А. А. Довгошей, Д. В. Дордовский

Ультраметричность касательных пространств к метрическим пространствам

(Представлено членом-корреспондентом НАН Украины В. Я. Гутлянским)

Знайдені необхідні та достатні умови, за яких усі переддотичні простори до загального метричного простору, є ультраметричними.

Предкасательные и касательные пространства. Основные определения. Понятия предкасательного и касательного пространства к общему метрическому пространству, исходные для данной работы, были введены [1] в связи с обобщением дифференцирования на метрических пространствах. Отметим, что эти понятия тесно связаны с ультрапределами (метрических пространств), имеющими интересные применения к теоремам типа Радемахера для липшицевых отображений метрических пространств (см. [2]). При изучении касательных и предкасательных пространств одной из основных является проблема взаимосвязи свойств этих пространств со свойствами исходного метрического пространства. В настоящей работе рассматривается вопрос, при каких условиях на исходное метрическое пространство каждое пространство, предкасательное к нему в заданной точке, является ультраметрическим, а также некоторые смежные вопросы. Выбор ультраметричности как основного объекта исследования основан на том, что модели, наделенные естественной ультраметрикой, возникают во многих прикладных теориях: теории информации, при исследовании последовательностей символов, физике твердого тела, при изучении спиновых стекол и др.

Напомним необходимые определения из работы [1].

Пусть (X,d) — метрическое пространство и пусть p точка из X. Последовательность \widetilde{r} положительных вещественных чисел r_n , стремящихся к нулю, назовем нормирующей последовательностью. Будем обозначать через \widetilde{X} множество всех последовательностей точек из X.

Определение 1. Две последовательности \widetilde{x} , $\widetilde{y} \in \widetilde{X}$, $\widetilde{x} = \{x_n\}_{n \in \mathbb{N}}$ и $\widetilde{y} = \{y_n\}_{n \in \mathbb{N}}$ взаимостабильны (относительно нормирующей последовательности $\widetilde{r} = \{r_n\}_{n \in \mathbb{N}}$), если существует конечный предел

$$\lim_{n \to \infty} \frac{d(x_n, y_n)}{r_n} := \widetilde{d}_{\widetilde{r}}(\widetilde{x}, \widetilde{y}) = \widetilde{d}(\widetilde{x}, \widetilde{y}). \tag{1}$$

Семейство $\widetilde{F}\subseteq \widetilde{X}$ — самостабильное относительно \widetilde{r} , если каждые $\widetilde{x},\ \widetilde{y}\in \widetilde{F}$ взаимно стабильны, \widetilde{F} — максимальное самостабильное, если \widetilde{F} самостабильное и для произвольной $\widetilde{z}\in \widetilde{X}\setminus \widetilde{F}$ существует $\widetilde{x}\in \widetilde{F}$ такая, что \widetilde{x} и \widetilde{z} не взаимно стабильны.

В силу леммы Цорна, для каждой нормирующей последовательности $\widetilde{r}=\{r_n\}_{n\in\mathbb{N}}$ существует максимальное самостабильное семейство $\widetilde{X}_{p,\widetilde{r}}$ такое, что постоянная последовательность $\widetilde{p}=\{p,p,\ldots\}\in\widetilde{X}_{p,\widetilde{r}}.$

тельность $\widetilde{p}=\{p,p,\ldots\}\in\widetilde{X}_{p,\widetilde{r}}.$ Рассмотрим функцию $\widetilde{d}\colon\widetilde{X}_{p,\widetilde{r}}\times\widetilde{X}_{p,\widetilde{r}}\to\mathbb{R}$, где $\widetilde{d}(\widetilde{x},\widetilde{y})$ определена через (1). Очевидно, \widetilde{d} — псевдометрика и $(\widetilde{X}_{p,\widetilde{r}},\widetilde{d})$ — псевдометрическое пространство.

