

ОПОВІДІ національної академії наук україни

ФІЗИКА

УДК 539.194

© 2009

Академік НАН України **Л. А. Булавін**, **Т. Ю. Ніколаєнко**, член-кореспондент НАН України **Д. М. Говорун**

Структурна нежорсткість молекули ортофосфорної кислоти: неемпіричне квантово-механічне дослідження

Квантово-механічним методом функціонала густини вперше досліджено структурно-динамічні особливості молекули ортофосфорної кислоти. Охарактеризовано повне сімейство її конформерів, проаналізовано три топологічно і енергетично нееквівалентні шляхи переходу між ними. Розглянуто процес внутрішньомолекулярного перегрупування перенесенням протона. Досліджено вплив вибору базисного набору на одержувані результати.

Ортофосфорна кислота (ОФК) H_3PO_4 є елементарною структурною ланкою біологічно важливої макромолекули ДНК і відіграє ключову роль у визначенні її функціонально важливих конформаційних станів [1]. Це, зокрема, зумовлює значний інтерес до грунтовного вивчення особливостей просторової будови молекули ОФК. Експериментальні дані щодо геометричної будови молекули ОФК у вільному стані в літературі відсутні, а квантово-механічні дослідження у цій області поодинокі і виконані на невисоких рівнях теорії [2].

У даній роботі з використанням сучасних методів неемпіричної квантової механіки ми вперше виявили і охарактеризували всі стабільні конформаційні стани молекули ОФК, дослідили механізми їх взаємного перетворення, а також внутрішньомолекулярного перегрупування шляхом переносу протона; проаналізовали вплив вибору базисного набору на одержувані результати.

Об'єкт і методи дослідження. Конформація молекули ОФК характеризується трьома торсійними кутами τ_1 , τ_2 і τ_3 ($-180 < \tau_i \leq 180$, $i = \overline{1,3}$), які визначають орієнтацію трьох атомів водню гідроксильних груп (рис. 1).

Пошук усіх можливих стабільних конформерів молекули ОФК проводили наступним чином. Спочатку можливі значення кожного з кутів τ_1 , τ_2 і τ_3 обмежували множиною {gouche + (+60°), gouche - (-60°), trans (180°)}, що призводить до 27 можливих комбінацій їх значень — досліджуваних конформерів. Потім з цього набору було вилучено значення, що відповідають симетрично еквівалентним молекулам, які переходять одна в одну при повороті навколо осі O=P на 120°. У результаті цього одержано 11 стартових конформерів. Їх

Рис. 1. Усі можливі конформери молекули ортофосфорної кислоти (квантово-механічний розрахунок на рівні теорії DFT B3LYP/6-311G(2df,pd))

геометрії було оптимізовано без будь-яких структурних обмежень за допомогою програмного пакету "Gaussian 03" для платформи Win32 [3] на різних рівнях теорії DFT. Коливальні спектри розраховували у гармонійному наближенні: ці дані використовували, по-перше, для того, щоб переконатися, що оптимізовані конформери відповідають мінімумам на гіперповерхні потенційної енергії (лише у цьому випадку в спектрі відсутні так звані уявні частоти) і, по-друге, — для знаходження коливального доданку в енергії Гіббса кожного конформера.

Результати та їх обговорення. В результаті оптимізації геометрії нами одержано дві пари дзеркально-симетричних ("правих" (R) і "лівих" (L)) конформерів молекули ОФК (див. рис. 1). Структурні параметри, найнижчі частоти нормальних коливань і відносні енергії Гіббса цих конформерів наведено в табл. 1.

Ці дані підтверджують дзеркальну симетрію досліджуваних конформерів, що дозволяє нам обмежитися розглядом лише одного (правого) сімейства. Воно утворене двома конформерами (R_0 і R_1), енергії Гіббса яких за нормальних умов відрізняються на 1,1 ккал/моль. Особливістю "високо енергетичного" конформера R_1 є значний дипольний момент (3,3D); у конформера R_0 він на порядок менший (0,4D).

