

ФІЗИКА

УДК 535.33/34:539.216/22

© 2012

Н.В. Рожков, В.Л. Карбовский, В.Х. Касияненко, В.А. Дубок, академик НАН Украины А.П. Шпак

Синтез и свойства нанопорошков фосфата кадмия

Аморфный фосфат кадмия получен методом осаждения из водного основного раствора. Продукт синтеза был разделен на две части, одна из которых была промыта водой и высушена при температуре $150\,^{\circ}$ С, другая — дополнительно промыта ацетоном и высушена на воздухе при комнатной температуре. Образцы исследовались методами рентгеновского фазового анализа $(P\Phi A)$, атомной силовой микроскопии (ACM), рентгеновской фотоэлектронной спектроскопии $(P\Phi C)$, Ожее-спектроскопии, термогравиметрического дифференциального термического анализа $(T\Gamma, \mathcal{A}T\Gamma, \mathcal{A}TA)$. Результаты иссследований показали, что полученные образцы отвечают составу $\mathrm{Cd}_5\mathrm{H}_2(\mathrm{PO}_4)_4$ ·4 $\mathrm{H}_2\mathrm{O}$. Картины морфологии синтезированных порошков позволяют судить о наноразмерных частицах, размеры которых находятся в диапазоне от 30 до 60 нм.

Апатитоподобные соединения, общая формула которых $A_{10}(XO_4)_6Y_2$ (A=Ca, Sr, Ba, Pb, Mn, Cd, Na; X=P, Si, Ge, As, V, S; Y=OH, F, Cl, Br, I, O, CO₃), имеют большое значение в техническом, экологическом и биологическом плане, так как разработка, исследование и применение материалов на их основе считаются одним из перспективных направлений современной науки и техники. Такие материалы могут найти и уже находят свое применение в разных областях техники, коммуникаций, энергетике, медицине [1]. Кроме того, апатитоподобным соединениям присущ широкий спектр изо- и гетеровалентных замещений, что делает их интересными объектами фундаментальных и прикладных исследований.

Среди многочисленных публикаций об исследованиях апатитов разного состава доля исследований апатитов кадмия занимает довольно скромную позицию. Из литературных данных известно [1], что во многих работах апатиты кадмия синтезировались либо с помощью "мягких" химических методов, но в виде смешанных кальций-кадмиевых апатитов, либо как чистые апатиты, но в более жестких гидротермальных условиях [2–5]. В основном, большинство работ посвящено получению гидроксилапатита кадмия — Cd-ГАП.

Все вышеперечисленное обусловило интерес к исследованию возможностей получения апатитов кадмия с помощью мокрых химических методов, которые в некоторой степени проще из-за более мягких условий. В данной работе был проведен синтез фторапатита кадмия (Cd- Φ A Π) при помощи модифицированного метода осаждения из водного раствора [6]. В результате синтеза был получен фосфат кадмия состава $Cd_5H_2(PO_4)_4 \cdot 4H_2O$. В ра-

ботах [2, 7] сообщается, что данный фосфат является одним из промежуточных подуктов в процессе синтеза апатитов кадмия. И поскольку механизмы образования многих фосфатных апатитов проходят через стадии промежуточного образования различных аморфных фосфатов [1], то изучение аморфного фосфата кадмия может внести немалый вклад в исследование процессов образования апатитов кадмия. Кроме того, варьируя метод синтеза данного фосфата, можно получить продукт с частицами различной формы [2], что также делает его изучение весьма интересным.

Объекты и методы исследования. Объекты исследований были получены методом осаждения. К раствору, содержащему NaH_2PO_4 , NH_4F и аммиак для достижения показателя pH около 10, капельным способом был добавлен раствор $Cd(NO_3)_2 \cdot 4H_2O$. Исходные компоненты взяты в количествах, необходимых для стехиометрического отношения Cd:P:F=5:3:1, в предположении получить продукт с формулой, близкой к $Cd_5(PO_4)_3F$. Весь синтез проходил при постоянном перемешивании и нагревании раствора до кипения. После того как весь раствор нитрата кадмия был введен, смесь оставляли при нагревании и перемешивании на 1,5 ч. На протяжении всего синтеза проводился контроль уровня pH и постоянно добавлялся небольшими порциями раствор аммиака для поддержания уровня pH около 10. После этого продукт был оставлен для старения под маточным раствором в течение 15 ч.