Определим отношение эквивалентности \sim на $\widetilde{X}_{p,\widetilde{r}}$ как $\widetilde{x}\sim\widetilde{y}$ тогда и только тогда, когда $\widetilde{d}_{\widetilde{r}}(\widetilde{x},\widetilde{y})=0$. Обозначим через $\Omega_{p,\widetilde{r}}=\Omega_{p,\widetilde{r}}^X$ множество всех классов эквивалентности на $\widetilde{X}_{p,\widetilde{r}},$ порожденных отношением \sim . Для $\alpha,\ \beta\in\Omega_{p,\widetilde{r}}$ положим

$$\rho(\alpha, \beta) = \widetilde{d}(\widetilde{x}, \widetilde{y}),$$

где $\widetilde{x} \in \alpha$ и $\widetilde{y} \in \beta$, тогда ρ — метрика на $\Omega_{p,\widetilde{r}}$. Переход от псевдометрического пространства $(\widetilde{X}_{p,\widetilde{r}},\widetilde{d})$ к метрическому пространству $(\Omega_{p,\widetilde{r}},\rho)$ будем называть метрической идентификацией $(X_{p,\widetilde{r}},d)$.

Определение 2. Пространство $(\Omega^X_{p,\widetilde{r}}, \rho)$ называется предкасательным к X в точке p

относительно нормирующей последовательности \widetilde{r} . Предкасательное пространство $\Omega^X_{p,\widetilde{r}}$, являющееся метрической идентификацией максимального самостабильного семейства $\widetilde{X}_{p,\widetilde{r}}$, является касательным, если для любой подпоследовательности $\widetilde{r}' = \{r_{n_k}\}_{k \in \mathbb{N}}$ последовательности $\widetilde{r} = \{r_n\}_{n \in \mathbb{N}}$ семейство

$$\{\{x_{n_k}\}_{k\in\mathbb{N}}\colon \{x_n\}_{n\in\mathbb{N}}\in\widetilde{X}_{p,\widetilde{r}}\}$$

будет максимальным самостабильным относительно \widetilde{r}' .

Критерии ультраметричности предкасательных пространств. Для метрического пространства (X,d) через $t_0 = t_0(X) = t_0(X,d)$ будем обозначать супремум положительных чисел t, для которых функция $(x,y)\mapsto (d(x,y))^t$ является метрикой на X. Доказательство следующей леммы можно найти в [3].

Пемма 1. Пусть x, y, z - mочки пространства X. Если неравенство

$$d(x,z) \lor d(z,y) < d(x,y) \tag{2}$$

верно, то существует единственное решение $s_0 \in [1, \infty[$ уравнения

$$(d(x,z))^{s} + (d(z,y))^{s} = (d(x,y))^{s}.$$
(3)

Для точек x, y u z us X положим

$$s(x,y,z) := \begin{cases} s_0, & \textit{ecnu } (2) \textit{ верно}, \\ +\infty, & \textit{ecnu } (2) \textit{ не верно}, \end{cases}$$

где s_0 — единственное положительное решение (3). Тогда

$$t_0(X) = \inf\{s(x, y, z) : x, y, z \in X\}.$$

Напомним, что метрическое пространство (X,d) называется ультраметрическим, если $d(x,y) \leq d(x,z) \vee d(y,z)$ для всех $x,y,z \in X$. Классическими примерами ультраметрических пространств являются пространства p-адических чисел в p-адическом анализе и ультраметрические деревья в теории графов.

Замечание 1. Неравенство (2) никогда не выполняется в ультраметрическом пространстве (X,d). Фактически, (X,d) ультраметрическое тогда и только тогда, когда $t_0(X) = \infty$ [3].

Для произвольного метрического пространства (Y,d) определим подмножество Y^{+3} декартова произведения $Y \times Y \times Y$ правилом

$$(x, y, z) \in Y^{+3} \Leftrightarrow d(x, z) \geqslant d(x, y) \geqslant d(y, z) > 0.$$

Утверждение 1. Пусть (X,d) — метрическое пространство, p — предельная точка X, \widetilde{r} — нормирующая последовательность, $(\Omega_{p,\widetilde{r}}, \rho)$ — метрическое пространство, предкасательное κ X ε точке p. Если $\lim_{\substack{x,y,z\to p\\ (x,y,z)\in X^{+3}}} s(x,z,y) = s_0 \in [1,\infty]$, то для любой тройки

 $(\beta, \gamma, \delta) \in \Omega_{p, \widetilde{r}}^{+3}$ имеет место равенство $\rho(\beta, \delta) = ((\rho(\beta, \gamma))^{s_0} + (\rho(\delta, \gamma))^{s_0})^{1/s_0}$, в котором при $s_0 = \infty$ полагаем правую часть равной $\lim_{t \to \infty} ((\rho(\beta, \gamma))^t + (\rho(\delta, \gamma))^t)^{\frac{1}{t}} = \rho(\beta, \gamma) \vee \rho(\delta, \gamma)$.

