© 2010

Е.С. Смоловая

Граничное поведение кольцевых Q-гомеоморфизмов в метрических пространствах

(Представлено членом-корреспондентом НАН Украины В. Я. Гутлянским)

Досліджується проблема продовження на межу так званих кільцевих Q-гомеоморфізмів між областями в метричних просторах із мірами. Формулюються умови на функцію Q(x) та межі областей, при яких усякий кільцевий Q-гомеоморфізм допускає неперервне або гомеоморфне продовження на межу. Результати застосовані, зокрема, до ріманових многовидів, просторів Левнера, груп Карно та Гейзенберга.

В работе [1] для квазиконформных отображений было получено модульное неравенство, которое впоследствии легло в основу определения так называемых Q-гомеоморфизмов. В последние годы на плоскости и в пространстве активно изучается более широкий класс кольцевых Q-гомеоморфизмов (см., напр., [2]). Это понятие мотивировано кольцевым определением квазиконформности по Герингу [3] и представляет собой обобщение и локализацию этого определения, которое впервые было введено и использовалось для изучения уравнений Бельтрами на плоскости в работе [4].

Проблема граничного поведения является одной из центральных тем теории квазиконформных отображений и их обобщений (см., напр., [5] и дальнейшие ссылки там же). Систематическое изучение структур границ односвязных областей на плоскости началось в свое время с трудов Каратеодори [6] и привело к созданию теории простых концов (см., напр., [7]). Области со слабо плоскими границами, используемые нами, — наиболее широкий из известных классов областей, граничное соответствие между которыми при квазиконформных отображениях и их обощениях осуществляется поточечно, а не по простым концам (см., напр., [2]). Граничное поведение кольцевых Q-гомеоморфизмов в \mathbb{R}^n изучалось в работе [8]. В статье [5] была построена теория граничного поведения для Q-гомеоморфизмов в метрических пространствах. В данной работе эта теория распространяется на кольцевые Q-гомеоморфизмы в метрических пространствах. Ранее модульная техника в метрических пространствах изучалась в работах [9—12] и др.

1. О кольцевых Q-гомеоморфизмах в метрических пространствах. Обозначим (X,d,μ) пространство X с метрикой d и локально конечной борелевой мерой μ . Областью в X будем называть открытое множество, любые две точки которого можно связать непрерывной кривой. Пусть G — область в X с хаусдорфовой размерностью $\alpha > 1$. Модуль семейств кривых Γ в области G задается равенством

$$M(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{G} \rho^{\alpha}(x) \, d\mu(x), \tag{1}$$

где допустимые функции для Γ определяются условием вида (2). Напомним, что борелева функция $\rho \colon \mathbb{R}^n \to [0,\infty]$ называется допустимой для семейства кривых Γ в \mathbb{R}^n , пишут

 $\rho \in \operatorname{adm} \Gamma$, если

$$\int_{\gamma} \rho \, ds \geqslant 1 \tag{2}$$

для всех $\gamma \in \Gamma$. Напомним также, что если $\gamma \colon [a,b] \to X$ — непрерывная кривая в метрическом пространстве (X,d), то ее длина есть супремум сумм $\sum d(\gamma(t_i),\gamma(t_{i-1}))$ над всеми разбиениями $a=t_0\leqslant t_1\leqslant \cdots\leqslant t_k=b$ интервала [a,b].

Пусть G и G' — области с конечными хаусдорфовыми размерностями α и $\alpha' > 1$ в пространствах (X,d,μ) и (X',d',μ') и пусть $Q\colon G\to [0,\infty]$ — измеримая функция. Говорим (ср. [5]), что гомеоморфизм $f\colon G\to G'$ называется кольцевым Q-гомеоморфизмом в точке $x_0\in \overline{G}$, если

$$M(\triangle(fC_0, fC_1, G')) \leqslant \int_{A \cap G} Q(x) \cdot \eta^{\alpha}(d(x, x_0)) \, d\mu(x)$$
(3)

