode elongation [22]. Thus, during the
elongation of rice internodes (Oryza sativa L.),
the expression of genes encoding xyloglucan
endotransglucosilase synthesis was regulated
by gibberellins. This enzyme is involved in the
reorganization of xyloglucan by cleaving and
re-ligation of polymers, thereby increasing the
plasticity of the cell wall [23]. Localized in the
intercalary meristem of the root and hypocotyl
GAs regulate the activity of genes of cyclin-
dependent protein kinases — key enzymes of
the cell cycle [24]. The accumulation of active
GAs occurs in the area of elongation of the
root and hypocotyl and corresponds to the

maximum cell growth. Thus, the synthesis of
the protein NTH15, which is located in the
apical meristem of the tobacco shoot, led to the
negative regulation of the GA20 oxidase gene,
GAs hypersynthesis, enhanced cell division
[25]. GAs have a positive effect on root
growth. The early transition from root cell
division to elongation, mediated by HDT1/2
(histone deacetylase), occurs due to inhibition
of GA20x2 gene transcription [26]. Studies
of mutant and transgenic Arabidopsis plants
indicate that GAs and their signaling pathway
are necessary and sufficient to directly
stimulate enhanced xylogeny in the hypocotyl
[27]. The synthesis of GAs in flowers occurs
onlyin the stamens and is regulated by GA200x
and GA3ox. Moving active GAs (but not their
precursors) short distances from the stamen to
other flower organs and peduncles is important
and sufficient for flower development. GAs
also stimulate flowering and cause fruit set
and initiate their growth [16].

Endogenous GAs under stress

Under stress plants are known to have
changesin the balance of endogenous hormones
that affect growth processes and promote
adaptation. Thus, mutant lines with low GAs
content showed salt and drought resistance
due to reduced biosynthesis or increased
hormone degradation [28]. Dwarf varieties of
rice and barley (Hordeum vulgare L.) with low
levels of GAs were stress resistant. GAs levels
manipulation led to increased grain yield,
branching of the root system and enhanced
drought resistance and resistance to negative
biotic factors [29, 30]. Maize leaves (Zea
mays L.) and bean shoots (Phaseolus vulgaris
L.) significantly decreased GAg content
during drought [28, 31]. In the early stages
of pouring rice grains under drought, there
was a reduction in the level of endogenous
GAs [32]. Drought-affected roots of wild emer
wheat (Triticum turgidum ssp. Dicoccoides)
exhibited some increase in the content of GAs,
higher root growth and inhibited shoot growth
[33].

The expression of genes encoding enzymes
involved in the biosynthesis of GAs is
regulated by external signals. Thus, under the
influence of negative factors, the synthesis
of GAs is inhibited due to the expression of
GA2o0x genes, which encode GA2-inactivating
enzymes, as well as the DELLA RGLS3 gene,
which encodes a gibberellin suppressor. The
genes SD1, GDD1, SLR1, EUI, GIDI1, SDI1
and D1 involved in the synthesis and signaling
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of GAs regulate the growth and development
of rice plant organs and their architecture,
yield and stress response [4, 34].

Under salinization conditions, the
content and signaling of GAs decreased that
led to delayed growth and development of
wheat plants (Triticum aestivum L.) [35,
36]. Excessive expression of DWARF AND
DELAYED FLOWERING 1 (DDF1 ) activated
the GA20x7 promoter and the accumulation
of DELLA proteins, which resulted in a rapid
decline in the level of endogenous GAs in
Arabidopsis plants and inhibition of their
growth and facilitated adaptation [37]. Salt
stress inhibited the activity of GAs, which
caused a delay in the germination of soybean
seeds (Glycine max L. Merr.) [38].