В дальнейшем продукт многократно промывался (13-кратно) дистилированной водой методом декантации. После этого осадок разделили на две части, одна из которых была отфильтрована и высушена при температуре 150 °C в течение 4 ч. Другая часть дополнительно промывалась ацетоном при помощи воронки Бюхнера под вакуумом, отфильтровывалась и высушивалась на воздухе при комнатной температуре.

Продукты синтеза были исследованы методом рентгеновского фазового анализа (РФА) на рентгеновском дифрактометре ДРОН-3 (Си K_{α} -излучение). Эксперимент РФА проходил при комнатной температуре с шагом сканирования $0,05^{\circ}$. Полученные результаты РФА анализировались с помощью программы Crystal Impact Match при использовании базы данных ICDD PDF-2.

Исследования методами атомной силовой микроскопии (ACM) и рентгеновской фотоэлектронной спектроскопии (РФС) проводились на приборе JSPM 4610 (фирмы Jeol, Япония) при высоком вакууме (порядка 10^{-8} Па). Калибровка результатов РФС исследований осуществлялась по энергии связи 4f-линий Au.

Исследования методом Оже-спектроскопии выполняли на приборе ЭСО-3. Калибровка результатов проводилась по линии KLL-перехода углерода (263 эВ).

Термическое поведение объектов было исследовано методами термогравиметрического, дифференциального термического и дифференциального термогравиметрического анализа (ТГ, ДТА, ДТГ) на дериватографе Q-1500D фирмы МОМ на воздухе при свободной конвекции, в режиме нагрева со скоростью нагревания 5 $^{\circ}$ C/мин, в температурном интервале от комнатной температуры до 1000 $^{\circ}$ C.

Результаты исследований. Анализ данных РФА показал, что линии дифрактограммы образца находятся в хорошем соответствии с линиями дифрактограммы, отвечающими составу $Cd_5H_2(PO_4)_4 \cdot 4H_2O$. Это дает возможность предполагать, что основная фаза данного образца имеет формулу $Cd_5H_2(PO_4)_4 \cdot 4H_2O$. Индексирования дифрактограммы проводилось с помощью базы данных PDF-2 по результатам работы [7]. Структура данного соединения принадлежит к моноклинной сингонии. Параметры элементарной ячейки были рассчитаны с помощью метода наименьших квадратов: a = 17,946(6) Å, b = 9,420(4) Å,

 $c = 9,694(5) \text{ Å}, \beta = 96,51(5)^{\circ}, V = 1628(1) \text{ Å}^3$. Эти результаты расчетов находятся в хорошем соответствии с литературными данными [7]: a=17.9 Å, b=9.392 Å, c=9.677 Å, $\beta = 96.53^{\circ}, V = 1616.31 \text{ Å}^3.$

Рентгенофотоэлектронные исследования показали малую интенсивность линии углерода, что свидетельствует о поверхностном присутствии незначительного количества углеводородов, сорбированных на поверхности образца (рис. 1). Метод РФС продемонстрировал отсутствие линий для фтора и натрия, что говорит о том, что они не вошли в состав продукта во время синтеза. Энергетическое положение линий P 2s и P 2p соответствует энергетическому состоянию уровней фосфора, наблюдаемому для гидрофосфатов (табл. 1). Исходя из энергетического положения линий кадмия, можно заключить, что оно выше, чем у CdO, и близко к $Cd(OH)_2$. Положение линии 2s кислорода соответствует энергетическому положению таковой в СаНРО4. Ширины на половине высоты РФС линий элементов, приведенные на рис. 1, помимо информации о естественной ширине остовных электронных уровней, отражают количество неэквивалентных состояний для данного химического элемента. Ширины на половине высоты O 1s и P 2p (см. рис. 1) соответствуют ширинам соответствующих линий для кристаллического гидроксоапатита кальция [1]. По всей видимости, ближайшая координация тетраэдров в аморфном состоянии мало нарушается.

Результаты исследования образца методом Оже-спектроскопии приведены на рис. 2. Наблюдаются пики следующих линий: при 373 эВ, характерный для кадмия (MNN); при 107 эв, характерный для фосфора (LMM); при 505 эВ, характерный для кислорода (KLL); при 263 эВ, характерный для углерда (KLL). Исходя из того, что наибольшую интенсивность имеет линия углерода и учитывая, что метод Оже-спектроскопии дает информацию о нескольких монослоях, можно подтвердить данные метода РФС о присутствии углерода только на поверхности образцов. Доказательством этого является также то, что линия углерода наблюдалась до травления образца, однако после травления образца в атмосфере аргона она исчезает.

