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Anthropogenic impact, intensive industrial 
production and unbalanced environmental 
policy have led to serious environmental 
pollution. Waters are particularly adversely 
affected, as large, industrially developed 
regions are located on the banks of reservoirs 
and rivers. At the same time, within cities, 
even small closed reservoirs are subject to 
pollution, as they are sewage reservoirs for 
natural precipitation and absorbers of vehicle 
exhaust gases.

The United Nations Environment Program 
has defined phytoremediation as an effective 
eco-technology that involves the use of 

plants to remove, detoxify and immobilize 
environmental pollutants [1]. To diagnose the 
degree of anthropogenic pollution of water 
ecosystems, the method of phytoindication 
is used, which suggests detection of the 
dependence between the state of waters and the 
biological indicators of both individual plants 
and plant groups, including phytocenoses. 
Today, the achievements, tasks and prospects 
of phytoremediation and phytoindication 
are actively discussed by scientists of many 
countries of the world [2–5].

Vascular cryptogamous plants are one of 
the most ancient higher plants that appeared 
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on the planet more than 300 million years 
ago. The most widespread among them 
are representatives of the Polypodiophyta 
division, which grow in all climatic zones, are 
distinguished by a significant diversity of life 
forms, have a wide range of adaptive features, 
which allows them to exist in any environmental 
conditions [6]. Since these plants have a high 
potential in the accumulation of pollutants 
and water detoxification, significant stress 
tolerance and a high rate of biomass formation 
[7], they deserve attention as promising 
biological objects for the development of the 
latest biotechnologies for phytoremediation 
and phytoindication.

In our review, we focused on water ferns 
of the Salviniaceae family, analyzed and 
summarized the latest information on the use 
of these plants for cleaning and biotesting of 
polluted waters, discussed the mechanisms of 
resistance to the action of pollutants.

Phytoremediation: 
eco-technology of cleaning using plants

Phytoremediation is an ecological method 
of purification of a contaminated environment 
with the participation of plants, the 
mechanism of which involves the absorbtion 
of pollutants by plants, the accumulation them 
in tissues, decomposition and transformations 
into harmless forms [1, 4, 5, 8, 9]. The 
use of plants for wastewater treatment 
began about 300 years ago [10]. Today, an 
effective accumulators of the inorganic and 
organic pollutants from reservoirs have been 
recognized the species of water macrophytes 
from families Ranunculaceae, Lemnaceae, 
Cyperaceae, Salviniaceae, Haloragaceae, 
Hydro  charitaceae, Potamogetonaceae, Typha-
ceae, Najadaceae, Pontederiaceae and Jun-
caceae [3]. 

Phytoremediation technology is a successful 
tool for reducing contamination of the aquatic 
environment. The initial stage is screening of 
plants able to store the heavy metals and other 
pollutants. For phytoremediation, the fast-
growing species, that are easy to collect and 
handle, are selected [11].  The ontogenetic, 
physiological and biochemical traits as well as 
photosynthetic activity should be taken into 
account. The success of phytoremediation also 
depends on the intensity of pollution [12]. 

Different phytotechnologies are used to 
purify contaminated ecosystems, including 
phytodegradation, phytostabilization, rhizo-
filtration, rhizodegradation and phyto-
volatization [3]. The reduction of the 

content of pollutants in the soil occurs due 
to their uptake and binding by plant root 
system. In the process of immobilization, 
the roots accumulate, adsorb and precipitate 
pollutants, which is important for the removal 
of organic and inorganic contaminants 
from the soil, sludge and silt media [13-
15]. During phytoextraction, pollutants are 
absorbed and hyperacumulated in different 
parts of the plant [16]. Absorption from 
soil, groundwater, residues and sludge with 
subsequent evaporation of pollutants into the 
atmosphere occurs during phytovolatilization 
[17]. Plants metabolize contaminants by 
means of compounds formed in their tissues 
[18, 19]. Rhizofiltration includes adsorption 
and precipitation of pollution into the 
substrate surrounding the root area [20]. 
Plants secrete various organic compounds that 
attract microbial communities present in the 
soil, which contributes to the decomposition 
of pollutants. This technology is called 
biosorption [21] and is used to remove heavy 
metals (HM) from wastewater [2, 22].

HM, such as cadmium (CD), lead (Pb), 
chromium (Cr), copper (Cu), zinc (Zn), nickel 
(Ni), vanadium (V) as well as metalloid 
selenium (SE) are the most common pollutants 
of aquatic ecosystems. When exceeding the 
threshold concentration, they become toxic 
to plants, induce the formation of active 
forms of oxygen, inhibit photosynthesis and 
respiration, can cause plant death [23]. 

Hydrophyte ferns of the Salviniaceae 
family in phytoremediation 

of contaminated waters

Hydr ophyte ferns, in particular 
representatives of the Salviniaceae family, 
which includes two genera Salvinia and 
Azolla [24], belong to promising plant species 
for water purification. Water ferns of the 
genus Salvinia, which includes 12 species 
[24], are characterized by high growth 
rates, adaptability and tolerance to adverse 
environmental factors, they are able to adsorb 
pollutants.

Salvinia natans (L.) All. is an annual 
hydrophyte fern widespread in Ukraine with a 
summer-green phenoritmotype [25]. It grows 
on the border of air and water environments, 
is characterized by a different structure of 
floating and submerged in the water layer 
photosynthetic organs — fronds. Submerged 
fronds are morphologically similar to roots 
(Fig. 1). The species occurs sporadically within 
its range in the temperate climate zone. It is 
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widespread in mesoeutrophic and eutrophic 
freshwater closed or low-flow reservoirs and 
irrigation canals with a silty-sandy bottom.

In Ukraine, it occurs in the reservoirs of the 
Dnipro, Desna, Siversky Donets, Southern Bug, 
Dniester, Danube, Uzh, Latoritsa, Borzhava 
valleys, as well as in the ponds of the Forest 
Steppe and Steppe (Fig. 2) [26]. Due to the 
softening of the climate, the range of the fern 
has recently expanded. Significant populations 
of S. natans were reported in northern Europe 
in the Vistula River Delta [27].