Heat stress caused morphological and
physiological changes in rice plants and
reduced their yield due to a decrease in GAq
content in inflorescences [39]. At the same
time, hyperthermia caused a higher level
of endogenous GAj; in wheat plants during
the early development of the kernels, which
resulted in less kernel number and lower grain-
filling rate [40]. It was found that the activity
of GA20-oxidase genes (GA20ox1, GA200x2,
GA200x3) and GA3-oxidase genes (GA3oxlI,
GA30x2), which regulate the late stages of GAs
biosynthesis, was inhibited under heat stress
[41]. However, information on the effects of
high temperature on the early stages of GAs
biosynthesis and hormone catabolism is scarce
and needs further study [39].

Cold stressreduced thelevels of endogenous
GA, and GA; in rice anthers and did not affect
thecontent of their precursor GA;,that wasdue
to decrease in GA200x3 and GA3ox1expression
[42]. The low level of GAs in coldsensitive rice
genotypes was found to be due to the repression
of hormone biosynthesis genes, rather than the
catabolism of active GA, and GA, [43]. At low
temperature, wheat leaves inhibited growth
and accumulated active GAs that stimulated
cell elongation. Under these conditions, the
threshold of sensitivity to the action of GAs
raised [44]. The recessive dwarf mutant of
rice gidl (gibberellin insensitive dwarfl) was
shown to be resistant to low temperatures and
fungal diseases [45].

Soil contamination with aluminum
inhibited the germination of rice seeds and
reduced GAs, while exogenous hydrogen (H,)
reduced metal toxicity by increasing the GA/
ABA ratio. Further detailed analysis indicated
that H, promoted the expression of GAs
GA200x1 and GA200x2 biosynthesis genes and
ABA catabolism genes ABA8ox1 and ABA8ox2
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[46]. High concentrations of zinc induced an
increase in GAg, isopentenyladenosine and
salicylic acid and a decrease in levels of indole-
3-acetic acid (IAA), zeatin and ABA in winter
wheat seedlings [47].

The main attention in studying the role of
GAs in the formation of responses to adverse
environmental conditions is focused on the
metabolism, signaling and mechanisms of
interaction with other phytohormones [4, 48].
Interhormonal signaling plays an important
role in the formation of the response to
stress (Fig. 2). The adaptive changes that
occur in stressor-affected plants depend on
the character of the cross-talk (synergistic
or antagonistic) of hormonal signaling [49].
The interaction of the gibberellin repressor
DELLA proteins with the main components of
the signaling cascades of other hormones has
been studied in the most detail [8].

The interaction between GAs and ABA
during the regulation of plant growth and
development is antagonistic [38, 50, 51].
Thus, GAs activate seed germination,
while ABA provides its dormancy. High
levels of ABA in mature dry seeds activate
transcription factors ABI3 and ABI5, which
adversely affect the synthesis of GAs [52].
Under high temperature, the interaction
between DELLA proteins, ABI3 and ABI5
occurs, which promotes the expression of
high-temperature inducible genes, reduces
GAs synthesis and increases ABA levels, and
inhibits the germination of arabidopsis seeds
[63]. Expression of GAs biosynthesis genes
GA20o0x1 and GA200x2 and ABA catabolism
genes ABA8ox1 and ABA8ox2 was observed
during rice seeds germination under aluminum
pollution [46]. At low temperatures, ABA
levels in barley cells became higher and
ABA-induced protein kinase (PKABA1) was
activated, which reduced GAs activity and
delayed germination [54, 55]. The TaMYB73
gene, which is expressed under salinity and
associated with ABA and GAs, was identified
in wheat [56]. The relationship between the
content of GAs and ABA affects the temporal
organization of plant growth. In barley, wheat
and maize plants, active GAs were shown to
accumulate during early embryogenesis, the
concentration of which gradually decreases
until maturation with a simultaneous increase
in ABA levels [67, 58].

