УДК 546.186 © **2010**

Н.О. Городилова, І.В. Затовський, член-кореспондент НАН України М.С. Слободяник

Кристалізація розчинів-розплавів систем $K_2O-P_2O_5-V_2O_5-CaO$ та $K_2O-P_2O_5-V_2O_5-CaO-YF_3$

Досліджено закономірності процесів фазоутворення в розчинах-розплавах систем $K_2O-P_2O_5-V_2O_5-CaO$ та $K_2O-P_2O_5-V_2O_5-CaO-YF_3$ за співвідношень P: V = 0,5: 2,0, K: (P+V) = 0,5: 1,4 при мольному вмісті CaO й YF₃ 10 й 5% відповідно. Визначено області та умови кристалізації фосфатів KCaY(PO₄)₂, YPO₄, K₂CaP₂O₇, Ca₂P₂O₇ і Ca₃(PO₄)₂. Синтезовані сполуки схарактеризовано методами порошкової рентгенографії та IY спектроскопії. Показано перспективи використання розплавлених фосфато-ванадатів лужних металів як середовища синтезу складнооксидних сполук.

Останнім часом значно зріс інтерес до фосфатів та ванадатів ітрію, що легко піддаються легуванню рідкісноземельними елементами та є базисними матрицями для створення сучасних люмінесцентних матеріалів [1, 2]. У зв'язку з цим важливим, актуальним завданням на сьогодні є дослідження взаємодії та виявлення закономірностей фазоутворення в фосфато-ванадатних ітрійвмісних системах. Актуальними залишаються пошук нових сполук, вдосконалення методів синтезу відомих кристалічних матриць зазначеного типу.

У даній роботі представлено результати дослідження взаємодії та кристалоутворення у розчинах-розплавах систем K₂O-P₂O₅-V₂O₅-CaO (**I**) та K₂O-P₂O₅-V₂O₅-CaO-YF₃ (**II**).

Співвідношення компонентів у досліджуваних системах задавали дискретно в рамках таких значень: P/V від 0,5 до 2,0, K/(P + V) від 0,5 до 1,4 при мольному вмісті CaO й YF₃ 10 та 5% відповідно. За вихідні реагенти використовували KPO_3 ("х. ч."), $NH_4H_2PO_4$ ("х. ч."), K_2CO_3 ("х. ч."), V_2O_5 ("ч. д. а."), CaO ("ч. д. а."); YF₃ синтезували шляхом взаємодії Y₂(CO₃)₃ ("о. с. ч.") з HF ("х. ч."), згідно з методикою Брауера (1956). Метафосфат калію синтезовано шляхом нагрівання KH_2PO_4 ("ч. д. а.") у платиновому тиглі до 800 °C.

Для отримання гомогенних розплавів розраховані наважки вихідних компонентів (крім YF₃) ретельно перетирали, поміщали у платинові тиглі та нагрівали до 950–1000 °C, витримуючи при періодичному перемішуванні в ізотермічних умовах 1–2 год. У випадку системи II після цього при перемішуванні вносили фторид ітрію. Потім розплави охолоджували зі швидкістю 20–50 град/год до 650–700 °C. Паралельно фіксували температури початку фазоутворення шляхом відбору проб розплавів, які відмивали гарячою водою та досліджували методом оптичної мікроскопії на наявність зародків кристалічної фази. Після завершення охолодження розплав зливали з кристалічних фаз та відмивали останні від залишків скла гарячою водою або розчином ЕДТА.

Ідентифікацію продуктів кристалізації проводили за результатами хімічного аналізу, порошкової рентгенографії (дифрактометр Shimadzu XRD-600, монохроматизоване Cu_{K_{\alpha}}-випромінювання з $\lambda = 0.154178$ нм, метод 2θ безперервного сканування при русі лічильника 2 град/хв для кутового діапазону 2θ від 5,0 до 90,0°) та інфрачервоної спектроскопії

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №11

109

(спектрометр FT-IR PerkinElmer Spectrum BX, частотний діапазон 400–4400 см⁻¹, зразки спресовано в таблетки з KBr).

