Т. Р. Сейфуллин

Точечный комплекс Кошуля системы полиномов

(Представлено членом-корреспондентом НАН Украины А.А. Летичевским)

A pointed element of the Koszul complex of a system of polynomials is an analog of the pointed distribution depending on parameters.

В настоящей работе будем использовать определения и обозначения, данные в [1–6].

Соглашение 1. Пусть ${\bf R}$ — коммутативное кольцо с единицей, ${\bf A}$ — коммутативная алгебра над ${\bf R}$. Пусть ${\cal M}$, ${\cal N}$, ${\cal K}$ — модули над ${\bf R}$, $\psi\colon {\cal M}\times {\cal N}\to {\cal K}$ — билинейное над ${\bf R}$ отображение.

Если \mathcal{M} и \mathcal{N} являются модулями над \mathbf{A} , и имеет место $\psi(a \cdot \mathbf{m}, \mathbf{n}) = \psi(\mathbf{m}, a \cdot \mathbf{n})$ для любых $a \in \mathbf{A}$, $\mathbf{m} \in \mathcal{M}$, $\mathbf{n} \in \mathcal{N}$, то отображение ψ назовем внутренне билинейным над \mathbf{A} .

Соглашение 2. Пусть ${f R}$ — коммутативное кольцо с единицей.

Пусть \mathcal{K} — модуль над \mathbf{R} , $\mathcal{K}' \subseteq \mathcal{K}$. Под аддитивным замыканием \mathcal{K}' будем понимать множество, полученное из множества, состоящего из нуля модуля \mathcal{K} путем применений операции $P' = P \bigcup \{a+b \mid a \in P, b \in \mathcal{K}\} \bigcup \{a-b \mid a \in P, b \in \mathcal{K}\}.$

Пусть \mathcal{M} , \mathcal{N} , \mathcal{K} — модули над \mathbf{R} , $\psi \colon \mathcal{M} \times \mathcal{N} \to \mathcal{K}$ — билинейное над \mathbf{R} отображение, $\mathcal{M}' \subseteq \mathcal{M}$, $\mathcal{N}' \subseteq \mathcal{N}$. Под $\psi(\mathcal{M}', \mathcal{N}')$ будем понимать множество $\{\psi(\mathbf{m}, \mathbf{n}) \mid \mathbf{m} \in \mathcal{M}', \mathbf{n} \in \mathcal{N}'\}$, а не его аддитивное замыкание.

Определение 1. Пусть ${\bf R}$ — коммутативное кольцо с единицей, $x=(x_1,\ldots,x_n)$ — набор полиномиальных переменных, $\widehat f=(\widehat f_1,\ldots,\widehat f_s)$ — набор грассмановых переменных.

Обозначим $\mathbf{R}[x,\widehat{f}] \simeq \mathbf{R}[x] \otimes_{\mathbf{R}} \Lambda_{\mathbf{R}}(\widehat{f})$ градуированную коммутативную алгебру над \mathbf{R} (см. [7, с. 230–232]) в которой порядок x_k равен 0, а порядок \widehat{f}_i равен 1. Элементы $\mathbf{R}[x,\widehat{f}]$ будем обозначать $a(x,\widehat{f})$, где a — любая буква, порядок $a(x,\widehat{f})$ будем обозначать |a|.

Пусть $y=(y_1,\ldots,y_m)$ — набор полиномиальных переменных, $\widehat{g}=(\widehat{g}_1,\ldots,\widehat{g}_t)$ — набор грассмановых переменных, обозначим $\mathbf{R}[x,\widehat{f}][y,\widehat{g}]_*=\mathrm{Hom}_{\mathbf{R}}(\mathbf{R}[y,\widehat{g}],\mathbf{R}[x,\widehat{f}])$ множество линейных над \mathbf{R} отображений $\mathbf{R}[y,\widehat{g}]\to\mathbf{R}[x,\widehat{f}]$. Элементы $\mathbf{R}[x,\widehat{f}][y,\widehat{g}]_*$ будем обозначать $a(x,\widehat{f},y_*,\widehat{g}_*)$, где a — любая буква.

Обозначим $\mathbf{R}[y,\widehat{g}]_* = \mathrm{Hom}_{\mathbf{R}}(\mathbf{R}[y,\widehat{g}],\mathbf{R})$ множество линейных над \mathbf{R} отображений $\mathbf{R}[y,\widehat{g}] \to \mathbf{R}$. Элементы $\mathbf{R}[y,\widehat{g}]_*$ будем обозначать $a(y_*,\widehat{g}_*)$, где a — любая буква.

Под $\mathbf{R}[x][y]$ будем понимать кольцо полиномов от переменных $y=(y_1,\ldots,y_m)$ с коэффициентами из $\mathbf{R}[x]$.

Под точечным подмодулем модуля $\mathbf{R}[x,\widehat{f}][y,\widehat{g}]_*$ ($\mathbf{R}[y,\widehat{g}]_*$) будем понимать точечный подмодуль модуль модуля $\mathbf{R}[x,\widehat{f}][y,\widehat{g}]_*$ ($\mathbf{R}[y,\widehat{g}]_*$) как модуля над $\mathbf{R}[x][y]$ ($\mathbf{R}[y]$). Под точечным элементом модуля $\mathbf{R}[x,\widehat{f}][y,\widehat{g}]_*$ ($\mathbf{R}[y,\widehat{g}]_*$) будем понимать элемент, принадлежащий некоторому точечному подмодулю этого модуля.