Indole-3-acetic acid (IAA) induces cell
elongation, especially in shoots, and causes
apical dominance and root development,
whereas GAs regulate stem, leaf, and other
aboveground organ growth, causing cell
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elongation and internode length to increase
[69]. Activation of DELLA proteins under
stress conditions prevents the production of
TAA, whichprovidescontrol over fruitripening
[60]. Heat stress inhibited the accumulation
of GAj in rice inflorescences, also decreased
the content of active cytokinins and IAA and
increased ABA levels, which caused vyield
reduction [39].

GAs inhibit the effects of cytokinins
during plant growth, from germination to
aging. Cytokinins act in the initial stages
of development, control the growth of
the meristem, and GAs in the later ones,
regulating the division and stretching of shoot
cells. SPINDLY (SPY) protein is involved in
the interaction between cytokinins and GAs,
which through DELLA proteins enhances the
effects of cytokinins and inhibits gibberellin
signaling. SPY plays a key role in the
regulation of crosstalk between cytokinins
and GAs, acts as a repressor of the effects of
GAs and a positive regulator of cytokinin
signaling under stress conditions [61]. Rice
plants with the enzyme OsCYP71DS8L from the
CYP450 family maintained a high content of
chlorophyll and low levels of reactive oxygen
species (ROS) had increased resistance to
drought and salt stress. The enzyme was found
to coordinate the homeostasis of GAs and

cytokinins, regulate root development, and
control multiple agronomic traits of plants and
their responses to abiotic stress [62]. Jasmonic
acid (JA) is considered the main signal
molecule that regulates plant growth and
resistance to abiotic stresses and pathogens.
JASMONATE ZIM DOMAIN PROTEIN (JAZ)
and MYC2 transcriptional activator, which
regulate the balance between growth and plant
defence, were identified as key components of
crosstalk [63].

Thus, the interaction of phytohormones
enables to integrate different signals of
stressors, as a result of which plants respond
to them properly. Coordination of growth
and stress responses essential for signals for
each hormone and their ability to cross-talk
at different levels of signaling. Plants can
control the action of the hormone by regulating
its biosynthesis and localization, as well as by
regulating signaling pathways.

Applying of growth retardants as valuable
tools to identify the role of GAs
in stress resistance

Inhibitors of GAs Dbiosynthesis include
retardants — synthetic non-toxic compounds
that inhibit shoot growth without changing
the patterns of plant development. This is

Abiotic stresses
(high and low temperature, drought, salt stress, heavy metals)

1

DELLA proleins

Fig. 2. The crosstalk between gibberellins and other phytohormones regulates plant growth
and development under abiotic stresses:
positive interactions are indicated by arrows and T bars indicate repression between GA and individual
phytohormones: ABA — abscisic acid, SA — salicylic acid, JA — jasmonic acid,
GA20x — gibberellin 2-oxidase
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achieved primarily by delaying the elongation
of cells and reducing the rate of their
division. The effects of retardants on the
morphological structure and plants growth
are antagonistic to effects of GAs and auxins.
Under the intense prolonged stress GAs do
not have a stress-protective effect, and such
one is manifested by their antagonists —
retardants. Inhibitors of gibberellin synthesis
increased drought resistance and plant yield,
stimulated biomass accumulation. Retardants
form the most commercially important group
of plant bioregulators, although compared
to herbicides, insecticides and fungicides,
they play a relatively small role and account
for only a few percent of the world’s crop
protection chemicals [64]. Chemicals with
anti-GAs activity are able to inhibit and even
remove apical dominance, which leads to the
development of moreleaves, flowers and fruits,
increased yields. The excess of assimilates,
which accumulates due to the slowing down of
growth processes, is directed to the organs and
tissuesthatareformedand activelydeveloping.
The height of plant is a key agronomic feature,
which determines the plants architecture and
yield, response to stress and is controlled by
integrated phytohormone signaling networks
[34]. Inhibitors of GAs biosynthesis have been
shown to reduce the size of barley plants and
increase their resistance to high temperatures
[65]. The use of paclobutrazol (PBZ) has led to
the emergence of dwarf forms of wheat, but
has not always been accompanied by drought
resistance [66]; in barley, promoted the
transformation of GA,, into GA; and GA, into
GA,, which enhanced the stress resistance of
plants to high temperatures [29]; in rice, the
number of spikelets on the panicle increased
and contributed to better grain filling [67]; in
teff (Eragrostis tef (Zucc.) Trotter) decreased
height and increased drought resistance of
plants, due to higher chlorophyll content
and blocking of the gibberellin pathway [68];
reduced the height of flax plants, accelerated
seed maturation and improved fruit yield
[69]. The use of GAs and PBZ, as well as their
mixtures, affected the growth, content of
endogenous phytohormones and productivity
of radish (Raphanus sativus L.). PBZ inhibited
the linear growth of radish plants, enhanced
cell proliferation, increased the mass and size
of the root crop. Under the action of GAs, the
growth of shoots was activated and the roots
were inhibited, the weight of the root crop
did not change. PBZ significantly reduced the
content of endogenous GAs [70]. At the same
time, a negative effect of PBZ on teff yield
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was reported, the low productivity of which
was associated with a 98% reduction in plant
height [71].