The life cycle of Salvinia is represented 
by two independent generations: an asexual 
sporophyte and a sexual gametophyte. An 
adult Salvinia sporophyte is characterized 
by a clonal structure, formed during the 
formation of new modules that develop 
radially around the central (oldest) part of the 
plant. The complexity of the clone structure 
is determined by its age. The older the clone, 
the more complex its structure. The growth of 
clone modules proceeds similarly to the growth 
of side branches in other higher plants [28].

Modern climatic conditions have led to 
an extension of the growth period of the 
sporophyte, resulting in an increase in the 
number of vegetative generations from 
five or more, instead of two or three, which 
contributes to the spread of this fern and its 
occupation of new territories [29].

We have investigated the microstructure 
of the surface and the cell ultrastructure 
of floating and submerged fronds [30, 31], 
determined biometric indicators [28] and 
phytohormonal balance in the organs of the 
S. natans sporophyte at different stages of 
ontogenesis [6], analyzed the features of the 
photosynthetic apparatus functioning [32]. 
According to our observations, the species 
settled naturally and successfully develops 

on the surface of closed reservoirs on the left 
bank of the Dnieper within the city of Kyiv. 
These reservoirs are largely eutrified and have 
been subject to long-term lead pollution due to 
emissions of exhaust gases from automobile 
transport and waste of the now defunct Radykal 
enterprise — one of the most problematic in 
terms of environmental impact of industrial 
facilities within Kyiv. Significant pollution 
does not prevent the water fern S. natans from 
successful growth and reproduction, covering 
large surface areas (up to 20%, according to 
our estimates). Since the increase in biomass 
of S. natans is extremely fast, it is possible 
to periodically collect it and take it away for 
further burial in landfills, thus contributing 
to the gradual purification of these waters. In 
addition, S. natans can be easily spread into 
uninhabited waters by the transfer of green, 
free-floating sporophytes that proliferate 
rapidly. 

It was reported previously that many 
species of terrestrial ferns are able to tolerate 
such concentrations of heavy metals that are 
toxic to other plants [33] and, accordingly, 
about the possibility of effective soil 
restoration using these plants. At the same 
time, a significant amount of pollutants 
adsorbed from the soil accumulated in plant 
tissues. Plant species considered to be weeds, 
including aquatic weeds, also show a high 
ability to hyperaccumulate some pollutants, 
such as herbicides, metalloids, and synthetic 
dyes [34, 35]. Macrophytes, particularly the 
free-floating ferns of the genus Salvinia, are 
well known for their physiological properties 
that allow them to minimize the cellular 
toxicity of hazardous chemicals when these 
pollutants hyperaccumulate [36,  37]. Along 
with macrophytes Eicchornia spp., Pistia 
stratiotes, Lemna spp. representatives of the 
genus Salvinia have the highest potential 
for hyperaccumulation of pollutants, 
and, therefore, for phytoremediation of 
contaminated waters [38]. S. natans can be used 
as an effective agent for phytoremediation of 
polluted waters.

Thus, the expediency of using S. natans for 
phytoremediation of wastewater contaminated 
with chromium and zinc salts was shown 
[39]. Also, S. natans was successfully used 
in experimental work on the purification of 
untreated complexly contaminated wastewater 
containing, in addition to other pollutants, 
dissolved ammonia in the form of NH4

+ ions 
and NO2

– nitrites [40]. S. natans neutralizes 
significant concentrations of auxin herbicides, 
in particular 2,4-D in culture medium [41], 

Fig. 1. A — Salvinia natans in wild nature on the 
surface of the pond (Mizhrichynskyi Regional 

Landscape Park); B — the single submerged frond 
of Salvinia natans and stem apical bud with the 

young floating fronds

A B
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actively binds complex aluminum compounds 
[42] and nitrogen-containing dyes dissolved 
in water [43]. This species of free-floating 
fern is characterized by high efficiency of the 
antioxidant system and osmotic stability of 
cells, which minimizes intracellular damage 
from herbicides [44]. In addition, it was 
reported that exogenous priming of S. natans 
with a solution of 500 μM 2,4-D for eight 
hours improves the tolerance of vegetative 
sporophytes to the impact of sodium (Na) 
and metalloid arsenic (As) [35]. In this study, 
primed sporophytes accumulated dissolved 
pollutants more actively than control ones.

Although S. natans is currently not used 
for mass industrial purification of wastewater 
and polluted waters, a set of experimental data 
convincingly proves that this free-floating 
macrophyte can be successfully used for 
phytoremediation (Table 1). First of all, due to 
their high tolerance to general water pollution 
and the ability to accumulate pollutants 
in significant concentrations, S. natans 
sporophytes effectively reduce the level of 
heavy metals and metalloids in contaminated 
water.

Salvinia molesta D.S. Mitchell also 
known as giant Salvinia is one of the most 
common aquatic weeds with a natural 

habitat in Brazil, from where it has spread 
to many tropical and subtropical regions 
of Africa, Asia, North and South America, 
Oceania, Australia, India, Indonesia since 
the beginning of the last century [45–47]. 
Colonies of S. molesta are formed from a 
tangled network about 100 free-floating 
plants. Each plant is 2.5 to 4.0 cm long, has 
two floating fronds, a submerged “root-like” 
frond and internodes. Floating fronds are 
bilobed, oval in shape with short petioles 1–5 
mm long, the abaxial and adaxial surfaces are 
covered with trichomes. Immerged fronds 
up to 24 cm long, with short or long petioles, 
0.2–1 cm long. Three stages in the ontogeny of 
S. molesta are distinguished: the first, when 
the plants have small floating fronds, which 
lie on the surface of the water; the second, 
when groups of plants with shuttle-shaped 
fronds are formed, and the third, when plants 
have vertically stacked fronds and form 
dense mats [48, 49]. S. molesta is found in 
slow-moving waters, including lakes, ponds, 
ditches, streams, rivers, and marshes. Under 
favorable conditions, mass groups of ferns 
form dense carpets up to 1 m thick, which 
double in size in 2–3 days [50]. Spores of 
S. molesta are sterile and non-viable. This fern 
is pentaploid, the number of chromosomes is 