Заметим, что если y=(), то $\mathbf{R}[x,\widehat{f}][y,\widehat{g}]_* = \mathbf{R}[x,\widehat{f}][\widehat{g}]_*$ ($\mathbf{R}[y,\widehat{g}]_* = \mathbf{R}[\widehat{g}]_*$) является точечным своим подмодулем как модуля над $\mathbf{R}[x][y] = \mathbf{R}[x][] \simeq \mathbf{R}[x]$ ($\mathbf{R}[y] = \mathbf{R}[] \simeq \mathbf{R}$), так как является конечно порожденным как модуль над $\mathbf{R}[x]$ ($\mathbf{R}[x]$). Тогда и любой элемент модуля $\mathbf{R}[x,\widehat{f}][\widehat{g}]_*$ ($\mathbf{R}[\widehat{g}]_*$) является точечным, так как $\mathbf{R}[x,\widehat{f}][\widehat{g}]_*$ ($\mathbf{R}[\widehat{g}]_*$) является своим точечным подмодулем.

Лемма 1. Пусть \mathbf{R} — коммутативное кольцо с единицей; пусть x_1 , x_2 , x_3 , y_1 , y_2 , z_1 , z_2 — наборы полиномиальных переменных.

Пусть Λ' — модуль над $\mathbf{R}[x_1,x_2][y_1,y_2,z_1]$, Λ'' — модуль над $\mathbf{R}[x_2,x_3,y_1,y_2][z_2]$, Λ — модуль над $\mathbf{R}[x_1,x_2,x_3][y_1,z_1,z_2]$.

Пусть $\psi \colon \Lambda' \times \Lambda'' \to \Lambda$ — билинейное над \mathbf{R} отображение, линейное над $\mathbf{R}[x_1]$ по первому аргументу, билинейное над $\mathbf{R}[x_2]$, линейное над $\mathbf{R}[x_3]$ по второму аргументу, билинейное над $\mathbf{R}[y_1]$, внутренне билинейное над $\mathbf{R}[y_2]$, линейное над $\mathbf{R}[z_1]$ по первому аргументу, линейное над $\mathbf{R}[z_2]$ по второму аргументу. Тогда:

- 1) если \mathcal{L}' точечный подмодуль модуля Λ' , \mathcal{L}'' точечный подмодуль модуля Λ'' , \mathcal{L} аддитивное замыкание $\psi(\mathcal{L}',\mathcal{L}'')$, то \mathcal{L} является точечным подмодулем модуля Λ ;
- 2) если l'- точечный элемент из Λ' , l''- точечный элемент из Λ'' , то $\psi(l',l'')$ является точечным элементом из Λ .

Доказательство 1. Пусть $a(x_1, x_2, y_1, z_1) \in \mathbf{R}[x_1, x_2, y_1, z_1]$, тогда

$$a(x_1, x_2, y_1, z_1) \cdot \psi(\mathcal{L}', \mathcal{L}'') = \psi(a(x_1, x_2, y_1, z_1) \cdot \mathcal{L}', \mathcal{L}'') \subseteq \psi(\mathcal{L}', \mathcal{L}'').$$

Равенство следует из линейности отображения ψ над $\mathbf{R}[x_1, x_2, y_1, z_1]$ по первому аргументу. Включение следует из включения $a(x_1, x_2, y_1, z_1) \cdot \mathcal{L}' \subseteq \mathcal{L}'$, которое имеет место, так как \mathcal{L}' является модулем над $\mathbf{R}[x_1, x_2][y_1, y_2, z_1]$. Следовательно, $\psi(\mathcal{L}', \mathcal{L}'')$ замкнуто относительно умножения на полиномы из $\mathbf{R}[x_1, x_2, y_1, z_1]$. Пусть $b(x_2, x_3, y_1, z_2) \in \mathbf{R}[x_2, x_3, y_1, z_2]$, тогда

$$b(x_2, x_3, y_1, z_2) \cdot \psi(\mathcal{L}', \mathcal{L}'') = \psi(\mathcal{L}', b(x_2, x_3, y_1, z_2) \cdot \mathcal{L}'') \subseteq \psi(\mathcal{L}', \mathcal{L}'').$$

Равенство следует из линейности отображения ψ над $\mathbf{R}[x_2,x_3,y_1,z_2]$ по второму аргументу. Включение следует из включения $b(x_2,x_3,y_1,z_2)\cdot\mathcal{L}''\subseteq\mathcal{L}''$, которое имеет место, так как \mathcal{L}'' является модулем над $\mathbf{R}[x_2,x_3,y_1,y_2][z_2]$. Следовательно, $\psi(\mathcal{L}',\mathcal{L}'')$ замкнуто относительно умножения на полиномы из $\mathbf{R}[x_2,x_3,y_1,z_2]$. Тогда \mathcal{L} как аддитивное замыкание множества $\psi(\mathcal{L}',\mathcal{L}'')$ является модулем над $\mathbf{R}[x_1,x_2,y_1,z_1]$ и модулем над $\mathbf{R}[x_2,x_3,y_1,z_2]$, следовательно, является модулем над $\mathbf{R}[x_1,x_2,x_3][y_1,z_1,z_2]$.