Uniconazole (UN) under salt stress
improved the resistance of barley plants,
stimulated the accumulation of ABA and
cytokinins and reduced the content of GA3 and
IAA. Under UN action in the grain increased
the content of proteins and proline [72]. UN
and the ethylene producer ethephon (ETH)
inhibited the growth of maize plants, increased
dryweightaccumulation, and accelerated grain
uptake, in which increased ABA, zeatin, and
zeatin riboside, and decreased GAs content.
The accumulation of ABA and cytokinins was
positively correlated with the rate of grain
fullness. The use of the GAs inhibitor UN has
been shown to be more effective than ethylene-
producing ETH [73].

Exogenous GA in the regulation
of stress resistance

An alternative strategy to overcome
abiotic stresses is the exogenous use of plant
growth regulators. GAs induce resistance to
mild and moderate stress, but reduce it under
the action of strong impact. Exogenous GAs
are able to eliminate the inhibitory effect of
drought. Thus, treatment with a solution of
GA; isogenic wheat lines with Rh¢-Bla (high)
and Rht-B1b (semi-dwarf) alleles initiated root
development and restored leaf growth [74].
Foliar treatment of corn with GAj; solution
improved morphophysiological characteristic.
Increases in leaf surface index, growth rate
and dry weight, cob length and diameter,
number and weight of grains, improvement of
stability and yield were observed [75]. Priming
of rye (Secale montanum L.) seeds with GAj
and SA solutions enhanced the germination
index and germination rate coefficient. After
treatment with phytohormones, the content
of antioxidant enzymes catalase and ascorbate
peroxidase increased [76]. Exogenous GAj
stimulated wheat growth and increased
the weight of 1000 grains [77]. Exogenous
GAs contributed to the stabilization of cell
membranes, the growth of dry weight, the
content of nutrients and chlorophyll, the
preservation of relative humidity in the leaves
of corn [78].