Fig. 2. Map of distribution of the macrophyte Salvinia natans in Ukraine [26]
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Table 1. Summarized information on the phytoremediation of contaminated reservoirs 
by the aquatic ferns of the genus Salvinia

Salvinia spp. Indicator of contamination Indicator of phytoremediation Source

Salvinia natans 15 mg/L Zn — 84.8%; Cu — 73.8%;
Ni — 56.8%; Cr — 41.4% [91]

Salvinia natans
Cd — 80 mg/L; 
Pb — 50 mg/L; 
Ni — 20 mg/L

Cd — 23550 μg/g DW
Pb — 9570 μg/g DW

Ni — 42363 μg/g DW
[92]

Salvinia minima

Zn –1.00 mg/L
Ni — 0.40 mg/L
Cd — 0.03 mg/L
Pb — 1.00 mg/L

Zn — 0.4046 mg/m2

Ni — 0.0595 mg/m2

Cd — 0.0045 mg/m2

Pb — 0.1423 mg/m2

[71]

Salvinia minima 0, 20, 40, 80, 
160 M NiCl2

16.3 mg/g [76]

Salvinia minima  Pb (II) — 20–40 μM
AsO4

3– — 200 μM

Рb — 34  mg/g
As — 0.5 mg/g DW [78]

Salvinia minima Cr (VI) in the form K2Cr2O7 
 1 and 2 mg/L

302.61  mg/g DW 
451.39  mg/g DW [79]

Salvinia minima
Cd (II) — 4 mg/L
Pb (II) — 3 mg/L
Cr (VI) — 4 mg/L

Cd (II) — 82.59%, 
Pb (II) — 97.44%, 
Cr (VI) — 80.31%

[73]

Salvinia minima Wastewater PO4 — 59% 
NO3 — 67.4% [80]

Salvinia minima CuSO4 and 
ZnSO4 — 80 μM/L

Cu — 6.96 mg/g DW
Zn 19.6 mg/g DW [93]

Salvinia minima

Wastewater 
Pb2+, Zn2+, Ni2+  

10 mg/L;
Dyes methylene blue (MB), 

crystal violet (CV), Bismarck brown 
(BB) — 10 mg/L

Pb2+, Zn2+ and Ni2+

 98.56, 95.69 and 92.99%;
CV, MB and BB

99.4, 99.1 and 96.5 5

[77]

Salvinia molesta Waste of coal mines

Pb — 96.96%; Ni — 97.01%;
Cu — 96.77%; Zn — 96.38%;
Mn — 96.22%; Fe — 94.12%;
Cr — 92.85%; Cd — 80.99%

[94]

Salvinia molesta Cu — 1.092 mg/L; Cr– 2.201 mg/L; 
Pb — 2.974 mg/L; Cd — 0.251 mg/L

Cu — 2.035 mg/L
Cr — 1.05 mg/L

Pb — 1.924 mg/L
Cd — 0.018 mg/L

[95]

Salvinia molesta

Cu — 0,01 ppm
Fe — 0,775 ppm
Ni — 0,009 ppm
Zn — 0,135 ppm

Cu –20%
Fe — 4,5%
Ni — 50%

Zn — 10,3%

[56]

Salvinia molesta Aqueous solutions of mercury chloride 
and lead chloride — 25, 50, 75, 100 mg/L

Pb — 85%
Hg — 74% [57]

Salvinia molesta Wastewater
Ni2+, Cr3+, Cd2+, Pb2+,10  μg/L Ni, Cr, Cd, Pb — 85–90% [58]

Salvinia molesta Industrial wastewater Na — 30% [59]

Salvinia molesta Textile wastewater BOD and COD — 99%, [60]

Salvinia molesta Household wastewate

Turbidity — 97.7 %
phosphates — 97.7%

ammonia nitrogen — 99 %
nitrates — 90.6%

[61]

Salvinia biloba Cu
5  μg/mL 11861  μg/L [65]
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45, which makes it genetically incapable of 
sexual reproduction and the completion of 
meiosis. Asexual vegetative reproduction at a 
fast pace is ensured by rhizome fragmentation 
and bud growth [49, 51]. Morphological and 
molecular studies have shown that S. molesta 
often mutates, which allows this species to 
quickly adapt to new environments [52]. The 
success of the growth of S. molesta depends on 
the temperature, illumination, pH, electrical 
conductivity, salinity and availability of 
nutrients in the aquatic environment [53]. 
S. molesta biomass is used for ethanol 
production. Monosaccharides from fern 
hydrolyzate were obtained by thermal 
acid hydrolysis, ultrasonic treatment, and 

enzymatic saccharification [54]. It has been 
established that S. molesta can absorb a 
significant amount of nutrients, in particular 
up to 8 mg of nitrogen per g of dry biomass 
per day [55].

Floating and submerged fronds of 
S. molesta accumulate and remove pollutants, 
including lead, copper, mercury, arsenic, zinc, 
and cadmium, from industrial and municipal 
wastewater [56, 57]. Fern removes up to 85% 
of lead and 74% of mercury within ten days 
[57]. S. molesta effectively purifies wastewater 
from phenolic compounds and dyes [58], 
sodium compounds [59] and [60]. In domestic 
wastewater, S. molesta plants reduced 
turbidity, phosphate, ammonia nitrogen, 

Table 1. End

Salvinia spp. Indicator of contamination Indicator of phytoremediation Source

Salvinia biloba River water
Pb — 30,57 mg/L Pb — 86.7% [37]

Salvinia biloba

Pb2+

4.8 mg/L
9.1 mg/L 

19.6 mg/L

Pb2+

97.7%
96.6%
91.6%

[66]

Salvinia biloba Contaminated water 100  μМ Cd Floating fronds — 23 mg/g DW
Submerged fronds — 12 mg/g DW [96]