Відсутність інших стабільних конформерів молекули ОФК було перевірено шляхом "збурень" (довільних змін торсійних кутів τ_1 , τ_2 , τ_3 на $\pm 30^\circ$) конформерів R_0 і R_1 і подальшої їхньої оптимізації. В результаті цього процесу нових конформерів одержано не було, а тому вищезгадані структури (див. рис. 1) складають повне сімейство конформерів молекули ОФК.

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, №10

З даних табл. 1 випливає, що енергія Гіббса конформера R_0 нижча, порівняно з R_1 , а тому існує принципова можливість конформаційного переходу $R_1 \to R_0$. Методом QST2 в пакеті Gaussian 03 нами було локалізовано перехідний стан (в табл. 1 його позначено як $TS_{R_0\to R_1}$) переходу $R_1 \to R_0$ і визначено його енергію Гіббса: $\Delta\Delta G = \Delta G_{TS} - \Delta G_{R_1} =$ = 0,2 ккал/моль (величина бар'єра переходу). Порівняно мале значення $\Delta\Delta G$ вказує на те, що як за нормальних умов, так і при 0 К (тоді $\Delta\Delta G = 0,1$ ккал/моль) конформер R_1 є динамічно нестійким.

Розглянемо детальніше властивості конформера R_0 .

Вплив базисного набору. У різних сполуках конфігурація валентних електронів атома фосфору істотно відрізняється (валентна електронна оболонка має конфігурацію 3s²3p³). Відтак, слід очікувати залежності одержуваних у результаті процесу оптимізації геометрії структурних параметрів від обраного базисного набору при використанні того ж самого функціонала DFT B3LYP.

Для її аналізу, використавши як початкові геометрії конформерів R_0 і R_1 , оптимізовані на рівні теорії DFT B3LYP/6–31G(d,p), провели їх подальшу оптимізацію з використанням різних базисних наборів.

Одержані структурні параметри конформера R_0 та різниці енергій Гіббса конформерів R_0 та R_1 наведено в табл. 2. Ці дані свідчать, що розкид значень довжин хімічних в'язей не перевищує 0,01 Å, валентних кутів — 2°, торсійних кутів — 3°. Суттєвішими

Структурні параметри		Конформер					
		L_0	R_0	L_1	R_1	$TS_{R_0 \to R_1}$	
Довжини хімічних	OP	1,463	1,464	$1,\!458$	$1,\!458$	1,461	
зв'язків, Å	PO_1	1,592	1,592	$1,\!605$	$1,\!605$	1,599	
	PO_2	1,592	1,592	1,587	1,595	$1,\!600$	
	PO_3	1,592	1,592	1,595	1,587	1,588	
	O_1H	0,965	0,965	0,965	0,965	0,965	
	O_2H	0,965	0,965	0,965	0,964	0,964	
	O_3H	0,965	0,965	0,964	0,965	0,963	
Валентні кути, град	OPO_1	116, 1	116,1	114,2	114,2	113,4	
	OPO_2	116, 1	116,1	$113,\!8$	$118,\! 6$	117,1	
	OPO_3	116, 1	116,1	$118,\! 6$	$113,\!8$	116,2	
	O_1PO_2	102,1	102,1	106,2	101,5	$103,\! 6$	
	O_2PO_3	102,1	102,1	100,8	100,8	100,2	
	O_3PO_1	102,1	102,0	101,5	106,2	104,5	
	PO_1H	$111,\!6$	111,7	$110,\!6$	$110,\! 6$	110,5	
	PO_2H	$111,\!6$	111,7	114,1	113,0	112,2	
	PO_3H	$111,\!6$	111,7	113,0	114,1	113,8	
Торсійні кути, град	$ au_1$	-35,0	34,9	-23,9	24,1	11,0	
	$ au_2$	-34,9	35,0	-175,0	50,5	$_{30,2}$	
	$ au_3$	-34,8	35,1	-51,9	$175,\! 6$	134,3	
Дипольний момент, D	p	0,36	0,37	3,35	3,32	2,54	
Найнижча частота	$ u_{ m min}$	171,1	$167,\! 6$	155,3	154,1	$155,5^{1}$	
нормального коливання, cm^{-1}							
Енергія Гіббса ² , ккал/моль	$\Delta G = G - G_{\min}$	0,00	0,00	$1,\!13$	$1,\!13$	$1,\!35$	