Так как \mathcal{L}' — точечный подмодуль модуля Λ' , то он обладает конечной системой образующих $\{\lambda'_p \mid p \in P\}$ как модуль над $\mathbf{R}[x_1,x_2]$. Так как \mathcal{L}'' — точечный подмодуль модуля Λ'' , то он обладает конечной системой образующих $\{\lambda''_q \mid q \in Q\}$ как модуль над $\mathbf{R}[x_2,x_3,y_1,y_2]$. \mathcal{L} порождается аддитивно элементами вида $\psi(l',l'')$, где $l'\in\mathcal{L}'$, $l''\in\mathcal{L}''$. Тогда $l'=\sum_p a^p(x_1,x_2)\cdot\lambda'_p$, $l''=\sum_q \sum_t b^q_t(x_3)\cdot c^q_t(x_2,y_1,y_2)\cdot\lambda''_q$, где $a^p(x_1,x_2)\in\mathbf{R}[x_1,x_2]$, $b^q_t(x_3)\in\mathbf{R}[x_3]$, $c^q_t(x_2,y_1,y_2)\in\mathbf{R}[x_2,y_1,y_2]$, сумма по t является конечной. Имеет место

$$\psi(l', l'') = \psi\left(\sum_{p} a^{p}(x_{1}, x_{2}) \cdot \lambda'_{p}, \sum_{q} \sum_{t} b_{t}^{q}(x_{3}) \cdot c_{t}^{q}(x_{2}, y_{1}, y_{2}) \cdot \lambda''_{q}\right) =$$

$$= \sum_{p} \sum_{q} \sum_{t} a^{p}(x_{1}, x_{2}) \cdot b_{t}^{q}(x_{3}) \cdot \psi(\lambda'_{p} \cdot c_{t}^{q}(x_{2}, y_{1}, y_{2}), \lambda''_{q}) =$$

$$= \sum_{p} \sum_{q} \sum_{t} a^{p}(x_{1}, x_{2}) \cdot b_{t}^{q}(x_{3}) \cdot \psi\left(\sum_{r} W_{pt}^{qr}(x_{1}, x_{2}) \cdot \lambda'_{r}, \lambda''_{q}\right) =$$

$$= \sum_{p} \sum_{q} \sum_{t} \sum_{r} a^{p}(x_{1}, x_{2}) \cdot b_{t}^{q}(x_{3}) \cdot W_{pt}^{qr}(x_{1}, x_{2}) \cdot \psi(\lambda'_{r}, \lambda''_{q}) =$$

$$= \sum_{q} \sum_{r} \left(\sum_{p} a^{p}(x_1, x_2) \cdot \left(\sum_{t} b_t^{q}(x_3) \cdot W_{pt}^{qr}(x_1, x_2) \right) \right) \cdot \psi(\lambda_r', \lambda_q'').$$

Второе равенство следует из линейности над $\mathbf{R}[x_1, x_2]$ по первому аргументу, линейности над $\mathbf{R}[x_3]$ по второму аргументу и внутренней билинейности над $\mathbf{R}[x_2, y_1, y_2]$ отображения ψ . Далее, $\lambda'_p \cdot c^q_t(x_2, y_1, y_2) \in \mathcal{L}'$, так как $\lambda'_p \in \mathcal{L}'$ и \mathcal{L}' является модулем над $\mathbf{R}[x_1, x_2][y_1, y_2, z_1]$, тогда $\lambda'_p \cdot c^q_t(x_2, y_1, y_2) = \sum_r W^{qr}_{pt}(x_1, x_2) \cdot \lambda'_r$, где $W^{qr}_{pt}(x_1, x_2) \in \mathbf{R}[x_1, x_2]$, так как $\{\lambda'_p \mid p \in P\}$ — система образующих \mathcal{L}' как модуля над $\mathbf{R}[x_1, x_2]$. Четвертое равенство следует из линейности над $\mathbf{R}[x_1, x_2]$ по первому аргументу отображения ψ . В последнем выражении коэф-

ности над $\mathbf{R}[x_1,x_2]$ по первому аргументу отображения ψ . В последнем выражении коэффициентом при $\psi(\lambda'_r,\lambda''_q)$ является полином из $\mathbf{R}[x_1,x_2,x_3]$, следовательно, \mathcal{L} порождается конечной системой образующих $\{\psi(\lambda'_r,\lambda''_q)\mid r\in P,q\in Q\}$ как модуль над $\mathbf{R}[x_1,x_2,x_3]$, т. е. является конечно порожденным как модуль над $\mathbf{R}[x_1,x_2,x_3]$. Таким образом, \mathcal{L} является точечным подмодулем модуля Λ как модуля над $\mathbf{R}[x_1,x_2,x_3][y_1,z_1,z_2]$.