Salvinia biloba
Contaminated water Cd, Cu, Pb and 

Zn
 50 and 100  μМ

Cu and Pb 96%,
Cd — 79% and 56% under 50 and 

100 μМ,
Zn — 77 and 70% under 50 and 

100 μМ

[69]

Salvinia biloba Pb2+

5.9, 8.2 and 22 ppm 5–10% [67]

Salvinia biloba Hg 
0.05, 0.1 and 0.2 μg/mL 277.9 μg/g [68]

Salvinia cucullata NH4
+ — 0.5, 1, 5, 10 and 15 mM The content of nitrogen increased, 

potassium absorption decreased [81]

Salvinia cucullata Wastewater
BOD — 43.02%, COD — 31.04%, 
nitrates — 20.00%, ammonium — 

5.26%, total phosphorus — 81.25%
[82]

Salvinia rotundifolia Industrial wastewater Pb(II) 0.651 
ppm

50 g of fresh biomass removed 85-
95% Pb(II) from 1.5 l of wastewater [89]

Salvinia auriculata River water
Ti, Fe, Mn, Cu, Zn, Sr

Ti — 3303, Fe — 4344,
Mn — 2882, Cu — 1366,
Zn — 34, Sr — 66 μL/μg

[88]

Salvinia auriculata Artificial reservoirs Hg — 0.2 ng/L
Floating fronds — 85–246 ng/g DW
Submerged fronds — 88–265 ng/g 

DW
[87]

Salvinia herzogii Water solutions 
Cr, Cd, Pb 

Submerged fronds –
Pb > Cd > Cr,

Floating fronds — 
Cd > Pb > Cr

[84]

Salvinia herzogii

River water
Cr < 1 g/L;
Ni < 3 g/L;
Zn < 25 g/L

Zn — 35–42%,
Ni — 47–52%,
Cr — 99–100

[85]
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and nitrate content by 97.7, 99.7, 99%, and 
90.6%, respectively. Plants with greater 
biomass were more effective in removing 
excess nutrients [61]. S. molesta counteracts 
the harmful effects of HM due to the high 
activity of antioxidant defense enzymes: 
superoxide dismutase, catalase, peroxidase 
and ascorbate peroxidase. In floating fronds, 
enzyme activity was higher and less arsenic  
accumulated than in submerged ones [62]. In 
general, the fern S. molesta has proven itself 
as an effective phytoremediant of harmful 
substances of various nature from polluted 
waters and wastewater (Table 1).

Salvinia biloba Raddi is an autochthonous 
free-floating macrophyte originating from 
South America. This species is common in 
Argentina, Bolivia, Brazil, Chile, Paraguay 
and Uruguay. As a decorative culture, ferns 
can be found in various regions of the globe. 
The floating bilobed fronds of S. biloba have 
short petioles 1–9 mm long, a heart-shaped 
base with a system of hairs, long papillae, 
and heterogeneous areolar veins. Submerged 
fronds up to 45 cm long, with short or long 
petioles up to 2 cm long [63]. Floating and 
submerged fronds under favorable conditions 
form a huge vegetative mass on the surface of 
the water [64].

The use of S. biloba to treat water 
contaminated with cadmium, chromium, zinc, 
nickel, copper, and lead has been reported 
[37, 65, 66]. S. biloba proved to be tolerant 
to long-term (for 30 days) exposure to high 
concentrations of lead, which made it possible 
to use the fern to purify waters polluted by 
this heavy metal [67]. S. biloba is tolerant to 
mercury, which allows the fern to be used as 
a phytoremediant in waters contaminated 
with this metal [68]. Floating S. biloba 
fronds adsorbed HM ions from artificially 
polluted water in different ways. Removal of 
copper and lead ions (96%) was more active, 
cadmium (79 ± 4%) and zinc (77 ± 5%) ions 
were less active [69]. Pollutants are removed 
from contaminated waters by their adsorption 
and subsequent accumulation in S. biloba 
cells [70].

Therefore, the fast-growing and capable of 
hyperaccumulation of pollutants water fern 
S. biloba is suitable for phytoremediation of 
contaminated waters (Table 1). 

Salvinia minima (Willd) is a floating 
fern, which, due to its high productivity and 
tolerance to a wide range of temperatures, is 
classified as a weed in tropical and subtropical 
regions. It is widespread in North, Central 
and South America. The floating fronds of 

S. minima are rounded in shape, contain hairs 
and heterogeneous areolar veins; have short 
petioles, 1–2 mm long. Underwater submerged 
fronds up to 4.5 cm long with short 1–2 mm 
petioles. The upper side of the floating 
fronds folds to the axis of the stem and is 
morphologically abaxial [63].

S. minima grows normally at low 
concentrations of cadmium (0.03 mg/l), 
nickel (0.40 mg/l), lead (1.00 mg/l),  zinc 
(1.00 mg/l) and is able to adsorb HM at higher 
concentrations in the culture medium [71]. 
Hyperaccumulation of lead after exposure of 
ferns to a solution of 40 μM Pb(NO3)2 depended 
on the chelation and biosequestration of metals 
mediated by phytochelatins. Submerged 
fronds accumulated significantly more lead 
(II)  than floating fronds, which was correlated 
with increased phytochelatin synthase (PCS) 
activity. Lead (II) accumulation occurred in 
the floating fronds due to a marked increase in 
the expression of the SmPCS gene [36]. Lead 
accumulates in ferns in the form of quasi-
spherical and elongated nanoparticles (PbNP), 
which are localized on the cell membranes of 
floating and submerged fronds. Cellulose, 
lignin and pectin act as lead ion reducers [72]. 
The removal of lead from waters occurs by 
bioadsorption and subsequent accumulation 
in the cells of fronds. The distribution of 
lead between different compartments of the 
fern depends on the availability of nutrients, 
chelating agents and environmental conditions 
[73, 74]. In lead-contaminated waters, the rate 
of photosynthesis in S. minima was reduced 
by 44%, membrane damage was observed in 
the cells of submerged fronds, stomata were 
closed in floating fronds, and as a result, CO2 
intake decreased [75]. A concentration of 
nackel above 80 μM changed the integrity of 
cell membranes, affected photosynthesis, the 
efficiency of photosystem II, and reduced the 
content of photosynthetic pigments [76]. The 
fern is a hyperaccumulator of nickel, which is 
stored mainly in submerged fronds (16.3 mg/g 
of dry biomass). Quick absorption of nickel 
occurs in the first 6-12 hours of contact with 
the metal, and slows down over time [76].