Таблиця 1. Структурно-динамічні параметри конформерів молекули ортофосфорної кислоти (розрахунок на рівні теорії MP2/6-311G(2df,pd) // DFT B3LYP/6–311G(2df,pd))

¹ Перша дійсна частота.

² При p = 1 атм і T = 298,15 К; G_{\min} відповідаює конформерові R_0 .

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 10

Таблиця 2. Залежність структурних параметрів конформера R_0 від використовуваного базисного набору (розрахунки на рівні теорії DFT B3LYP)

	Базисний набір								
Структурні параметри		4-31G(d)	6-31G(d,p)	6-311G(d,p)	6-311++G(d,p)	6-311G(2df,pd)	6-311++G(2df,pd)	cc-pVQZ	Aug-cc-pVQZ
Довжини	OP	$1,\!473$	$1,\!479$	$1,\!474$	1,476	1,464	1,466	1,466	1,466
хімічних	PO_1	$1,\!605$	$1,\!609$	1,604	$1,\!606$	1,592	1,593	1,593	1,593
зв'язків, Å	PO_2	$1,\!605$	$1,\!609$	$1,\!604$	$1,\!606$	1,592	$1,\!593$	1,593	1,593
	PO_3	$1,\!605$	$1,\!609$	$1,\!604$	$1,\!606$	1,592	1,593	1,593	1,593
	O_1H	0,972	0,968	0,964	0,965	0,965	0,965	0,963	0,963
	O_2H	0,972	0,968	0,964	0,965	0,965	0,965	0,963	0,963
	O_3H	0,972	0,968	0,964	0,965	0,965	0,965	0,963	0,963
Валентні	OPO_1	$116,\! 6$	116,3	116,2	116,3	116,1	116, 1	116,1	116,2
кути, град	OPO_2	$116,\! 6$	116,3	116,2	116,3	116,1	116, 1	116,1	116, 1
	OPO ₃	116,7	116,3	116,2	116,3	116,1	116,1	116,2	116,2
	O_1PO_2	101,5	101,9	102,0	101,9	102,1	102,1	102,0	102,0
	O_2PO_3	$101,\!4$	101,9	102,0	101,9	102,1	102,1	102,0	102,0
	O_3PO_1	$101,\!4$	101,9	102,0	101,9	102,0	102,1	102,0	102,0
	PO_1H	110,9	$110,\!6$	111,9	112,9	111,7	112,4	112,3	112,4
	PO_2H	110,9	$110,\!6$	111,9	112,9	111,7	112,4	112,3	112,4
	PO_3H	110,9	$110,\!6$	$111,\!9$	113,0	111,7	$112,\!4$	112,3	112,4
Торсійні	$ au_1$	35,2	35,3	35,8	38,2	34,9	34,7	33,4	33,0
кути, град	$ au_2$	35,3	35,4	35,9	38,1	35,0	34,8	33,5	33,0
	$ au_3$	35,5	$35,\!6$	36,1	$_{38,3}$	35,1	35,0	$33,\!6$	33,2
Дипольний	p_{R0}	0,02	0,09	$0,\!13$	0,37	$0,\!37$	$0,\!45$	$0,\!46$	$0,\!48$
момент, D	p_{R1}	3,16	$3,\!27$	3,33	$3,\!28$	3,31	$3,\!30$	$3,\!17$	$3,\!27$
Найнижча частота	$ u_{\min,R0}$	$153,\!4$	$148,\! 6$	169,1	173,7	$167,\! 6$	163,3	160,2	162,4
нормального	$ u_{\min,R1}$	162,7	$140,\!6$	$179,\! 6$	198,3	154,1	198,3	144,1	$147,\! 6$
коливання, см Енергія Гіббса,	$\Delta G = G_{R_1} - G_{R_0}$	0,84	1,03	1,01	0,81	1,07	$0,\!95$	$0,\!89$	$0,\!91$
ккал/моль									