Under conditions of salt stress after pre-
sowing priming of wheat seeds with GAj; in
shoots and roots of plants ionic homeostasis was
stabilized, the concentration of polyamines and
ABA decreased, and the content of endogenous
SA has enlarged. The improvement of yield was
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due to an increase in the number of productive
stems and grain mass in the spike [79]. Also,
foliar treatment with GA? in maize plants
contributed tobetter calcium absorption, higher
chlorophyll levels, but decreased superoxide
dismutase (SOD), peroxidase (POD) and
polyphenol oxidase (PPO) activity and proline
content, although these indexes exceeded the
corresponding control ones [80]. Pre-sowing
primer of wheat seeds with GAS3 BunpasuTu
Ha Pre-sowing priming of wheat seeds with
GA; had a positive effect on germination
and subsequent growth in conditions of soil
salinity, induced protein synthesis, including
the gibberellin receptor of 74.41 kDa [81].
Foliar spraying with GAj; restored the
normal development of rice anthers that was
disrupted due to microsporogenesis under
moderate low temperatures, which significantly
promoted yields [42]. After short-term heat
stress (+50 °C) GA; treatment of dwarf barley
plants resumed normal growth, but the content
of photosynthetic pigments decreased [29].
Conclusion. Exogenous GAs are able to
improve plant resistance to heavy metals (HMs),
which contributes to agroecological benefits
under adverse conditions [82, 83]. Exogenous
GAsplay acrucial role in protecting plants from
cadmium stress [84]. In Arabidopsis plants,
gibberellin signaling was shown to enhance
the activity of the key enzyme of sulfate
assimilation — adenosine-5-phosphosulfate
reductase, which enabled to optimize sulfur
metabolism under stressful conditions [85].
Pre-sowing primer of wheat seeds with GAz and
Ca?" softened the inhibitory effect of nickel on
the growth of wheat seedlings, stabilized the
content of chlorophyll and proline, increased
POD, CAT, SOD, ascorbate peroxidase and
glutathione reductase activity [86]. Addition
of 0.5 tM GA; to the nutrient medium of
barley and rice reduced the inhibitory effects
of cadmium and molybdenum, due to the
activation of four hydrolytic enzymes, which
resultedin anincrease in sugars and amino acids
level in the endosperm and partial resumption
of mobilization of proteins and starch from the
endosperm to the roots [87]. Foliar spraying
with GA; (200 mg/1) and sulfur enhanced the
growth of industrial crops (flax and kenaf)
and remediation of the soil. GAs improved the
assimilation of Co and Cr by kenaf, and Cd
and Mn by flax [88]. Addition of GA; (14 nM)
together with Cd and Ni to rice culture partially
reduced the effect of HMs, stimulated growth,
mobilized carbohydrate storage in seeds,
increased sugar content in roots and leaves,
changed the distribution of carbohydrates.

Unlike GAj3;, ABA (19 pM) enhanced the
action of HMs, inhibited the growth of young
leaves [89].

The effects of priming with GAs depended
on hormone concentration, plant species and
the conditions of their cultivation. Thus, wheat
yield increased significantly after treatment
of seeds with 10-100 uM GA; [90]. After pre-
sowing priming of Leymus chinensis seeds with
50 uM of GAj;, germination accelerated by 14—
27% , biomass accumulation increased, plant
height bushiness increased. The stimulating
effect persisted for the second year of
vegetation [91]. Gibberellins and inhibitors
of their synthesis are widely used in modern
agriculture, horticulture and viticulture.
Application of exogenous GA; was found to
increase the eggplant (Solanum melongena L.)
height, number of leaves per plant, the fresh
weight of the stems and roots, as well as the
dry weight of the whole plant. The treatment
with GA; resulted in some increase of the
content of endogenous GAj3, IAA and ABA in
the stems and especially in the leaves, whereas
the pool of cytokinins in the leaves decreased
significantly. The inactive isoforms of zeatin-
O-glucoside (ZG) and isopentenyladenosine
(iPa) dominated in the stems [92]. To increase
the yield and quality of agricultural products,
mainly exogenous GAj; is used [64].

Thus, treatment with exogenous plant
growth regulators optimizes development,
enhances stress resistance and improves
plant productivity, through the induction
of changes in metabolism, hormonal
balance, morphological and physiological
transformations (Table).