Доказательство 2. Так как l' — точечный элемент из Λ' , то $l' \in \mathcal{L}'$, где \mathcal{L}' — точечный подмодуль модуля Λ' ; так как l'' — точечный элемент из Λ'' , то $l'' \in \mathcal{L}''$, где \mathcal{L}'' — точечный подмодуль модуля Λ'' . Пусть \mathcal{L} — аддитивное замыкание $\psi(\mathcal{L}',\mathcal{L}'')$, тогда $\psi(l',l'') \in \psi(\mathcal{L}',\mathcal{L}'') \subseteq \mathcal{L}$. Поскольку в силу 1 леммы \mathcal{L} является точечным подмодулем модуля Λ , то $\psi(l',l'')$ является точечным элементом \mathcal{L} .

Лемма 2. Пусть \mathbf{R} — коммутативное кольцо c единицей; пусть $x_1, x_2, x_3, y_1, y_2, z_1, z_2$ — наборы полиномиальных переменных u $\hat{f}_1, \hat{f}_2, \hat{f}_3, \hat{g}_1, \hat{g}_2, \hat{g}_3, \hat{g}_4, \hat{g}_5, \hat{g}_6, \hat{h}_1, \hat{h}_2, \hat{h}_3$ — наборы грассмановых переменных. Пусть

$$\begin{split} & \Lambda' = \mathbf{R}[x_1, x_2, \widehat{f}_1, \widehat{f}_2, \widehat{g}_1, \widehat{g}_3, \widehat{g}_5][y_1, y_2, z_1, \widehat{g}_2, \widehat{g}_4, \widehat{g}_6, \widehat{h}_1, \widehat{h}_2]_*, \\ & \Lambda'' = \mathbf{R}[x_2, x_3, y_1, y_2, \widehat{f}_2, \widehat{f}_3, \widehat{g}_2, \widehat{g}_4, \widehat{g}_6][z_2, \widehat{g}_1, \widehat{g}_3, \widehat{g}_5, \widehat{h}_2, \widehat{h}_3]_*, \\ & \Lambda = \mathbf{R}[x_1, x_2, x_3, \widehat{f}_1, \widehat{f}_2, \widehat{f}_3, \widehat{g}_3, \widehat{g}_4][y_1, z_1, z_2, \widehat{g}_1, \widehat{g}_2, \widehat{h}_1, \widehat{h}_2, \widehat{h}_3]_*; \end{split}$$

 ψ — отображение:

$$\begin{split} \Lambda' \times \Lambda'' \ni (l', l'') &\mapsto l(x_1, x_2, x_3, y_*^1, z_*^1, z_*^2, \widehat{f}_1, \widehat{f}_2, \widehat{f}_3, \widehat{g}_3, \widehat{g}_4, \widehat{g}_*^1, \widehat{g}_*^2, \widehat{h}_*^1, \widehat{h}_*^2, \widehat{h}_*^3) = \\ &= \underset{y_1}{\bot} \underset{y_2}{\bot} \underset{\widehat{g}_1}{\bot} \underset{\widehat{g}_2}{\bot} \underset{\widehat{g}_3}{\top} \underset{\widehat{g}_4}{\top} \widehat{g}_5 \widehat{g}_6 \\ &\cdot l''(x_2, x_3, y_1, y_2, z_*^2, \widehat{f}_2, \widehat{f}_3, \widehat{g}_2, \widehat{g}_4, \widehat{g}_6, \widehat{g}_*^1, \widehat{g}_*^3, \widehat{g}_*^3, \widehat{h}_*^2, \widehat{h}_*^2) \\ &\cdot l''(x_2, x_3, y_1, y_2, z_*^2, \widehat{f}_2, \widehat{f}_3, \widehat{g}_2, \widehat{g}_4, \widehat{g}_6, \widehat{g}_*^1, \widehat{g}_*^3, \widehat{g}_*^5, \widehat{h}_*^2, \widehat{h}_*^3). \end{split}$$

Тогда:

- 1) если \mathcal{L}' точечный подмодуль модуля Λ' , \mathcal{L}'' точечный подмодуль модуля Λ'' , то аддитивное замыкание $\psi(\mathcal{L}',\mathcal{L}'')$ является точечным подмодулем модуля Λ ;
- 2) если l' точечный элемент из Λ' , l'' точечный элемент из Λ'' , то $\psi(l',l'')$ является точечным элементом из Λ .

Доказательство. Легко видеть, что Λ' , Λ'' , Λ , ψ удовлетворяют условиям леммы 1. Тогда из 1 леммы 1 следует 1 леммы, из 2 леммы 1 следует 2 леммы.

Дополнение к лемме 2. Если один из наборов переменных $y_1, y_2, \widehat{g}_1, \widehat{g}_3, \widehat{g}_4, \widehat{g}_5, \widehat{g}_6$ пустой, то соответствующая этому набору сверка среди сверток \bot , \top , \bot , \bot , \bot , \bot , \bot , \bot , \top , \top , \top в определении отображения ψ отсутствует. Если все эти наборы переменных пустые, то в определении отображения ψ сверки отсутствуют и оно является произведением.

Лемма 3. Пусть \mathbf{R} — коммутативное кольцо c единицей; $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots,y_m)$ — наборы полиномиальных переменных; $\widehat{f}=(f_1,\ldots,\widehat{f}_s),\ \widehat{g}=(\widehat{g}_1,\ldots,\widehat{g}_t)$ — наборы грассмановых переменных. Пусть $a(x)\in\mathbf{R}[x]^m,\ b(x)\in\mathbf{R}[x]^{s\times t},\ mordal \mathbf{1}_{(y,\widehat{g})}(a(x),\widehat{f}b(x))$ является точечным.