є відмінності дипольного моменту конформера R_0 молекули ОФК: він монотонно зростає по мірі переходу до вищого базису (особливо при додаванні у базисний набір дифузних функцій).

Прийнявши результати обчислення ΔG з базисним набором Aug-cc-pVQZ за найточніші, можна зробити висновок, що всі розглянуті базисні набори передають різниці енергій Гіббса з точністю ±0,1 ккал/моль (причому набори 4-31G(d) і 6-311++G(d,p) занижують ΔG , а 6-31G(d,p), 6-311G(d,p) і 6-311G(2df,pd) — завищують).

Порівняння з табл. 1 свідчить, що для базисного набору 6–311G(2df,pd) результат обчислення енергії Гіббса методом DFT B3LYP з точністю ±0,06 ккал/моль збігається з результатом, одержаним на рівні теорії MP2/6-311G(2df,pd) при тій же геометрії.

Таким чином, для правильного передання геометричних параметрів (довжин в'язей і кутів) цілком достатньо базисного набору 6-31G(d,p); набори 6-311++G(d,p) та 6-311G(2df,pd) при помірних затратах машинного часу добре передають також і дипольний момент¹, а на-

¹Дипольний момент конформера R_0 , обчислений на рівні теорії MP2/6-311G(2df,pd), становить 0,40D.

Рис. 2. Процес просторового перегрупування молекули ортофосфорної кислоти

бори, вищі від 6-311++G(2df,pd), уже не вносять помітних кількісних змін у розраховані структурні параметри молекули ОФК.

Просторове перегрупування молекули ОФК. Вперше нами досліджено (на рівні теорії DFT B3LYP/6-311++G(d,p)) інтерконверсію конформера R_0 самого в себе перенесенням протону (рис. 2). Для цього в конформері R_0 атом водню H₁ (див. рис. 2) було перенесено з атома O₁ на атом O₄, після чого проведено оптимізацію одержаного конформера R'_0 . Оптимізований конформер R'_0 має ті ж самі структурні і енергетичні параметри, що і R_0 , а єдина їх відмінність полягає у нумерації атомів.

Методом QST2 було знайдено перехідний стан цього процесу (див. $TS_{R_0 \to R'_0}$ на рис. 2) і обчислено величину бар'єру переходу $R_0 \to R'_0$: $\Delta G = G_{TS: R_0 \to R'_0} - G_{R_0} = 33,6$ ккал/моль.

Перехід $R_0 \leftrightarrow L_0$. Конформери R_0 і L_0 є дзеркально-симетричними і мають однакову енергію. Доцільно знайти відповідь на цілком логічне запитання — як вони взаємно перетворюються?

На рівні теорії DFT B3LYP/6–311G(2df,pd) нами вперше виявлено три топологічно і енергетично нееквівалентні шляхи переходу $R_0 \rightarrow L_0$.

1. Енергетично найвигідніший "двостадійний" (рис. 3, a) перехід $R_0 \to L_1 \to L_0$ (та енергетично еквівалентним йому є шлях $R_0 \to R_1 \to L_0$). Величина бар'єра переходу $R_0 \leftrightarrow L_0$ визначається енергією Гіббса перехідного стану $\mathrm{TS}_{R_0 \to L_1}$ (або — такою ж за величиною енергією Гіббса перехідного стану $\mathrm{TS}_{L_0 \to R_1}$) і становить $\Delta \Delta G = 1,6$ ккал/моль.