Склад отриманих кристалічних зразків залежно від вихідних співвідношень компонентів у розчинах-розплавах наведено в табл. 1. Як видно з даних таблиці, при додаванні фториду ітрію найбільш обширна область фазоутворення подвійного дифосфату K₂CaP₂O₇ замінюється фазоформуванням потрійного фосфату KCaY(PO₄)₂, синтезованого вперше методом спонтанної розчин-розплавної кристалізації. Для розрізу зі співвідношеннями P/V = = 2,0 системи I характерним є утворення дифосфатів K₂CaP₂O₇ й Ca₂P₂O₇, у той час як для ітрійвмісної системи спостерігається утворення сумішей KCaY(PO₄)₂ й K₂CaP₂O₇. Зменшення частки фосфату у вихідному розплаві системи II при значенні K/(P+V) < 1,0також призводить до кристалізації двох фосфатів — KCaY(PO₄)₂ й YPO₄, а підвищення кількості калію зумовлює кристалізацію лише KCaY(PO₄)₂. Натомість у чистій кальцієвій системі при значенні K/(P+V) < 1.0 зменшення співвідношення P/V у вихідному розплаві призводить до кристалізації ортофосфату кальцію зі структурою вітлокіту Ca₃(PO₄)₂ (див. табл. 1). Виділені ортофосфати КСаУ(PO₄)₂ й УРО₄ утворюються у вигляді прозорих кристалів голчастої форми, кристали подвійного дифосфату K₂CaP₂O₇ формуються як прозорі пластинки, дифосфат $Ca_2P_2O_7$ має кубічну огранку, а ортофосфат $Ca_3(PO_4)_2$ у вигляді призматичних кристалів.

Розрахунок параметрів кристалічних граток синтезованих сполук було проведено за даними порошкової рентгенографії (табл. 2). Положення та інтенсивності отриманих рефлексів добре збігаються з наведеними в літературі для відповідних фосфатів: КСаY(PO₄)₂ (PDF 00-051-1632) [3], K₂CaP₂O₇ (PDF 99-003-4593) [4], YPO₄ (PDF 99-100-1704) [5], $Ca_2P_2O_7$ (PDF 00-009-0346) (P. Wolf, 1944), $Ca_3(PO_4)_2$ (PDF 01-070-2065) (P. Wolf, 1957).

Систома	$\mathbf{K}/(\mathbf{D}+\mathbf{V})$		P/V	
Система	$\mathbf{K}/(\mathbf{I} + \mathbf{V})$	2,0	1,0	$0,\!5$
II	0,5	Склування	$\mathrm{KCaY}(\mathrm{PO}_4)_2 + \mathrm{YPO}_4$	$\mathrm{KCaY}(\mathrm{PO}_4)_2 + \mathrm{YPO}_4$
Ι	"	Те саме	Склування	Склування
II	0,7	$K_2CaP_2O_7$	$\mathrm{KCaY}(\mathrm{PO}_4)_2 + \mathrm{YPO}_4$	$\mathrm{KCaY}(\mathrm{PO}_4)_2 + \mathrm{YPO}_4$
Ι	"	$Ca_2P_2O_7$	$Ca_2P_2O_7$	$Ca_3(PO_4)_2$
II	1,0	$K_2CaP_2O_7 + KCaY(PO_4)_2$	$\mathrm{KCaY}(\mathrm{PO}_4)_2$	$\mathrm{KCaY}(\mathrm{PO}_4)_2$
Ι	"	$K_2CaP_2O_7$	$K_2CaP_2O_7$	$K_2CaP_2O_7$
II	1,2	$K_2CaP_2O_7 + KCaY(PO_4)_2$	$\mathrm{KCaY}(\mathrm{PO}_4)_2$	$\mathrm{KCaY}(\mathrm{PO}_4)_2$
Ι	"	$K_2CaP_2O_7$	$K_2CaP_2O_7$	$K_2CaP_2O_7 +$
				+ аморфна компонента
II	1,4	$K_2CaP_2O_7 + KCaY(PO_4)_2$	$ m KCaY(PO_4)_2+$	$\mathrm{KCaY}(\mathrm{PO}_4)_2 +$
			+ аморфна компонента	+ аморфна компонента
Ι	"	$K_2CaP_2O_7$	Аморфна компонента	Аморфна компонента

Таблиця 1. Закономірності кристалізації у розчинах-розплавах для систем K₂O-P₂O₅-V₂O₅-CaO та $K_2O-P_2O_5-V_2O_5-CaO-YF_3$

Таблиця 2. Розраховані параметри елементарних комірок для фосфатів

Сполука	Сингонія	Просторова група	Параметри елементарної комірки, нм
$\mathrm{KCaY}(\mathrm{PO}_4)_2$	Гексагональна	—	a = 0,6914, c = 0,6326
$K_2CaP_2O_7$	Моноклінна	P21/n	$a = 0.9752, b = 0.5664, c = 1.2941, \beta = 104.22^{\circ}$
YPO_4	Тетрагональна	I41/amd	a = 0,6861, c = 0,6051
$Ca_2P_2O_7$	Та сама	P41	a = 0,6692, c = 2,4181
$\operatorname{Ca}_3(\operatorname{PO}_4)_2$	Ромбоедрична	R3c	a = 1,0445, c = 3,7368