Доказательство. $\mathbf{1}_{(y,\widehat{g})}(a(x),\widehat{f}b(x))\cdot\mathbf{R}[x][y]$ является модулем над $\mathbf{R}[x][y]$ и является конечно порожденным как модуль над $\mathbf{R}[x]$, ибо он порождается элементом $\mathbf{1}_{(y,\widehat{g})}(a(x),\widehat{f}b(x))$ как модуль над $\mathbf{R}[x]$, так как для любого $H(x,y)\in\mathbf{R}[x][y]:\mathbf{1}_{(y,\widehat{g})}(a(x),\widehat{f}b(x))\cdot H(x,y)=$ $=\mathbf{1}_{(y,\widehat{g})}(a(x),\widehat{f}b(x))\cdot H(x,a(x)), \text{ а } H(x,a(x))\in\mathbf{R}[x].$ Следовательно, $\mathbf{1}_{(y,\widehat{g})}(a(x),\widehat{f}b(x))$ является точечным.

Определение 2. Пусть \mathbf{R} — коммутативное кольцо с единицей; x, y — наборы полиномиальных переменных, z = (x, y); $\widehat{f} = (\widehat{f}_1, \dots, \widehat{f}_s)$, $\widehat{g} = (\widehat{g}_1, \dots, \widehat{g}_t)$ — наборы грассмановых переменных; $f(z) = (f_1(z), \dots, f_s(z))$, $g(z) = (g_1(z), \dots, g_t(z))$ — полиномы из $\mathbf{R}[z]$.

переменных; $f(z) = (f_1(z), \dots, f_s(z)), g(z) = (g_1(z), \dots, g_t(z))$ — полиномы из $\mathbf{R}[z]$. Обозначим $\mathbf{C}(x, y_*, \widehat{f}, \widehat{g}_*)$ множество $\mathbf{R}[x, \widehat{f}][y, \widehat{g}]_*$ с определенным на нем отображением $\partial \colon c(x, y_*, \widehat{f}, \widehat{g}_*) \mapsto \partial [c(x, y_*, \widehat{f}, \widehat{g}_*)] = \underset{\widehat{f}_*}{\perp} f(z)\widehat{f}_* \cdot c(x, y_*, \widehat{f}, \widehat{g}_*) - g(z)\widehat{g}_* \cdot c(x, y_*, \widehat{f}, \widehat{g}_*)$. Имеет место $\partial \cdot \partial = 0$, ∂ является однородным отображением порядка -1.

 $\mathbf{C}(x, y_*, \widehat{f}, \widehat{g}_*)$ является комплексом над $\mathbf{R}[x][y] \simeq \mathbf{R}[z]$, который называется комплексом Кошуля системы полиномов f(z), g(z) (см. [8, с. 157]).

 $c(x,y_*,\widehat{f},\widehat{g}_*)$ назовем точечным, если он является точечным элементом $\mathbf{C}(x,y_*,\widehat{f},\widehat{g}_*)$ как модуля над $\mathbf{R}[x][y]$. Обозначим $\mathbf{C}^{\bullet}(x,y_*,\widehat{f},\widehat{g}_*)$ множество точечных элементов $\mathbf{C}(x,y_*,\widehat{f},\widehat{g}_*)$ как модуля над $\mathbf{R}[x][y]$.

Лемма 4. Пусть имеют место условия определения 2. Тогда $\mathbf{C}^{\bullet}(x,y_*,\widehat{f},\widehat{g}_*)$ является подкомплексом комплекса $\mathbf{C}(x,y_*,\widehat{f},\widehat{g}_*)$ над $\mathbf{R}[x][y] \simeq \mathbf{R}[z]$, т. е. $\mathbf{C}^{\bullet}(x,y_*,\widehat{f},\widehat{g}_*)$ является подмодулем $\mathbf{C}(x,y_*,\widehat{f},\widehat{g}_*)$ как модуля над $\mathbf{R}[x][y]$ и если $c(x,y_*,\widehat{f},\widehat{g}_*)$ — точечный элемент из $\mathbf{C}(x,y_*,\widehat{f},\widehat{g}_*)$, то $\partial[c(x,y_*,\widehat{f},\widehat{g}_*)]$ является точечным элементом.

Доказательство. Поскольку отображение ∂ является линейным над $\mathbf{R}[x][y]$, то в силу леммы 5 из [6] $\mathbf{C}^{\bullet}(x, y_*, \hat{f}, \hat{g}_*)$ является подкомплексом комплекса $\mathbf{C}(x, y_*, \hat{f}, \hat{g}_*)$ над $\mathbf{R}[x][y]$.