2. Симетричний "тристадійний" шлях $R_0 \to R_1 \to L_1 \to L_0$. Величина бар'єра переходу в цьому випадку визначається енергією Гіббса перехідного стану $\text{TS}_{R_1 \to L_1}$ (рис. 3, δ) і становить $\Delta \Delta G = 4,7$ ккал/моль.

3. "Концертний" механізм взаємного перетворення відбувається через перехідний стан $TS_{R_0 \to L_0}$ (рис. 3, *в*); енергія Гіббса перехідного стану (величина бар'єра переходу) дорівнює $\Delta \Delta G = 11,7$ ккал/моль.

Структурна лабільність молекули ОФК. Фіксуючи кут τ_1 в конфомері R_0 і проводячи оптимізацію геометрії (на рівні теорії DFT B3LYP/6–311G(2df,pd)), одержали залежність електронної енергії молекули ОФК від орієнтації одного з трьох атомів водню. Апроксимуючи в діапазоні 9° $< \tau_1 < 61^\circ$ цю залежність $\Delta E(\tau_1)$ функцією

$$\Delta E = \frac{C}{2} \cdot (\tau_1 - \tau_{10})^2,$$

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 10

Рис. 3. Механізми переходу $R_0 \to L_0$: a — двостадійний, δ — перехідний стан $TS_{R_1 \to L_1}$ тристадійного, e — перехідний стан $TS_{R_0 \to L_0}$ одностадійного ("концертного")

де τ_{10} — значення кута τ_1 у конформера R_0 , одержали значення сталої крутильної жорсткості $C = (2,59 \pm 0,03)$ ккал/(моль · рад²). При цьому в розглядуваному діапазоні (9° < $\tau_1 < 61^\circ$) середньоквадратична похибка квадратичної апроксимації становить лише 0,005 ккал/моль. Це свідчить про "пологість" відповідного мінімуму на гіперповерхні потенційної енергії, тобто — про лабільність ступеня вільності τ_1 .

Енергія депротонування. Шляхом вилучення одного з протонів із конформера R_0 і подальшої оптимізації такої структури на рівні теорії DFT B3LYP/6-311++g(d,p) було одержано іон H₂PO₄⁻ і визначено енергію Гіббса депротонування: 325,2 ккал/моль (за нормальних умов).

Конформація фосфатної групи в ДНК. За одержаними геометріями конформерів R_0 і R_1 було знайдено значення торсійних кутів

 $HO_1PO_2 = 162,2, \qquad O_1PO_2H = -92,4$

у конформера R_0 та

$$HO_1PO_2 = 152,9, O_1PO_2H = -75,4; HO_1PO_3 = -102,1, O_1PO_3H = -57,9; HO_2PO_3 = 175,4, O_2PO_3H = 47.6$$

у конформера R_1 молекули ОФК (у L_0 і L_1 їх значення мають протилежний знак). Ці кути є прямими аналогами номенклатурних конформаційних змінних α і ζ молекули ДНК. Порівнюючи їх з даними [4–6], доходимо висновку, що конформери R_0 і L_0 не відтворюють експериментальних значень кутів α і ζ ні В-, ні Z-форми ДНК. Водночас, величини кутів HO₁PO₃ і O₁PO₃H конформера R_1 з точністю ±5° збігаються зі значеннями α і ζ для ДНК у В-формі, а кути HO₁PO₂ і O₁PO₂H конформера L_1 з точністю ±8° — зі значеннями α і ζ для піримідинових нуклеотидів Z-форми ДНК.

Це означає, що фосфатна група, як складова частина ДНК, не знаходиться в енергетично найвигіднішій конформації.