Следствие 1. Если метрическое пространство (X,d) является ультраметрическим, то любое предкасательное к нему в каждой точке $p \in X$ также является ультраметрическим.

Таким образом, переход к предкасательным пространствам сохраняет ультраметричность, но, как показывает следующее утверждение, ультраметричность или локальная ультраметричность не являются необходимыми для ультраметричности предкасательных пространств.

Утверждение 2. Для любого $s_0 \geqslant 1$ существует метрическое пространство (X,d) с отмеченной точкой p, все предкасательные κ которому являются ультраметрическими $u\lim_{\substack{x,y,z\to p\\ (x,y,z)\in X^{+3}}} s(x,z,y) = s_0.$

В этом случае, используя утверждение 1, легко показать, что $\operatorname{card}(\Omega^X_{p,\widetilde{r}})\leqslant 2$ для любого предкасательного пространства $\Omega^X_{p,\widetilde{r}}.$

Для метрического пространства (X,d) с отмеченной точкой p определим функцию $F\colon X\times X\to \mathbb{R}$ правилом

$$F(x,y) := \begin{cases} \frac{d(x,y)(d(x,p) \wedge d(y,p))}{(d(x,p) \vee d(y,p))^2}, & \text{если} & (x,y) \neq (p,p), \\ 0, & \text{если} & (x,y) = (p,p). \end{cases}$$

Для $x, y, z \in X$ положим

$$\Phi(x,y,z) := F(x,y) \vee F(x,z) \vee F(y,z) \qquad \text{if} \qquad \Psi(x,y,z) := \frac{d(x,y) \vee d(y,z) \vee d(x,z)}{d(x,y) \wedge d(y,z) \wedge d(z,x)},$$

полагая $\Psi(x,y,z) = \infty$ при $d(x,y) \wedge d(y,z) \wedge d(z,x) = 0$.

Следующая теорема является критерием ультраметричности предкасательных пространств.

Теорема 1. Пусть (X,d) — метрическое пространство с отмеченной точкой p. Все предкасательные пространства $\Omega^X_{p,\widetilde{r}}$ являются ультраметрическими тогда и только тогда, когда

$$\lim_{x,y,z\to p}\frac{s(x,y,z)}{\Phi(x,y,z)}\Psi(x,y,z)=\infty,$$

где при $\Phi(x,y,z)=0$ полагаем $1/\Phi(x,y,z)=\infty$.

Для краткости обозначим $d_1(x,y,z):=d(x,y)\vee d(y,z)\vee d(x,z)$ и $d_2(x,y,z):=(d(x,y)\vee d(y,z))\wedge (d(x,y)\vee d(x,z))\wedge (d(x,z)\vee d(y,z))$. Другим критерием ультраметричности пред-касательных пространств является

Теорема 2. Пусть (X,d) — метрическое пространство с отмеченной точкой р. Все предкасательные пространства $\Omega^X_{p,\widetilde{r}}$ являются ультраметрическими тогда и только тогда, когда

$$\lim_{x,y,z \to p} \Phi(x,y,z) \left(\frac{d_1(x,y,z)}{d_2(x,y,z)} - 1 \right) = 0,$$

где при $d_2(x,y,z)=0$ считаем $\dfrac{d_1(x,y,z)}{d_2(x,y,z)}=1.$

Ультраметричность и отношение лежать между. Пусть $t_0(X)$ — величина, определенная в предыдущем пункте. Если $t_0 = t_0(X) < \infty$, то d^{t_0} остается метрикой на X.

Определение 3. Пусть (X,d) — метрическое пространство. Будем говорить, что $(X,d) \in \mathfrak{M}$, если для любых $x, y, z \in X$ точка y лежит между x и z, т.е. d(x,z) = d(x,y) ++d(y,z), как только $d(x,z) \geqslant d(x,y) \geqslant d(y,z)$.

Замечание 2. В соответствии со знаменитым результатом К. Менгера класс Ж исчерпывается, с точностью до изометрий, подмножествами прямой и так называемыми псевдолинейными четырехполюсниками (см., например, [4, гл. 4]).