Определение 3. Пусть **R** — коммутативное кольцо с единицей; $y \simeq x' \simeq x = (x_1, \dots, x_n)$ — наборы переменных; $\partial : \widehat{u} \mapsto (x-y), \widehat{u}' \mapsto (x'-y).$

Обозначим $\triangle_{(x',\widehat{u}')}(x,y,\widehat{u}) = \mathbf{1}_{(x',\widehat{u}')}(x,\widehat{u}) - \mathbf{1}_{(x',\widehat{u}')}(y,\widehat{0}).$

Обозначим $\nabla_{(x',\widehat{u}')}(x,y,\widehat{u})$ такой элемент $\mathbf{C}(x,y,\widehat{u};x'_*,\widehat{u}'_*)$, что имеет место

$$\partial [\nabla_{(x',\widehat{u}')}(x,y,\widehat{u})] = \triangle_{(x',\widehat{u}')}(x,y,\widehat{u})$$

и назовем его точечным оператором разностной гомотопии, если он является точечным.

Лемма 5. Пусть имеют место условия определения 3. Тогда $\triangle_{(x',\widehat{u}')}(x,y,\widehat{u})$ является точечным и существует точечный оператор разностной гомотопии $\nabla_{(x',\widehat{u}')}(x,y,\widehat{u})$. Например, таким оператором является

$$\nabla_{(x',\widehat{u}')}(x,y,\widehat{u}) = \sum_{k=1}^{n} \frac{1}{x_k - y_k} \cdot \widehat{u}_k \cdot \triangle_{(x',\widehat{u}')}^k(x,y,\widehat{u}),$$

e

$$\triangle_{(x',\widehat{u}')}^{k}(x,y,\widehat{u}) = \mathbf{1}_{(x',\widehat{u}')}(y_{< k}, x_{k}, x_{> k}, \widehat{0}_{< k}, \widehat{u}_{k}, \widehat{u}_{> k}) - \mathbf{1}_{(x',\widehat{u}')}(y_{< k}, y_{k}, x_{> k}, \widehat{0}_{< k}, \widehat{0}_{k}, \widehat{u}_{> k}).$$

Доказательство. В силу леммы 3

$$\mathbf{1}_{(x',\widehat{u}')}(y_{< k},x_k,x_{> k},\widehat{0}_{< k},\widehat{u}_k,\widehat{u}_{> k}) \qquad \text{if} \qquad \mathbf{1}_{(x',\widehat{u}')}(y_{< k},y_k,x_{> k},\widehat{0}_{< k},\widehat{0}_k,\widehat{u}_{> k})$$

являются точечными, следовательно, и $\triangle_{(x',\widehat{u}')}^k(x,y,\widehat{u})$, как их разность, в силу 2 леммы 2 из [6] является точечным, он аннулирует $(I(x,y,x'))_{x,y,x'}$, где $I(x,y,x')=\{(x'_k-x_k)\cdot(x'_k-y_k)|1\leqslant k\leqslant n\}$. Тогда оператор $\frac{1}{x_k-y_k}\cdot\widehat{u}_k\cdot\triangle_{(x',\widehat{u}')}^k(x,y,\widehat{u})$ тоже аннулирует $(I(x,y,x'))_{x,y,x'}$, следовательно, он является точечным в силу леммы 3 из [6], так как $\mathbf{R}[x,y][x']/(I(x,y,x'))_{x,y,x'}$ является конечно порожденным как модуль над $\mathbf{R}[x,y]$. Тогда и оператор $\nabla_{(x',\widehat{u}')}(x,y,\widehat{u})$, будучи их суммой, в силу 2 леммы 2 из [6] является точечным, он аннулирует $(I(x,y,x'))_{x,y,x'}$. В доказательстве леммы из [1, c. 45] показано, что $\nabla_{(x',\widehat{u}')}(x,y,\widehat{u})$ является оператором разностной гомотопии.

Вывод. Из лемм 2–4 следует, что во всех утверждениях работ [1–5], если исходные элементы дуальных комплексов Кошуля (т.е. вида $\mathbf{C}(x_*,\widehat{f}_*^x)$) являются точечными, то и все другие встречающиеся элементы комплексов Кошуля являются точечными, в том числе элементы дуальных комплексов Кошуля. Из леммы 5 также следует, что если в утверждениях имеются равенства вида $c_1-c_2=\partial[C]$, то в них C является точечным, так как они получаются с применением разностной гомотопии $\nabla_{(x',\widehat{u}')}(x,y,\widehat{u})$ (теорема из [1, с. 47]).

Теорема 1. Пусть \mathbf{R} — поле, $x = (x_1, \dots, x_n)$ — переменные, $f(x) = (f_1(x), \dots, f_s(x))$ — полиномы из $\mathbf{R}[x]$, $\partial: \widehat{f}_x \mapsto f(x)$. Пусть $c(x_*, \widehat{f}_*^x) \in \mathbf{Z}(x_*, \widehat{f}_*^x)$ — точечный.

Тогда либо $c(x_*, \widehat{f}_*^x) = \partial[b(x_*, \widehat{f}_*^x)]$, где $b(x_*, \widehat{f}_*^x) \in \mathbf{C}(x_*, \widehat{f}_*^x)$ — точечный; либо существует точечный $c'(x_*, \widehat{f}_*^x) \in \mathbf{Z}(x_*, \widehat{f}_*^x)$ такой, что имеет место $c(x_*, \widehat{f}_*^x) - c'(x_*, \widehat{f}_*^x) = \partial[b(x_*, \widehat{f}_*^x)]$, где $b(x_*, \widehat{f}_*^x) \in \mathbf{C}(x_*, \widehat{f}_*^x)$ — точечный и для всех $i = 1, s : c'(x_*, \widehat{f}_*) \cdot f_i(x)^{\delta_i} = \widehat{0}_*$ для некоторого $\delta_i \geqslant 1$.