ISSN 1025-6415 Доповіді Національної академії наук України, 2009, № 10

Рис. 4. Коливальний IЧ спектр молекули ортофосфорної кислоти в основному конформаційному стані R_0 (розрахунок на рівні теорії DFT B3LYP/6–311G(2df,pd) в гармонійному наближенні; по осі ординат вказано відносні інтенсивності)

ІЧ спектр молекули ОФК. На рівні теорії DFT B3LYP/6–311G(2df,pd) розраховано ІЧ спектр конформера R_0 (рис. 4). У спектрі можна виділити такі групи ліній: в області 150–450 см⁻¹ лежать коливання, що відповідають зміні торсійних кутів τ_1 , τ_2 і τ_3 ; в області 450–600 см⁻¹ знаходяться деформаційні коливання OPO кутів; в області 800–1100 см⁻¹ деформаційні коливання OH груп і валентні одинарних PO-зв'язків; лінія 1331 см⁻¹ відповідає валентному коливанню подвійного PO-зв'язку, а лінії поблизу 3800 см⁻¹ — трьом валентним коливанням OH зв'язків.

Таким чином, встановлено, що молекула ортофосфорної кислоти має тільки два стійкі дзеркально-симетричні конформери з симетрією С₃. Виявлено і проаналізовано три топологічно і енергетично нееквівалентні шляхи їхнього взаємного перетворення та визначено величини відповідних бар'єрів переходу: $\Delta\Delta G = 1,6$ ккал/моль для "двостадійного" механізму, $\Delta\Delta G = 4,7$ ккал/моль для симетричного "тристадійного" і $\Delta\Delta G = 11,7$ ккал/моль для "концертного". Просторове перегрупування молекули ОФК перенесенням протона відповідає доланню енергетичного бар'єра $\Delta\Delta G = 33,6$ ккал/моль.

Молекула ОФК характеризується структурною лабільністю: стала крутильної жорсткості щодо повороту одного з атомів водню становить 2,6 ккал/(моль рад²). Геометрія "високо енергетичного" конформера R_1 близька до геометрії фосфатної групи у В-формі ДНК.

Висловлюемо вдячність корпорації "Gaussian"(США) за наданий грант — програмний пакет "Gaussian03" для платформи Win32.

- Perahia D., Pullman B., Saran A. Molecular orbital calculations on the conformation of nucleic acids and their constituents. IX. The geometry of the phosphate group: Key to the conformation of polynucleotides? // Biochim. Biophys. Acta. – 1974. – 340. – P. 299–313.
- Ewig C. S., Van Wazer J. R. Ab initio structures of phosphorus acids and esters. 1. Phosphinic, phosphonic, and phosphoric acids // J. Am. Chem. Soc. - 1985. - 107 (7). - P. 1965. - 1971.
- Frisch M. J., Trucks G. W., Schlegel H. B. et al. Gaussian 03, Revision C.02 / Gaussian, Inc., Wallingford CT, 2004.
- Schneide B., Neidle St., Berman H. M. Conformations of the Sugar-Phosphate Backbone in Helical DNA Crystal Structures // Biopolymers. – 1997. – 42. – P. 113–124.
- 5. Crystal studies of B-DNA: The answers and the questions // Biopolymers. 1997. 44, iss. 1. P. 23-44.
- Foloppe N., MacKerell A. D. Ab initio Conformational Analysis of Nucleic Acid Components: Intrinsic Energetic Contributions to Nucleic Acid Structure and Dynamics // Biopolymers. – 2002. – 61. – P. 61–76.

Київський національний університет ім. Тараса Шевченка Інститут молекулярної біології і генетики НАН України, Київ Надійшло до редакції 11.06.2009

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2009, № 10

Academician of the NAS of Ukraine L. A. Bulavin, T. Yu. Nikolaienko, Corresponding Member of the NAS of Ukraine D. M. Hovorun

Phosphoric acid molecule structural softness: *ab initio* quantum-mechanical study

Within the quantum-mechanical density functional theory, the structural and dynamical features of a phosphoric acid molecule are investigated, and its complete conformer family is described. Three topology- and energy-nonequivalent transition paths between the conformers are revealed. The intramolecular reconfiguration by means of proton transfer, as well as the basic set influence on calculation results, are discussed.