выполняется для любого кольца $A = A(r_1, r_2, x_0) = \{x \in X : r_1 < d(x, x_0) < r_2\}, \ 0 < r_1 < < r_2 < \infty$, любых двух континуумов $C_0 \subset \overline{B(x_0, r_1)}$ и $C_1 \subset X \setminus B(x_0, r_2)$ в области G и любой измеримой функции $\eta \colon (r_1, r_2) \to [0, \infty]$ такой, что

$$\int_{r_1}^{r_2} \eta(r) dr \geqslant 1. \tag{4}$$

Говорят, что пространство (X,d,μ) α -регулярно сверху в точке $x_0 \in X$, если существует постоянная C>0 такая, что

$$\mu(B(x_0, r)) \leqslant Cr^{\alpha} \tag{5}$$

для всех шаров $B(x_0,r)$ с центром в точке $x_0 \in X$ радиуса $r < r_0$. Говорят также, что пространство (X,d,μ) α -регулярно сверху, если условие (5) выполнено в каждой точке (см., напр., [10]).

Пусть G — область в пространстве (X, d, μ) . Следуя [5], говорим, что функция $\varphi \colon G \to \mathbb{R}$ имеет конечное среднее колебание в точке $x_0 \in \overline{G}$, сокр. $\varphi \in FMO(x_0)$, если

$$\overline{\lim_{\varepsilon \to 0}} \int_{G(x_0,\varepsilon)} |\varphi(x) - \overline{\varphi}_{\varepsilon}| \, d\mu(x) < \infty, \tag{6}$$

где

$$\overline{\varphi}_{\varepsilon} = \int_{G(x_0,\varepsilon)} \varphi(x) d\mu(x) = \frac{1}{\mu(G(x_0,\varepsilon))} \int_{G(x_0,\varepsilon)} \varphi(x) d\mu(x) - \frac{1}{\mu(G(x_0,\varepsilon))} \int_{G(x_0,\varepsilon)} \varphi(x) d\mu(x) d\mu(x) = \frac{1}{\mu(G(x_0,\varepsilon))} \int_{G(x_0,\varepsilon)} \varphi(x) d\mu(x) d\mu(x) d\mu(x)$$

среднее значение функции $\varphi(x)$ по множеству $G(x_0,\varepsilon)=\{x\in G\colon d(x,x_0)<\varepsilon\}$ относительно меры μ . Здесь условие (6) включает предположение, что φ интегрируема относительно меры μ по некоторому множеству $G(x_0,\varepsilon),\ \varepsilon>0$.

2. О слабо плоских и сильно достижимых границах. В \mathbb{R}^n следующие понятия введены в [13], а в метрических пространствах — в [5].

Говорят, что граница области G сильно достижима в точке $x_0 \in \partial G$, если для любой окрестности U точки x_0 найдется компакт $E \subset G$, окрестность $V \subset U$ точки x_0 и число $\delta > 0$ такие, что

$$M(\Delta(E, F; G)) \geqslant \delta$$
 (7)

для любого континуума F в G, пересекающего ∂U и ∂V . Говорят также, что граница ∂G слабо плоская в точке $x_0 \in \partial G$, если для любого числа P>0 и окрестности U точки x_0 найдется ее окрестность $V\subset U$ такая, что

$$M(\Delta(E, F; G)) \geqslant P$$
 (8)

для любых континуумов E и F в G, пересекающих ∂U и ∂V . Известно, что ∂G сильно достижима из G в точке x_0 , если ∂G слабо плоская в точке $x_0 \in \partial G$. Кроме того, G локально линейно связна в $x_0 \in \partial G$, если ∂G слабо плоская в точке x_0 . Напомним, что область G называется локально связной в точке $x_0 \in \partial G$, если для любой окрестности U точки x_0 найдется окрестность $V \subseteq U$ точки x_0 такая, что $V \cap G$ связно.

3. О непрерывном продолжении на границу.