S. minima is an effective biosorbent of 
methylene blue (MB), crystal violet (CV) and 
Bismarck brown (BB) dyes and HM ions lead 
(II), zinc (II) and nickel (II). The removal 
efficiency of dyes and metal ions exceeded 
90% (99.4, 99.1 and 96.5% for CV, MB, BB 
and 98.56, 95.69 and 92.99% for lead, zinc  
and nickel respectively) under an initial 
dye concentration of 10 mg/l and a high 
concentration of metal ions. The maximum 
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adsorption capacity for CV, MB, BB dyes 
was 94.13, 150.98 and 228.81 mg/g, and for 
lead, zinc  and nickel ions — 174.32, 232.43, 
171.40 mg/g. It was established that the 
accumulation of dyes and HM ions occurred 
mainly due to chemisorption. In general, the 
fern was found to be an effective ecological 
means of purification of wastewater 
containing dyes and heavy metal ions [77]. 
S. minima accumulates in large quantities 
and removes from aqueous solutions HM 
cadmium, lead, chromium and metalloid 
arsenic  [78, 79]. It was reported that the 
intensity of pollutant accumulation is 
affected by the intensity of lighting and the 
pH of aqueous solution [73]. S. minima also 
adsorbs numerous nutrients from eutrophied 
waters. This fern grows rapidly in municipal 
wastewater and can effectively remove excess 
NO3 and PO4, as well as reduce biological 
and chemical oxygen consumption (BOD and 
COD) by 67.4% and 72.4% and conductivity 
by 89%, 59% and 59% respectively during 
28 days [80]. So, S. minima was an effective 
purifier of inorganic and organic pollutants 
(Table 1). 

Salvinia cucullata Roxb. ex Bory comes 
from India. Its floating fronds have short 
petioles 0.5–1 mm long; the plates are 
rounded at the top, truncated at the base, 0.5–
1  1,1–1.5 cm. Hairs are only on the abaxial 
surface, the papillae are short or absent, the 
areolar veins are heterogeneous. Submerged 
fronds are 3.5 cm long, with short 0.2–1 mm 
petioles [63].

Fern grows well in a nitrate-contaminated 
environment (0.5–1 mM). With an increase 
in pollutant concentrations up to 5 mM, 
growth is suppressed, potassium absorption 
was inhibited, but t he amount of nitrogen 
in fronds increased, which became the basis 
for the use of S. cucullata as fertilizers, 
animal feed and in waters purification [81]. 
A significant decrease in biological and 
chemical oxygen consumption, nitrates and 
phosphates content (Table 1) was observed in 
wastewater after cultivation of ferns during 
45 days [82].

Salvinia herzogii de la Sota is common in 
Argentina and Brazil. Floating two-bladed 
fronds with a high-cut top of up to 1/3 of the 
length of the plate and a heart-shaped base 
1.5–2.5  2.7–3.8 cm are attached to short 
petioles 0.4–1.0 mm. The frond surface is 
covered with hairs that are divided into four 
segments at the apex and connected to the tips. 
It has long papillae and heterogeneous areolar 
veins. Submerged fronds are up to 10 cm long, 

with long 0.5–1 cm petioles [63]. S. herzogii 
is capable to change the morphology of 
fronds depending on the population density, 
which allows to compete for resources [83]. 
Submerged fronds of S. herzogii accumulate 
more chromium, cadmium, lead, zinc and 
nickel than floating fronds, and the removal 
of chromium from wastewater occurred 
faster than zinc and nickel [84, 85]. The 
absorption of chromium and cadmium by 
floating fronds of S. herzogii occurred due 
to the bioadsorption, helating and ion 
exchange [86].

Salvinia auriculata together with other 
macrophytes Elodea densa, Sagittaria mon-
tevidensis, Pistia stratiotes and Eichhornia 
crassipes in two artificial reservoirs actively 
accumulated mercury. The concentration 
of HM in the organs of plants ranged from 
46–246 ng/g to 37–314 ng/g of fresh weigh. 
Negative correlation between mercury 
content and plant biomass has emphasized 
the importance of juvenile plants using 
to absorb mercury [87]. S. auriculata 
accumulated potassium, calcium, titanium, 
iron, manganese, chromium, cuprum, zinc and 
strontium, the content of which increased over 
time (Table 1). Coefficients of concentrations 
for all metals except strontium reached the 
highest value in 46 days of cultivation of ferns 
in contaminated river water [88].

It was reported that S. rotundifolia 
removed 85–95% of lead from contaminated 
industrial wastewater [89]. Ferns S. auricu-
lata, S. biloba, S. herzogii, S. mi ni ma, 
S. molesta, S. natans and S. ro tun difolia 
accumulated HM gold, cadmium, chromium, 
cesium, cooper, iron, manganese, nickel, lead, 
strontium and zinc  up to 6000–18000 mg/
kg of dry biomass, which allows to use them 
for effective purification of industrial and 
wastewater (Table 1) [90].

Hydrophyte ferns of the Azolla genus 
in phytoremediation of polluted waters

The genus Azolla unites aquatic ferns, 
which are characterized by small fronds and 
bright colors from green to burgundy. Due 
to the significant water repellency of the 
scaly fronds, the fern floats on the surface 
of stagnant water in tropical, subtropical, 
and temperate regions around the world [97, 
98]. Reproduction occurs mainly through 
rapid vegetative segmentation, the biomass 
of the fern doubles in two to four days [99]. 
The degree of sporulation is quite low and 
requires certain conditions for instance, it can 
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be induced by far-red light [100]. A unique 
feature of ferns of this genus is the formation 
of symbiosis with the nitrogen-fixing 
cyanobacterium Anabaena azollae [101]. Due 
to the significant rate of nitrogen assimilation 
and extremely high productivity, ferns of 
the genus Azolla are used in agricultural 
production as biofertilizers [102, 103] and 
feed bioadditive for animals in aquaculture 
[104]. Recently, Azolla ferns have attracted 
attention as potential phytoremediants. The 
ability of Azolla ferns to absorb heavy metals 
attracts special attention of researchers 
(Table 2). 