Как правило, Оже-пик для фосфора наблюдается в области около 120 эВ, однако, по результатам данного исследования, этот пик находится на ~107 эВ. Такой результат свидетельствует о том, что поверхностные атомы фосфора находятся в отличном от объемного химическом состоянии и, следовательно, поверхностные тетраэдры также находятся в другом энергетическом состоянии.

Влияние разных способов промывания во время синтеза на свойства объектов было исследовано с помощью метода термогравиметрического дифференциального термического анализа. Результаты этого исследования представлены на рис. 3.

Потеря массы образца, промытого водой, составила 7,57% (мас.), а образца, промытого дополнительно ацетоном — 9.08% (мас.).

· ·					
	Уровни энергии, эВ	Cd	P	О	
	$3d_{3/2}$	412,6			
	$3d_{5/2}$	405,8			
	$3n_{1/2}$	653.2			

Таблица 1. Значения химических сдвигов по данным РФС анализа

2s

1s

 $3p_{3/2}$ 618,9 133,6 2p

191,1

531,6

284,7

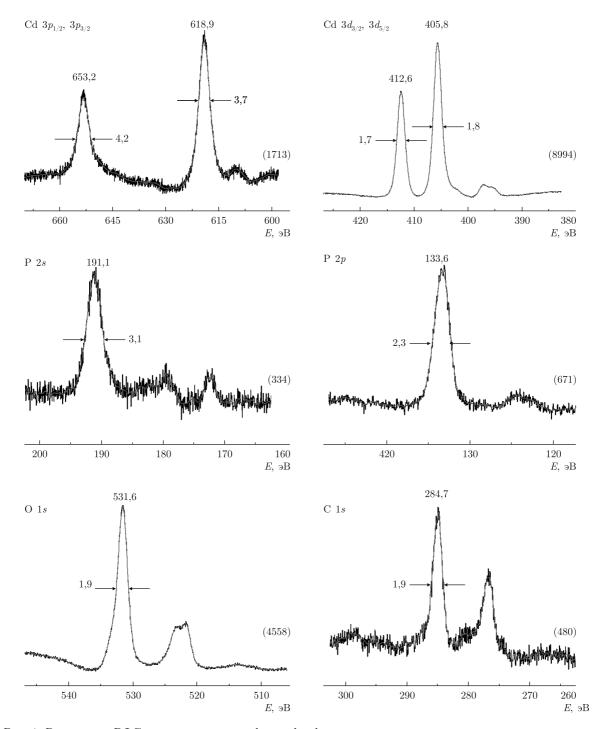


Рис. 1. Результаты РФС исследования аморфного фосфата кадмия

В термическом поведении образцов замечены следующие различия: у образца, промытого водой (образец a), пик первого эндотермического эффекта, сопровождающегося скачкообразной потерей массы, находится при температуре 252 °C, тогда как для образца, дополнительно промытого ацетоном (образец δ), этот пик сдвигается в область высоких температуре и находится при температуре 268 °C. Следующий этап ускоренной потери мас-

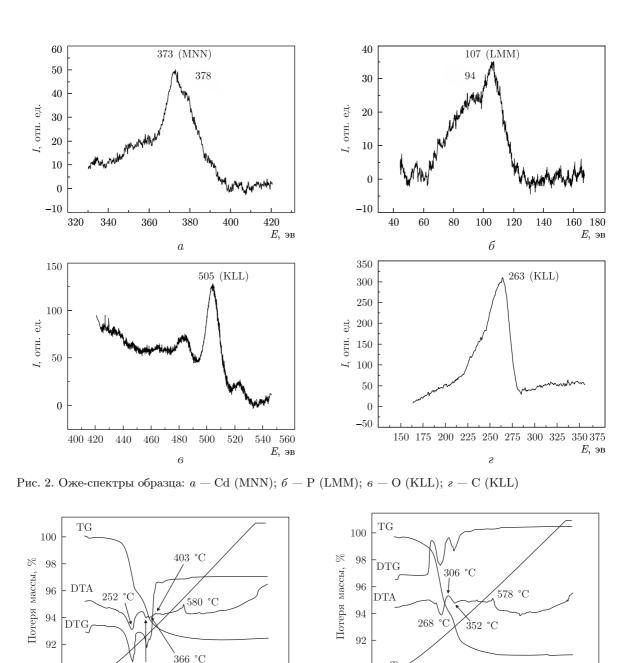


Рис. 3. Кривые ТГ, ДТГ и ДТА образцов аморфного фосфата кадмия, промытых разным способом: a — промыт водой; δ — дополнительно ацетоном