Теорема 1. Пусть G локально линейно связна в точке $x_0 \in \partial G$, $\overline{G'}$ — компакт и $\partial G'$ сильно достижима. Если измеримая функция $Q: G \to [0, \infty]$ удовлетворяет условию

$$\int_{G(x_0,\varepsilon,\varepsilon_0)} \frac{Q(x)d\mu(x)}{d(x,x_0)^{\alpha}} = o\left(\left[\log\frac{1}{\varepsilon}\right]^{\alpha}\right)$$
(9)

при $\varepsilon \to 0$, где $G(x_0, \varepsilon, \varepsilon_0) = \{x \in G : \varepsilon < d(x, x_0) < \varepsilon_0\}$, для $\varepsilon_0 < d(x_0) = \sup_{x \in G} d(x, x_0)$, то любой кольцевой Q-гомеоморфизм $f : G \to G'$ продолжим в точку x_0 по непрерывности в (X', d').

Теорема 2. Пусть X α -регулярно сверху в точке $x_0 \in \partial G$, $\alpha \geqslant 2$, где G локально линейно связна и удовлетворяет условию

$$\mu(G \cap B(x_0, 2r)) \leqslant \gamma \cdot \log^{\alpha - 2} \frac{1}{r} \cdot \mu(G \cap B(x_0, r)) \qquad \forall r \in (0, r_0), \tag{10}$$

а $\overline{G'}$ компактно и $\partial G'$ сильно достижима. Если $Q \in FMO(x_0)$, то любой кольцевой Q-гомеоморфизм $f \colon G \to G'$ продолжим в точку x_0 по непрерывности в (X', d').

Заметим, что условие Салимова (10) из [5] слабее хорошо известного условия удвоения меры на границе

$$\mu(G \cap B(x_0, 2r)) \leqslant \gamma \cdot \mu(G \cap B(x_0, r)) \tag{11}$$

(ср., напр., [10]).

4. О продолжении на границу обратных отображений.

Теорема 3. Пусть G локально линейно связна во всех своих граничных точках и \overline{G} – компакт, G' имеет слабо плоскую границу, а $f: G \to G'$ – кольцевой Q-гомеоморфизм во всех граничных точках с $Q \in L^1_\mu(G)$. Тогда обратный гомеоморфизм $g = f^{-1}: G' \to G$ допускает непрерывное продолжение $\overline{g}: \overline{G'} \to \overline{G}$.

5. О гомеоморфном продолжении на границу.

Теорема 4. Пусть G и G' имеют слабо плоские границы, а \overline{G} и $\overline{G'}$ — компакты и пусть $Q\colon G\to [0,\infty]$ — функция класса $L^1_\mu(G)$ c

$$\int_{G(x_0,\varepsilon,\varepsilon_0)} \frac{Q(x)d\mu(x)}{d(x,x_0)^{\alpha}} = o\left(\left[\log\frac{1}{\varepsilon}\right]^{\alpha}\right)$$
(12)

в каждой точке $x_0 \in \partial G$, где $G(x_0, \varepsilon, \varepsilon_0) = \{x \in G : \varepsilon < d(x, x_0) < \varepsilon_0\}$, $\varepsilon_0 = \varepsilon(x_0) < d(x_0) = \sup_{x \in G} d(x, x_0)$. Тогда любой кольцевой Q-гомеоморфизм $f : G \to G'$ допускает продолжение до гомеоморфизма $\overline{f} : \overline{G} \to \overline{G'}$.

Теорема 5. Пусть G — область в α -регулярном сверху пространстве (X,d,μ) , $\alpha \geqslant 2$, которая локально линейно связна и удовлетворяет условию (10) во всех граничных точках, G' — область в пространстве (X',d',μ') со слабо плоской границей, а \overline{G} и $\overline{G'}$ — компакты. Если функция $Q\colon G\to [0,\infty]$ имеет конечное среднее колебание во всех граничных точках, то любой кольцевой Q-гомеоморфизм $f\colon G\to G'$ продолжим до гомеоморфизма $\overline{f}\colon \overline{G}\to \overline{G'}$.