Azolla filiculoides Lam. is an invasive plant 
that is widespread in tropical and temperate 
regions throughout the world. An adult plant 
is 1–2 cm in size, colored at the edges in pink, 
orange or red. It differs from other Azolla 
species by the presence of single-cell trichomes 
on the surface, which provide water-repellent 
properties of plant. The ability to successful 
absorb nitrogen and phosphorus compounds 
from wastewater was found in A. filiculoides 
[105]. Growth stimulation of A. filiculoides 
under the addition of nitrogen and phosphorus 
had a limiting concentration of 50 μM/L, 
at higher concentrations chlorosis due to 
iron deficiency was observed [106]. The fern 
A. filiculoides is known as a hyperaccumulator 
of lead, cadmium, chromium, nickel, silver 
and gold [107]. When A. filiculoides was grown 
for 15 days in solutions containing 5, 10, and 
25 mg/L of lead, nickel, and cadmium, the 
cleaning efficiency reached a maximum at 
day 10 at a metal concentration of 5 mg/L and 
decreased at a higher level of pollution [108]. 
Accumulation of cadmium by A. filiculoides 
was an order of magnitude lower than that of 
copper when these compounds were added in 
a complex with EDTA, while cadmium alone 
caused significant damage to photosystem II 
[109]. Water pollution with iron, chromium 
and aluminum did not prevent the growth of 
the fern A. filiculoides, instead, aluminum had 
even a small stimulating effect. Fern removed 
92% of iron, 96% of aluminum and more than 
80% of chromium [110]. Water pollution with 
iron, chromium and aluminum did not prevent 
the growth of the fern A. filiculoides, instead, 
aluminum had even a small stimulating effect. 
A. filiculoides effectively absorb nickel from 
aqueous and galvanic solutions, even at extreme 
pH values [111]. Ferns of the genus Azolla are 
also able to accumulate and remove organic 
compounds from the water environment. Thus, 
A. filiculoides removed up to 50% of diclofenac 
and 60% of levofloxacin from the water [110]. 

A. filiculoides absorbs up to 90% of the phenolic 
substance pyrocatechol, which is a precursor of 
pesticides and flavorings and one of the most 
famous water pollutants [112]. Phenanthrene, 
a tricyclic aromatic hydrocarbon, one of 
the most common environmental pollutants 
from vehicle exhaust and asphalt heating, is 
absorbed by A. filiculoides by 88, 69, and 60% 
at contamination levels of 1, 5, and 10 mg/L, 
respectively [113].

Azolla pinnata R. Brown, the smallest 
species from the genus Azolla, endemic to the 
coastal areas of Africa, Asia and Australia. 
Triangular stems 2.5 cm in length that 
bears many rounded or angular green, blue-
green, or dark red leaves each 1-2 mm long, 
coated in tiny hairs, giving them a velvety 
appearance. The growth of this fern did not 
depend on the presence of nitrogen in the 
environment, apparently, the fern supplied 
itself with this macroelement due to symbiotic 
nitrogen fixation [114]. A. pinnata plants 
absorbed 86.97% of iron sulfate and 81.14% 
of zinc sulfate at an initial concentration 
of 100 ppm for 20 days [115]. A. pinnata 
actively accumulated the herbicide 2,4-D and 
converted it into less toxic compounds that 
were deposited in the cell walls [116].

A. caroliniana Willd. is native for North 
and South America, the Caribbean. Scaly leaves 
5–10 mm long are green or red, they are coated 
with two-cell trichomes. Plants purified water 
from mercury and chromium compounds by 
almost 100% in 12 days of the experiment. 
At the same time, the content of metals in 
fern tissues increased from 71 to 964 mg/kg 
of biomass, chromium absorption was more 
effective [117]. This fern also accumulated 
up to 5 mg of lead per 1 kg of dry matter at 
a concentration of 20 mg/L of lead acetate, 
but the toxicity of the metal had a significant 
negative effect on the photosynthetic 
apparatus and plant metabolism [118].

A. microphylla Kaulf. occurs in North 
America. Floating fronds 0.6–2 mm long 
are green or red, submerged fronds reach a 
length of 5 cm. Cultivation of A. microphylla 
significantly improved the quality of 
wastewater from fish breeding ponds 
(temperature, turbidity, pH, ammonium 
content) [119]. The accumulation of aluminum 
in the body of A. microphylla occurred in 
proportion to the increase in the concentration 
of AlCl3 in the water, while significant 
activation of the antioxidant system 
contributed to detoxification and maintenance 
of metabolic and growth processes in floating 
fern fronds [120].
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Table 2. Summarized information on the phytoaccumulation of heavy metals by aquatic ferns 
of the genus Azolla from polluted waters (adapted from [107])

Azolla spp. Heavy metal 
(HМ)

Initial concentration 
of HМ

Duration 
of the 

experiment (d)

Accumulation of HМ 
(DW) or absorption 

efficiency (%)
Source

Azolla 
pinnata

Hg 3.0 mg/L 13 667 μg/g [125]

Hg 10.0 μg/L 21 450 μg/g [126]

Hg 3.0 mg/L 6 940 μg/g [127]

Cd 3.0 mg/L 13 740 μg/g [125]

Cd 10.0 mg/L 7 2759 μg/g [128]

Cr(III) 3.0 mg/L 13 1095 μg/g [129]

Cr(VI) 20.0 μg/L 14 9125 μg/g [130]

Ni 500 mg/L 7 16252 μg/g [128]

Fe 100 ppm 20 87 % [118]

Zn 100 ppm 20 81 % [118]