Доказательство. Пусть $f = (f_1, \ldots, f_s)$ — полиномиальные переменные. Так как косизигия $c(x_*, \widehat{f}_*^x)$ является точечной, то она принадлежит подмодулю $\mathcal{L}(x_*, \widehat{f}_*^x)$ модуля $\mathbf{C}^r(x_*, \widehat{f}_*^x)$ над $\mathbf{R}[x]$, который является конечно порожденным как модуль над \mathbf{R} . В силу 1 леммы 1 из [6] существует $T_i(f_i) \in \mathbf{R}[f_i]$ такой, что $T_i(f_i(x)) \cdot \mathcal{L}(x_*, \widehat{f}_*^x) = \{\widehat{0}_*\}$, тогда $T_i(f_i(x)) \cdot c(x_*, \widehat{f}_*^x) = \widehat{0}_*$.

Пусть для некоторого i имеет место $T_i(0) \neq 0$, тогда $1 = f_i \cdot P_i(f_i) + T_i(f_i) \cdot Q_i$, где $Q_i = T_i(0)^{-1}$ и $P_i(f_i) = -Q_i \cdot (T_i(f_i) - T_i(0))/f_i \in \mathbf{R}[f_i]$. Тогда имеет место $c(x_*, \widehat{f}_*^x) = 1 \cdot c(x_*, \widehat{f}_*^x) = f_i(x) \cdot P_i(f_i(x)) \cdot c(x_*, \widehat{f}_*^x) + T_i(f_i(x)) \cdot Q_i \cdot c(x_*, \widehat{f}_*^x) = \partial[b(x_*, \widehat{f}_*^x)] + \widehat{0}_*$, где $b(x_*, \widehat{f}_*^x) = \widehat{f}_{i,x} \cdot P_i(f_i(x)) \cdot c(x_*, \widehat{f}_*^x)$, при этом в силу леммы 6 из [6] $b(x_*, \widehat{f}_*^x)$ является точечным, так как $c(x_*, \widehat{f}_*^x)$ является точечным, третье равенство имеет место, так как $T_i(f_i(x)) \cdot c(x_*, \widehat{f}_*^x) = \widehat{0}_*$.

Пусть для всех i: $T_i(0)=0$, тогда $T_i(f_i)=(f_i)^{\delta_i}\cdot T_i'(f_i)$, где $\delta_i\geqslant 1$ и $T_i'(0)\neq 0$. Так как $(f_i)^{\delta_i}$ и $T_i'(f_i)$ не имеют общих корней, то $1=(f_i)^{\delta_i}\cdot P_i(f_i)+T_i'(f_i)\cdot Q_i(f_i)$, где $P_i(f_i)$, $Q_i(f_i)\in\mathbf{R}[f_i]$. Обозначим $\mathcal{E}_i(x)=T_i'(f_i(x))\cdot Q_i(f_i(x))$, тогда $1-\mathcal{E}_i(x)=(f_i)^{\delta_i}\cdot P_i(f_i)=\partial[\widehat{f}_{i,x}\cdot (f_i(x))^{\delta_i-1}\cdot P_i(f_i(x))]\stackrel{\partial}{\simeq}0$ в $\mathbf{C}(x,\widehat{f}_x)$, т.е. $\mathcal{E}_i(x)\stackrel{\partial}{\simeq}1$ в $\mathbf{C}(x,\widehat{f}_x)$, и $(f_i(x))^{\delta_i}\cdot \mathcal{E}_i(x)=(f_i(x))^{\delta_i}\cdot T_i'(f_i(x))\cdot Q_i(f_i(x))=T_i(f_i(x))\cdot Q_i(f_i(x))$; здесь $\delta_i-1\geqslant 0$, так как $\delta_i\geqslant 1$. Положим $\mathcal{E}(x)=\prod_{j=1}^s\mathcal{E}_j(x)$, тогда $\mathcal{E}(x)\stackrel{\partial}{\simeq}1$ в $\mathbf{C}(x,\widehat{f}_x)$, т.е. $1-\mathcal{E}(x)=\partial[a(x,\widehat{f}_x)]$, где $a(x,\widehat{f}_x)\in\mathbf{C}_1(x,\widehat{f}_x)$,

$$\text{ И } (f_i(x))^{\delta_i} \cdot \mathcal{E}(x) = (f_i(x))^{\delta_i} \cdot \prod_{j=1}^s \mathcal{E}_j(x) = (f_i(x))^{\delta_i} \cdot \mathcal{E}_i(x) \cdot H_i(x) = T_i(f_i(x)) \cdot Q_i(f_i(x)) \cdot Q_i($$