Верна следующая теорема.

Теорема 3. Пусть (X,d) — метрическое пространство, p — предельная точка Xи пусть $s_1 \in (0,+\infty)$. Тогда принадлежность $(\Omega_{p,\widetilde{r}},\rho^{s_1}) \in \mathfrak{M}$ имеет место для каждого предкасательного к X в точке p пространства $\Omega_{p,\widetilde{r}}$, если и только если

$$\lim_{\substack{x,y,z \to p \\ (x,y,z) \in X^{+3}}} \frac{\Psi(x,y,z)s^{2}(x,y,z)}{\Phi(x,y,z)(s_{1} - s(x,y,z))^{2}} = \infty,$$
(4)

где при $s(x,y,z)=\infty$ считаем, что $\left(\frac{s(x,y,z)}{s_1-s(x,y,z)}\right)^2=1.$ Таким образом, (4) гарантирует, в частности, что ρ^{s_1} — метрика на $\Omega_{p,\widetilde{r}}$, т. е. $s_1\leqslant$

 $\leq t_0(\Omega_{p,\widetilde{r}},\rho).$

Следствие 2. Пусть (X,d) — метрическое пространство, $p \in X$ и $s_1 \in (0,\infty)$. Предположим $(\Omega^X_{p,\widetilde{r}}, \rho^{s_1}) \in \mathfrak{M}$ для любого предкасательного пространства $\Omega^X_{p,\widetilde{r}}$. Тогда каждое из следующих условий достаточно для того, чтобы $(\Omega^X_{p,\widetilde{r}}, \rho)$ было касательным:

- (i) $(\Omega_{p,\widetilde{r}}^X, \rho^{s_1})$ не вкладывается изометрично в \mathbb{R} ;
- (ii) $(\Omega_{p,\widetilde{r}}^X, \rho^{s_1})$ изометрично \mathbb{R} .

Следствие 2 является частным случаем следующего принципа.

Пусть \mathfrak{B} — класс метрических пространств, Y_0 — максимальный элемент в \mathfrak{B} в том смысле, что любое изометрическое вложение $f: Y_0 \to Z, Z \in \mathfrak{B}$, является изометрией. Предположим, что все предкасательные пространства к некоторому метрическому пространству X в точке $p \in X$ принадлежат \mathfrak{B} . Тогда любое предкасательное $\Omega^X_{n,\widetilde{r}}$, изометричное Y_0 , является касательным.

При $\mathfrak{B} = \mathfrak{M}$ и Y_0 , совпадающем с \mathbb{R} или с псевдолинейным четырехполюсником, получаем следствие 2.

Следствие 3. Пусть выполняются условия теоремы 3. Равенство

$$\lim_{\substack{x,y,z \to p \\ (x,y,z) \in X^{+3}}} \frac{\Psi(x,y,z)s^{2}(x,y,z)}{\Phi(x,y,z)(1-s(x,y,z))^{2}} = \infty$$

имеет место тогда и только тогда, когда для любого $(\Omega_{p,\widetilde{r}}^X, \rho)$ любое $A \subseteq \Omega_{p,\widetilde{r}}^X$ с card $A \neq 4$ изометрично вкладывается в \mathbb{R} .

Для того чтобы это доказать, достаточно взять $s_1=1$ в теореме 3 и использовать результат Менгера, упомянутый в замечании 2.

- 1. Dovgoshey O., Martio O. Tangent spaces to metric spaces // Reports in Math. Helsinki Univ. 2008. Vol. 480. 20 p.
- 2. Lytchak A. Differentiation in metric spaces // Алгебра и анализ. 2004. 16, No 6. Р. 128–161.
- 3. Dovgoshey O., Martio O. Blow up of balls and coverings in metric spaces // Manuscr. Math. 2008. 127. P. 89–120.
- 4. Blumenthal L. M. Theory and applications of distance geometry. Oxford: Clarendon Press, 1953. 347 p.

Институт прикладной математики и механики НАН Украины, Донецк Поступило в редакцию 28.08.2009

O. A. Dovgoshey, D. V. Dordovskyi

Ultrametricity and metric betweenness in tangent spaces to metric spaces

We find the necessary and sufficient conditions, under which all pretangent spaces to general metric space are ultrametric.