Azolla 
caroliniana

As 80.0 μg/L 7 >120 μg/g [131]

Pb 1.0 mg/L 12 416 μg/g [132]

Cd 1.0 mg/L 12 259 μg/g [132]

Cr(VI) 1.0 mg/L 12 356 μg/g [110]

Cr(III) 1.0 mg/L 12 964 μg/g [110]

Hg 1.0 mg/L 12 578 μg/g [110]

Pb 20 mg/L 10 5 mg/g [111]

Azolla 
filiculoides

As 80.0 μg/L 7 >60 μg/g [131]

Cr(VI) 20.0 μg/L 14 12 383 μg/g [130]

Cr(III) 9.0 mg/L (ppm) 4 1904 ppm [133]

Cd 9.0 mg/L (ppm) 4 10441 ppm [133]

Cd 10.0 mg/L 7 2608 μg/g [128]

Ni 9.0 mg/L (ppm) 4 8814 ppm [133]

Ni 500 mg/L 7 28 443 μg/g [128]

Cu 9.0 mg/L (ppm) 4 9224 ppm [133]

Zn 9.0 mg/L (ppm) 4 6408 ppm [133]

Fe 5.0 mg/L 8 92% [112]

Al 5.0 mg/L 8 96% [112]

Cr 5.0 mg/L 8 10% [112]

Pb
5 mg/L

 10 mg/L
 25 mg/L

15
95%
97%
79%

[115]

Ni
5 mg/L

 10 mg/L
 25 mg/L

15
71%
69%
77%

[115]

Cd
5 mg/L

 10 mg/L
 25 mg/L

15
93%
89%
66%

[115]

Cd
1 mg/L

2.5 mg/L
 2.7 mg/L 

188.7 mg/kg
673.5 mg/kg
93.11 mg/kg

[117]

Cu 2.6 mg/L 1169.45 mg/kg [117]

A. 
microphylla

Cr(VI) 20.0 μg/L 14 14 931 μg/g [130]

Ni 500 mg/L 7 21 785 μg/g [128]

Cd 10.0 mg/L 7 1805 μg/g [128]

Al 100, 250, 500 
and 750 μM 6 195.8 μg/g FW [119]

A. imbricata Cd 0.5 μg/L 9 183 μg/g [134]



Reviews

15

It was shown also, that in A. imbricata, 
excess cadmium induced the expression of 
genes encoding anthocyanin biosynthesis 
[121]. Cultivation of A. japonica reduced the 
nitrogen content in the medium by half in 
less than a week [122]. It was determined that 
purification of environment from antibiotics 
by ferns Azolla spp. occurred in three stages: 
absorption of the substance by the fern with 
the formation of reactive oxygen species, 
which were partially neutralized, conjugation 
of the substance with the participation of 
glutathione transferase and glutathione, and 
deposition of the assimilated substance in the 
apoplast, vacuoles, and cell wall [123]. 

The ability to adsorb an excess of 
macronutrients has been established for all 
species of ferns of this genus, although they 
differ in their tolerance to pollutants. Thus, 
A. microphylla showed greater tolerance to 
supraoptimal nitrogen concentrations than A. 
caroliniana, A. imbricata, and A. mexicana. In 
addition, this species had the highest nitrogen 
absorption efficiency [124].

Hydrophyte ferns 
of the Salviniaceae family 

in phytoindication of water pollution

To determine the pollution of waters, 
bioindication methods are used. Special 
signs that allow us to assess changes in 
mineralization and purity of the environment 
are distinguished in indicator plants. These 
include physiological (level of transpiration, 
pigmentation, salt content), morphological 
(size, branching), phenological (anomalies 
of the development rhythm, growing season) 
indicator signs. The most sensitive according 
to these indicators are aquatic macrophytes, 
the species composition and productivity of 
which reflect the nature of water pollution with 
organic substances, heavy metals, pesticides, 
etc. Due to a closer connection with the aquatic 
environment, aquatic macrophytes are the 
most convenient object for phytoindication of 
waters [135].

Thus, it was shown that the growth 
rate of the fern S. natans increased by 20% 
when the water was polluted with nickel at 
a concentration of 0.25 mg/l, while it was 
significantly inhibited at metal concentrations 
of 0.5, 0.75, 1 and 2 mg/L [136]. Phenotypic 
changes of the floating fronds of S. biloba 
were detected on the fifth day of cultivation in 
artificially contaminated water with cadmium 
(100 μM), which were manifested in the form of 
chlorosis and necrosis. In the floating fronds, 

the metal content on the third day was 3 mg/g 
DW, and on the tenth — 23 mg/g DW, while 
in the submerged fronds, it was 3 and 12 mg/g 
DW, respectively [96]. Prolonged exposure to 
lead and cadmium (for 10 days) induced changes 
in the content of photosynthetic pigments 
(carotenoids, chlorophylls a and b), secondary 
metabolites (anthocyanins and flavonoids), 
soluble carbohydrates, changed the stability 
of cell membranes of floating and submerged 
fronds. Such adverde effects were correlated 
with qualitative changes in the fern phenotype. 
The plants showed typical signs of toxicity, such 
as chlorosis and necrosis of floating fronds, 
the appearance of a brownish-red color on the 
surface of plants, and a decrease in total plant 
biomass [37, 96]. S. biloba is a bioindicator of 
cuprum contamination in aquatic ecosystems. 
At the high concentrations of metal, symptoms 
of plant intoxication and death were observed 
[65]. When studying the phytoextraction 
capacity of S. natans, it was shown that the 
fern actively accumulated lead and copper 
(>3.328±0.032 and >2.641±0.014 mg/kg DW, 
respectively). High concentrations of HM 
negatively affected the growth and habit of 
the fern, which allows the use of S. natans for 
biotesting [137].