Gibberellins, which are known to be the
most numerous class of plant hormones, were
found in all higher plants. They are involved
in regulation of growth and development by
elongating and dividing cells, activating the
germination and maturation of seeds and
induction of flowering. The biosynthesis
of gibberellins proceeds in three stages in
plastids, endomembranes and cytosol. By
means of the specific proteins transporter,
gibberellins are transported between cells
through the plasma membrane. By changing
the intensity of biosynthesis, the pattern of the
distribution and signaling of these hormones,
plants are able to regulate resistance to abiotic
stress, increase viability and even avoid
stress. The important role of gibberellins in
the acquisition of stress resistance has more
and more evidence and proof. The effects of
GAs depend primarily on the strength and
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Exogenous gibberellins application in mitigation of abiotic stresses

Plant Effect References
Drought
Increased the leaf surface, dry weight, length and diameter of the
Zea mays L. cob, the number and weight of grains, improved drought resistance [75]
and yield

Secale montanum L. Induced seed germination [76]

Triticum aestivum L. Induced seed germination, enhanced growth [89]

Zea mays L. Increased leaf dry welgh“c3 chlorophyll content, relative humidity, [78]

stabilized cell membranes.

Triticum aestivum L. Increased root growth and restored leaf growth [74]

Triticum turgidum SSp- Increased root growth [33]
dicoccoides

Salinization

Triticum aestivum L. Stimulated growth and increased grain weight [77]

Hordeum vulgare L. Induced protein synthesis, including gibberellin receptor 74.41 kDa [81]

Triticum aestivum L. Maintained ionic homeostasis in shoots and roots [79]

Low temperature

Increased Ca?" absorption and chlorophyll content, decreased SOD,

Zea mays L. POD and polyphenol oxidase activity; and proline content [80]
High temperature
Oryza sativa L. Restored normal development of pollen grains [42]
Heavy metals pollution
Restored the normal growth of dwarf plants, but decreased
Hordeum vulgare L. photosynthetic pigments content during recovery [29]
Triticum aestivum L. Reduced negative effects of tox1p1ty by improving the antioxidant [86]
system and proline accumulation
Arabidopsis thaliana L. Decreased nitric oxide (NO) levels reduce IRT'1 expression [84]
Increased growth, mobilization of carbohydrate reserves in seeds,
Oryza sativa L. increased sugar content in roots and leaves, changed carbohydrate [89]
distribution
duration of stress and the phase of ontogenesis Acknowledgements

and tolerance of the plant. In the formation of
the response to stress, the signaling pathways
of gibberellins, ABA, cytokinins, auxins,
jasmonic and salicylic acids, which are mainly
mediated by DELLA proteins, are crossed.
Further study of the role of gibberellins in the
acquisition of stress resistance will contribute
to the development of biotechnology of
exogenous use of the hormone to improve
growth and increase plant yields under adverse
environmental conditions.
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Beryn. T'i6epeaninu (I'B), kiac gurepneHoin-
HUX (PiTOropMoOHiB, BiZirpamTh BaKJIUBY POJIb
y peryadAiii pocTy Ta pos3sBUTKY pocauH. Cepen
6inbm Hixk 130 pisHux isodopm ribepesinis tuime
oxpeMi MmaroTh Gionoriuny aktusHicTs. 'K, I'K;,
T'K, i TK; perymiooTh picT pOCINH 3aBAAKH Je-
rpaganii DELLA mpoTeiHiB — HeraTuBHUX pery-
JISITOPiB IeHiB, eKcIIpecia AKUX aKTuByeThcsa I'B.
HemonasHi focaigsxeHHsa B rajysi MoJIeKyJIApHOL
TeHeTUKM Ta (DYHKIIIOHAJIBHOI T€eHOMiKU CYTTEBO
ooraubOuan HaIIll yABJeHHS I[oA0 OiocuHTesy,
MeTabo0/Ii3My, TPAHCHOPTYBAHHSA, CUTHAJIIHTY Ta
B3aemoqii I'B 3 immumu ¢gitoropmonamu ta Gak-
TOpaMU TOBKiJIJIA.

Mera. B ornazi socepeskeHo yBary Ha ydacTi
I'B y perynroBanHi pocTy i pO3BUTKY POCJIMH 3a Ail
ab0iOTUYHUX CTPECiB.