110

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2010, № 11

Рис. 1. Інфрачервоні спектри отриманих фосфатів

В інфрачервоних спектрах синтезованих фосфатів наявні смуги поглинання, що характерні для ізольованих ортофосфатних та P_2O_7 -груп (рис. 1). У спектрах ортофосфатів коливанням PO_4 -групи відповідають смуги в інтервалі від 530 до 610 см⁻¹ (v_4 — деформаційні асиметричні коливання P-O) та від 890 до 1130 см⁻¹ (v_3 — валентні асиметричні коливання P-O). Для дифосфатної групи, крім валентих та деформаційних асиметричних коливань фосфатних тетраедрів, також проявляються коливання місткової групи P-O-Pв інтервалі від 720 до 760 см⁻¹. Інтерпретацію коливних мод було проведено, базуючись на літературних даних [6].

Отже, у дослідженій області фосфато-ванадатних систем I та II при спонтанній кристалізації не спостерігається входження ванадату або фториду в склад отриманих фаз. Також слід відзначити значну відмінність у характері послідовності зміни полів утворення сполук у фосфатних та фосфато-ванадатних розчинах-розплавах. Так, для фосфатних систем збільшення співвідношення K/P призводить до зниження ступеня конденсації фосфатного аніона в синтезованих сполуках. У розглянутому випадку в обох системах при сталому співвідношенні K/(P + V) та відповідно зменшенні співвідношення K/P, навпаки, відбувається спочатку формування дифосфату, а потім ортофосфату. Останній факт можна пояснити тим, що ванадат проявляє менш "кислотні" властивості у порівнянні з фосфатом, а заміна частини фосфату на ванадат у мольному еквіваленті спричиняє збільшення "лужності" середовища синтезу. Таким чином, використання розплавлених фосфато-ванадатів лужних металів як середовища синтезу значно розширює можливості щодо ціленаправленого отримання складнооксидних сполук.

- Guzik M., Legendziewicz J., Szuszkiewicz W., Walasek A. Synthesis and optical properties of powders of lutecium and yttrium double phosphates-doped by ytterbium // Opt. Materials. – 2007. – 29. – P. 1225– 1230.
- Aitasalo T., Guzik M., Szuszkiewicz W. et al. Properties of ytterbium and neodymium doped alkali metal yttrium double phosphates of the M₃Y_{1-x}Ln_x(PO₄)₂ type // J. Alloys and Compounds. – 2004. – 380. – P. 405–412.
- 3. *Tie S.*, Su Q., Yu Y. Structure and site-symmetry investigation on the hexagonal KCaY(PO₄)₂ // Ibid. 1995. **227**. P. 1–4.
- 4. Sandström M., Fischer A., Boström D. CaK₂P₂O₇ // Acta Crystallogr. Sec. E. 2003. 59. P. i139–i141.

ISSN 1025-6415 Доповіді Національної академії наук України, 2010, №11

- 5. The American Mineralogist Crystal structure database // Am. Miner. 2003. 88. P. 247-250.
- Farmer V. C. Site group to factor group correlation Tables // Infrared Spectra of Minerals. London: Mineral. Soc., 1974. – P. 515–524.

Київський національний університет ім. Тараса Шевченка Надійшло до редакції 18.02.2010

N.O. Gorodilova, I.V. Zatovsky,

Corresponding Member of the NAS of Ukraine M.S. Slobodyanyk

Crystallization in melt systems $K_2O-P_2O_5-V_2O_5-CaO$ and $K_2O-P_2O_5-V_2O_5-CaO-YF_3$

Phase-formation in melts of the $K_2O-P_2O_5-V_2O_5-CaO$ and $K_2O-P_2O_5-V_2O_5-CaO-YF_3$ systems with P: V = 0.5: 2.0, K: (P+V) = 0.5: 1.4; CaO 10% mol., and YF₃ 5% mol. is investigated. Areas and conditions of crystallization of phosphates $KCaY(PO_4)_2$, YPO_4 , $K_2CaP_2O_7$, $Ca_2P_2O_7$, and $Ca_3(PO_4)_2$ are determined. The synthesized compounds were characterized with X-ray powder diffraction and IR-spectroscopy methods. Application prospects of alkaline phosphatevanadate as a synthesis medium of complex oxide compounds are shown.