A number of investigations are devoted 
to the elucidation of the impact of HM 
pollution on the physiological state of aquatic 
macrophytes in natural and experimental 
conditions. It has been reported that S. na-
tans is able to accumulate high levels of 
HM. Thus, the accumulation of chromium, 
iron, nickel, copper, lead, and cadmium 
ranged from 6 to 9 mg/g DW, while the 
accumulation of cobalt, zinc, and manganese 
was ~4 mg/g DW. The accumulation of 
HM affected the photosynthetic activity of 
fern, in particular, the efficiency of carbon 
assimilation, photochemical activity, and 
photophosphorylation [91]. Significant growth 
rate, simplicity of cultivation, distribution 
and sensitivity to various harmful substances 
as well as the ability to hyperaccumulate 
pollutants contribute to the successful use of 
S. natans for biotesting and purification of 
contaminated waters [138].

Chlorosis was detected in the fern 
S. cucullata, which was grown in a medium 
containing 0.5, 1, 2, and 4 mg/L cadmium and 
5, 10, and 40 mg/L lead. With an increase in the 
duration of the negative impact and a raise in 
the concentration of HM, the growth of plants 
slowed down, the accumulation of biomass 
decreased, and the content of chlorophyll 
reduced. Submerged fronds accumulated more 
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cadmium and lead than floating fronds [139]. 
The fern grew well in a medium containing 
0.5–1 mM NH4

+. On the other hand, the 
concentration of the pollutant above 5 mM 
inhibited the growth rate, the number and 
length of the submerged branches decreased, 
signs of chlorosis appeared [81]. It was 
reported that with increasing concentrations 
of cadmium, copper, chromium, mercury, lead, 
nickel, and zinc in the aquatic environment, 
growth and raw biomass accumulation by 
macrophytes S. natans, S. molesta, and S. au-
ri culata were inhibited [140].

In A. microphylla plants under high 
concentrations of aluminum in water (up to 
750 μM), the size of the submerged fronds 
and the content of phenols and flavonoids 
significantly decreased, but the level of 
chlorophylls, sucrose, starch, photosynthesis 
efficiency and nitrogen-fixing capacity 
remained almost normal [119]. The growth 
of A. filiculoides was inhibited by 42% under 
the contamination with phenathrene at a 
concentration of 10 mg/L, simultaneously 
the content of photosynthetic pigments was 
significantly reduced [123]. The presence of 1 
mM phenol in the environment also negatively 
affected the morpho-biochemical parameters 
of this fern: numerous necrosis was observed, 
the malondialdehyde content increased 
significantly [141].

Therefore, aquatic ferns of the Salviniacea 
family can be used as a valuable tool for 
biotesting water contaminated with pollutants 
of various nature.

Conclusion

Aquatic macrophytes of the Salviniaceae 
family play an important role in the 
phytoremediation of contaminated waters, 
improve water quality, promote the circulation 
of nutrients, stabilize and optimize the 
habitat of other species of flora and fauna. 
They are characterized by rapid growth, 
accumulation of significant biomass, are able 
to absorb heavy metals and other hazardous 
waste, possess physiological and molecular 
mechanisms of adaptation to the toxic effects 
of pollutants. Aquatic macrophytes of the 
Salviniaceae family remove pollutants from 
waters by surface adsorption and incorporate 
them into their own system or store them in 
bound form. Species of the genera Salvinia 
and Azolla are successfully used to assess the 
ecological state of waters, the ecotoxicological 
effects of pollutants are studied on them, and 
biotechnological approaches for biotesting are 
developed. The properties and characteristics 
summarized in the review reveal the enormous 
potential of water ferns for the creation of 
ecologically acceptable and economically 
profitable modern biotechnologies for the 
purification of large volumes of polluted waters 
from substances harmful to the environment.

This review was prepared as a part of 
research work 0121U114018 “Exogenous 
phyto hormones in the regulation of growth 
and development of aquatic macrophytes 
of the genus Salvinia — perspective for 
phytoindication and phytoremediation of 
contaminated water” supported by the National 
Academy of Sciences of Ukraine.
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ВОДНІ ПАПОРОТІ РОДИНИ Salviniaceae
У ФІТОРЕМЕДІАЦІЇ ТА ФІТОІНДИКАЦІЇ ЗАБРУДНЕНИХ ВОДОЙМ

Косаківська І.В., Веденичова Н.П., Щербатюк М.М., 
Войтенко Л.В., Васюк В.А.

Інститут ботаніки імені М. Г. Холодного 
НАН України, Київ

Проблематика. Водні екосистеми зазнають значних стресових навантажень та виснаження через 
надходження забруднюючих речовин неорганічного та органічного походження, що створює серйозну 
загрозу для здоров’я людей. Програма ООН з навколишнього середовища визначила фіторемедіацію 
як ефективну екотехнологію видалення, детоксикації та іммобілізації полютантів за допомогою рос-
лин. Папороті гідрофіти родини Salviniaceae належать до перспективних фіторемедіантів. Вони ха-
рактеризуються високими темпами росту, стійкістю до несприятливих екологічних чинників, здатні 
адсорбувати полютанти, серед яких важкі метали. Види родів Salvinia та Azolla використовують для 
оцінки екологічно стану водойм та дослідження екотоксикологічних ефектів забруднюючих речовин 

Мета. Аналіз та узагальнення новітніх наукових результатів з використання видів родини 
Salviniaceae для фіторемедіації та фітоіндикації забруднених водойм.

Результати. У цьому огляді ми навели ключову інформацію про новітні фітотехнології, серед 
яких фітодеградація, фітостабілізація, ризофільтрація, ризодеградація та фітоволатизація. Охарак-
теризували особливості росту і розповсюдження видів родів Salvinia та Azolla та представили акту-
альну інформацію щодо використання водних папоротей для очистки забруднених водойм від важ-
ких металів, неорганічних та органічних забруднювачів. Обговорили відомості щодо фізіологічних та 
молекулярних механізмів адаптації видів родів Salvinia та Azolla до токсичної дії полютантів різного 
походження. Окрему увагу ми зосередили на використанні водних папоротей родини Salviniaceae
для контролю забруднення водойм.

Ключові слова: Salviniaceae, водні екосистеми, фіторемедіація, біоіндикація, органічні та 
неорганічні забруднювачі.