Pesyapratu. Ilomano wJiouoBy iH(popmaIiiro
npo OiocuHTEe3, CUTHAJIIHT Ta (PYHKIIOHAJIBHY aK-
TuBHicTb I'B, y3arajibHeHO BiToMOCTi ITpo repexpec-
HY B3aemopnito (Kpocc-Tok) misk I'B, aykcmHamwu,
IUTOKIHiHAMM, a0CIIM30B0OI0 KMCJIOTOIO Ta iHIIMNMHT
(ditoropmonamm; BucBiTIIeHO poJsib I'B B amanrarrii
10 YMOB IIOCYXH, 3aCOJIEHHS, BHCOKOI Ta HU3BKOL
TeMIIepaTypu, 3a0pyIHEHHA BaKKUMU MeTaJaMU.
EdexrTu I'B zane:xarh nepeaycim Big iHTEHCUBHOCTI
¥ TPUBAJIOCTi CTPECOBOTO BILIUBY, & TAKOK BiJ (pasu
OHTOTEHE3y i TOJIEPAHTHOCTI POCIMHU. 3MiHIOIO-
Y1 iHTEHCUBHICTH OiOCHMHTE3y, XapaKTep PO3IIOMi-
Jay i nmepemaBamHsa curHagiB I'B, pocIuHN MOMXKYTH
peryJoBaTH CTiHKicTh m0 abioTMYHUX CTpecis,
OiABUIIYBaTH KUTTE3MATHICTHL 1 HaABiITh YHUKATHU
ctpecy. OOGroBOpEeHO NHUTAHHA BUKOPUCTAHHA De-
TapAaHTiB — iHribiTopiB GiocuuTedy I'B i3 MeTOIO
BUBYEHHA (PYHKIIOHAJIBbHOI aKTMBHOCTI T'OPMOHIB
3a il abioTuunux crpeciB. OcobMBY yBary IIpuii-
JIEHO HOBUM 0iOTeXHOJIOTIUHUM HigxomaM, Y SKUX
BHUKOPUCTOBYIOTh eK3orenHi I'B mia mepexmocis-
HOTO IIpaiiMyBaHHs HACiHHA Ta ¢oaiapHOI 06pOOKU
POCJIUH.

BucHoBku. IToganbiiie BUBUeHHs POJIi ribepe-
JiHiB y HAOYTTi CTPECOCTIMKOCTI CIIpuATHIME PO3-
BUTKY 0i0TEeXHOJIOTi] eK30reHHOr0 BUKOPUCTaHHS
TOPMOHY [JIS TOJIMIIIEeHHA POCTY ¥ ITiABUINEHHS
BPOKAMHOCTI POCJUH B HECHPUATINBUX YMOBaAX
TOBKiJIIA.

Knwuosi cnoea: ricepeninu, DELLA, ¢itorop-
MOHU, abioTHMUHI cTpecu, peTapJaHTHu, picT, cTpe-
COCTiHKicCTB.
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Berynenme. I'n66epesuiuast (I'B), kimace murep-
TIEHOMTHBIX (PMTOTOPMOHOB, UTPAIOT BaKHYIO POJIb B
PETYJIAIIAY POCTa U pasBUTHUA pacTeHuii. Cpemu 6osee
uyeMm 130 pasmruHbIX M30(hOPM TMOEPEJUIMHOB JIIIH
HEeMHOrre 00JIaJaioT OMOJIOTMUYEeCKON AKTUBHOCTBIO.
I'K,, TK;, 'K, u I'E; perynupyior poct, Biuss Ha Jie-
rpagaruio DELLA 1mporenHOB, — HETaTHMBHBIX pery-
JIATOPOB T'€HOB, SKCIIPECCUA KOTOPBIX aKTHUBUPYETCA
I'B. HenaBHue ucciaenoBaHusA B 00JIaCTH MOJIEKYJISAD-
HOI TeHeTUKU U (DYHKIIMOHAJIBHONM I'€HOMUKU CYIIle-
CTBEHHO PACIIVIPILIN HAIIY IIPEJICTABICHNA O OMOCHH-
Te3e, MEeTaboM3Me, TPAHCIIOPTUPOBKE, CUTHAJIMHTE
u BlaumogerictBuu I'B ¢ apyruvu UTOrOpMOHAME 1
(haxTOpaMu OKPY-KaIOIIeH Cpeabl.