Последняя теорема является далеко идущим обобщением известной теоремы Геринга—Мартио о гомеоморфном продолжении на границу квазиконформных отображений между областями квазиэкстремальной длины (см. [14], с. 196, ср. также [15]). Отметим, что в монографии [2] приведен пример, показывающий, что слабо плоские границы образуют более широкий класс, чем границы равномерных областей и областей квазиэкстремальной длины даже на плоскости. Заметим также, что здесь не предполагается односвязность областей. Таким образом, результаты работы обобщают и усиливают известные теоремы для квазиконформных отображений на кольцевые Q-гомеоморфизмы в метрических пространствах, которые являются их естественным обобщением (см., напр., [5, 14] и др.). Результаты применимы, в частности, к римановым многообразиям, недавно введенным пространствам Левнера, а также хорошо известным группам Карно и Гейзенберга (см., напр., [10]).

- 1. Bishop C. J., Gutlyanskii V. Ya., Martio O., Vuorinen M. On conformal dilatation in space // Int. J. Math. and Math. Sci. 2003. 22. P. 1397–1420.
- 2. Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in modern mapping theory. New York: Springer, 2009. 367 p.
- Gehring F. W. Rings and quasiconformal mappings in space // Trans. Amer. Math. Soc. 1962. 103. P. 353–393.
- 4. Ryazanov V., Srebro U., Yakubov E. On ring solutions of Beltrami equation // J. d'Anal. Math. 2005. 96. P. 117–150.
- 5. Ryazanov V., Salimov R. Weakly flat spaces and boundaries in the mapping theory // Ukr. Math. Bull. 2007. 4, No 2. P. 199–234.
- 6. Caratheodory C. Über die Begrenzung der einfachzusammenhängender Gebiete // Math. Ann. 1913. 73. P. 323–370.
- 7. $Cуворов \ \Gamma$. Д. Метрическая теория простых концов и граничные свойства плоских отображений с ограниченным интегралом Дирихле. Киев: Наук. думка, 1981. 168 с.
- 8. *Ломако Т.В.* О распространении некоторых обобщений квазиконформных отображений на границу // Укр. мат. журн. 2009. **61**, No 10. С. 1329–1337.
- 9. Fuglede B. Extremal length and functional completion // Acta Math. 1957. 98. P. 171-219.
- 10. Heinonen J. Lectures on analysis on metric spaces. New York: Springer, 2001. 140 p.
- 11. Heinonen J., Koskela P. Quasiconformal maps in metric spaces with controlled geometry // Acta Math. 1998. **181**, No 1. P. 1–61.
- 12. Martio~O. Modern tools in the theory of quasiconformal maps // Texts in Math. Ser. B. Univ. Combra, Dept. Mat., Coimbra. -2000. -27. -P. 1-43.

- 13. *Ковтонюк Д. А.*, *Рязанов В. И.* К теории границ пространственных областей // Тр. ИПММ НАН Украины. 2006. **13**. С. 110–120.
- 14. Gehring F. W., Martio O. Quasiextremal distance domains and extension of quasiconformal mappings // J. d'Anal. Math. -1985. -24. -P. 181-206.
- 15. Martio O., Vuorinen M. Whitney cubes, p-capacity and Minkowski content // Expo. Math. 1987. 5. P. 17–40.

Институт прикладной математики и механики НАН Украины, Донецк Поступило в редакцию 04.01.2010

E.S. Smolovaya

Boundary behavior of ring Q-homeomorphisms in metric spaces

The problem of extension to the boundary of the so-called ring Q-homeomorphisms between domains in metric spaces with measures is investigated. Conditions on functions Q(x) and boundaries of domains, under which every ring Q-homeomorphism admits a continuous or homeomorphic extension to the boundary, are formulated. These results are applicable, in particular, to Riemannian manifolds, the Loeuner spaces, the Carnot and Heisenberg groups.