= $T_i(f_i(x)) \cdot S_i(x)$, где $S_i(x)$, $H_i(x) \in \mathbf{R}[x]$. Положим $c'(x_*, \widehat{f}_*^x) = \mathcal{E}(x) \cdot c(x_*, \widehat{f}_*^x)$. Тогда имеет место $c(x_*, \widehat{f}_*^x) - c'(x_*, \widehat{f}_*^x) = (1 - \mathcal{E}(x)) \cdot c(x_*, \widehat{f}_*^x) = \partial[a(x, \widehat{f}_x)] \cdot c(x_*, \widehat{f}_*^x) = \partial[b(x_*, \widehat{f}_*^x)]$, где $b(x_*, \widehat{f}_*^x) = a(x, \widehat{f}_x) \cdot c(x_*, \widehat{f}_*^x)$, при этом в силу леммы 6 из [6] $b(x_*, \widehat{f}_*^x)$ является точечным, так как $c(x_*, \widehat{f}_*^x)$ является точечным. Кроме того, имеет место $(f_i(x))^{\delta_i} \cdot c'(x_*, \widehat{f}_*^x) = (f_i(x))^{\delta_i} \cdot \mathcal{E}(x) \cdot c(x_*, \widehat{f}_*^x) = T_i(f_i(x)) \cdot S_i(x) \cdot c(x_*, \widehat{f}_*^x) = \widehat{0}_*$, так как $T_i(f_i(x)) \cdot c(x_*, \widehat{f}_*^x) = \widehat{0}_*$.

- 1. *Сейфуллин Т.Р.* Гомологии комплекса Кошуля системы полиномиальных уравнений // Доп. НАН України. 1997. № 9. С. 43–49.
- 2. Сейфуллин Т. Р. Комплексы Кошуля систем полиномов, связанных линейной зависимостью // Некоторые вопросы современной математики. Киев: Ин-т математики НАН Украины, 1998. С. 326–349.
- 3. Ceйфуллин T. P. Комплексы Кошуля вложенных систем полиномов и двойственность // Доп. НАН України. -2000. -№ 6. C. 26–34.
- 4. Сейфуллин Т. Р. Идемпотентные косизигии системы полиномов // Там само. 2006. № 3. С. 22–28.
- 5. *Сейфуллин Т. Р.* Двойственность в комплексе Кошуля на изолированной 0-мерной компоненте многообразия корней // Там само. − 2006. − № 4. − С. 16−21.
- 6. Сейфуллин Т. Р. Точечные косизигии системы полиномов // Там само. 2007. № 10. С. 27–32.
- 7. *Маклейн С.* Гомология. Москва: Мир, 1966. 543 с.
- 8. Бурбаки Н. Алгебра. Гомологическая алгебра. Москва: Наука, 1987. 182 с.

Институт кибернетики им. В. М. Глушкова НАН Украины, Киев Поступило в редакцию 19.10.2006

УДК 517.5

© 2008

Член-кореспондент НАН України О.І. Степанець, А.С. Сердюк, А.Л. Шидліч

Про деякі нові критерії нескінченної диференційовності періодичних функцій

The set of \mathcal{D}^{∞} of infinitely differentiable periodic functions is studied in terms of generalized $\overline{\psi}$ -derivatives defined by a pair $\overline{\psi} = (\psi_1, \psi_2)$ of sequences ψ_1 and ψ_2 . It is established that every function f from the set \mathcal{D}^{∞} has at least one such derivative whose parameters ψ_1 and ψ_2 decrease faster than any power function. For an arbitrary function from \mathcal{D}^{∞} different from a trigonometric polynomial, there exists a pair ψ having the parameters ψ_1 and ψ_2 with the same properties, for which the $\overline{\psi}$ -derivative already does not exist. On the basis of the proved statements, a number of criteria for a function to belong to the set \mathcal{D}^{∞} is given.

Нехай L — простір інтегровних 2π -періодичних функцій, $f \in L$ і

$$S[f] = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx) = \sum_{k=0}^{\infty} A_k(f; x) - \frac{1}{2} \sum_{k=0}^{\infty} A_k(f; x) - \frac{1}{2} \sum_{k=0}^{\infty} A_k(f; x) = \frac{1}{2} \sum_{k=0}^{\infty} A_k(f; x) - \frac{1}{2} \sum_{k=0}^{\infty} A_k(f; x) - \frac{1}{2} \sum_{k=0}^{\infty} A_k(f; x) = \frac{1}{2} \sum_{k=0}^{\infty} A_k(f; x) - \frac{1}{2} \sum_{k=$$

ряд Фур'є функції f. Нехай, далі, $\overline{\psi}=(\psi_1,\psi_2)$ — пара довільних числових послідовностей таких, що $\psi^2(k)=\psi_1^2(k)+\psi_2^2(k)\neq 0,\ k\in\mathbb{N}.$ Якщо ряд

$$\sum_{k=1}^{\infty} \left(\frac{\psi_1(k)}{\overline{\psi}^2(k)} A_k(f; x) - \frac{\psi_2(k)}{\overline{\psi}^2(k)} \widetilde{A}_k(f; x) \right), \tag{1}$$

де $\widetilde{A}_k(f;x)=a_k\sin kx-b_k\cos kx$, є рядом Фур'є деякої функції $\varphi\in L$, то φ називають $\overline{\psi}$ -похідною функції f і записують $\varphi(\cdot)=D^{\overline{\psi}}(f;\cdot)=f^{\overline{\psi}}(\cdot)$.