ITess. B 0630pe cocpejoTOUEHO BHUMAHME HA POJIT
I'B B peryamum pocta 11 pa3BUTHUA PAaCTeHU IIPU Jeti-
CTBUM A0MOTHUUYECKUX CTPECCOB.

PesymbraTsl. IlpuBemena KiroueBasd wuHMOPMA-
s 0 OMOCHHTe3e, CUTHAJIMHTE U (DYHKIIMOHAIHHOI
akTuBHOCTY I'B, 0000111EHBI CBEZIEHNS O TIEPEKPECTHOM
BamMozeticTBuu (Kpocc-Tok) Meskay I'B, aykcuHamu,
IIITOKMHUHAMY, abCITM30BOM KUCIOTON U APYTUMK
(uroropmonamu, o posi I'B B aganTarmu K yCIoBIAM
3aCyXH, 3aCOJIEHNsI, BLICOKOIT 1 HU3KOII TeMIIepaTyPhI,
3arpsI3HeHNA TXKeIbIMu MeTauiaMu. dddexTsl BB
3aBUCAT B IIEPBYIO OUepeSb OT MHTEHCUBHOCTU U IIPO-
IOJIKUTETLHOCTY CTPECCOBOTO BOBIEIMCTBUSA, a TAKIKe
oT (ha3bl OHTOTEHE3a W TOJIEPAHTHOCTH pacTeHus. V13-
MeHs MHTEHCUBHOCTD OMOCHHTE3a, XapaKTep pacIipe-
JeJieHus U iepenaum curaiioB I'B, pacTeHust MOryT pe-
TyJIMPOBaTh YCTOMUMBOCTD K a0MOTUUYECKOMY CTPECCy,
TIOBBIIIIATH JKU3HECITIOCOOHOCTD U JasKe 130erath CTpec-
ca. OGCysKIeHbI BOIPOCHI MCIOJIL30BAHUSA PeTapAaH-
TOB — MHTMOUTOPOB OmocuHTe3a I'B ¢ 1161610 M3yueHns
(byHKITMOHATIBHOM aKTHMBHOCTU T'OPMOHA B YCJIOBUAX
abroTuecknx crpeccoB. Ocoboe BHUMAaHUE YAEJIEHO
HOBBIM OMOTEXHOJIOTITYECKIIM ITOIX0/IaM, KOTOPbIE 1C-
TIOJIBL3YIOT 9K30reHHble I'D 11 ImpeamoceBHOTO mpaii-
MUPOBAHU CEMAH U (DOTMapHOLT 00pabOTKM PACTEHMUI.

BeiBoapwl. [lanbHeiilliee n3yueHre poyi TuOOe-
PeJUIMHOB B IIPUOOPETEHUN CTPECCOYCTOMYMBOCTH
OyZeT CII0COOCTBOBATL PABBUTHIO OMOTEXHOJIOTUN
HKB0Te€HHOT'0 MCIIOJIL30BAHIA TOPMOHA AJI YIIyUIIle-
HUSA POCTA U MOBBIIIEHUA YPOXKANHOCTY PACTeHUH B
HeOJIaTOPUATHBIX YCIOBUAX OKPYsKAIOIIel Cpeibl.

Knrouesvie cnoea: rubbepennuabi, DELLA,
(puTOropMOHBI, a0MOTUYECKHE CTPECCHI, peTap-
IaHTBI, POCT, CTPECCOYCTOMUYMBOCTD.