б

T, °C

сы для образца a находится в интервале температур 317–380 °C. Он проходит в две стадии, хотя на кривой ДТГ они сливаются и едва различимы, но на кривой ДТА четко видны два пика эндотермических эффектов, находящиеся при 342 и 366 °C. В то время как для образца δ эта стадия ускоренной потери массы происходит в один этап с одним эндотермическим эффектом в области температур 317–370 °C, пик которго находится при 352 °C. Такие эн-

342 °C

T, °C

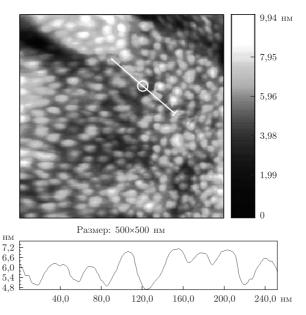


Рис. 4. Снимок атомной силовой микроскопии порошка $Cd_5H_2(PO_4)_4 \cdot 4H_2O$

дотермические эффекты с ускоренной потерей массы обычно свидетельствуют о десорбции поверхностной жидкости под действием нагрева.

Также у обоих образцов наблюдаются мелкие термические эффекты в области температур 400–490 °C, не сопровождающиеся существенными изменениями массы. Экзотермические эффекты (для образца a — пик при 580 °C, для образца b — пик при 578 °C) также не сопровождаются изменениями массы. Такие эффекты обычно свидетельствуют о фазофых превращениях. По-видимому, учитывая их близость для обоих образцов, в данном случае — это эффекты кристаллизации аморфного фосфата кадмия.

Результаты атомной силовой микроскопии, показывающие морфологию образцов, представлены на рис. 4. На снимке четко видны частицы порошка, довольно однородные по размеру и форме. Анализ снимков показывает, что размеры частиц находятся в области от 30 до 60 нм.

Таким образом, методом осаждения из водного основного раствора получен аморфный фосфат кадмия состава $Cd_5H_2(PO_4)_4 \cdot 4H_2O$. Состав был подтвержден методом рентгеновского фазового анализа. При помощи метода $P\Phi C$ описано химическое состояние компонент исследуемого соединения. Показано отсутствие линий посторонних прекурсоров, что свидетельствует о чистоте полученного продукта. Установлено, что углерод присутствует только на поверхности частиц за счет сорбции углеводородов при комнатных условиях.

Описано поведение образцов, промытых различными способами, при нагреве. Показаны различия в температурах десорбции поверхностной жидкости при промывании образцов водой и дополнительно ацетоном.

Морфология поверхности образцов установлена методом неконтактной атомно-силовой сканирующей микроскопии. Установлены характерные размеры частиц, которые находятся в интервале от 30 до 60 нм.

Таким образом, результаты работы подтверждают, что описанный выше метод осаждения из водного основного раствора позволяет получать нанопорошки аморфного фосфата кадмия.

- 1. Карбовский В. Л., Шпак А. П. Апатиты и апатитоподобные соединения. Электронная структура и свойства. Киев: Наук. думка, 2010. 483 с.
- 2. Arami H., Mazloumi M., Khalifehzadeh R. et al. Self-assembled dahlia-like cadmium hydrogen phosphate hydrate nanostructures as templates for cadmium hydroxyapatite hexagonal prisms // J. of Crystal Growth. 2007. **309** (1). P. 37–42.
- 3. Cherifa A. B., Jemal M. Enthalpy of Formation and Mixing of Calcium-Cadmium Phosphoapatites // Phosphorus Research Bulletin. 2004. 15. P. 113–118.
- 4. Zhu K., Yanagisawa K., Onda A. et al. Morphology variation of cadmium hydroxyapatite synthesized by high temperature mixing method under hydrothermal conditions // Materials Chemistry and Physics. 2009. 113, No. 1. P. 239–243.
- 5. Nounah A., Maroufi N., Ichou Y. A. et al. X-ray diffraction study of cadmium hydroxyapatite // J. Phys. IV France. -2005. -123. P. 251-254.
- 6. Prageeth R. Ch. Synthesis and characterization of strontium fluorapatite // MAI 44/02.-2006.-913 p.
- 7. Averbuch-Pouchot M. T., Durif A. Donnees crystallographiques sur $Cd_5H_2(PO_4)_4 \cdot 4H_2O$ and $Cd_5H_2(AsO_4)_4 \cdot 4H_2O$ // Bull. Soc. Fr. Mineral. Cristallogr. 1970. **93**. P. 123–127.

Институт металлофизики им. Г.В. Курдюмова НАН Украины, Киев Институт проблем материаловедения им. И.Н. Францевича НАН Украины, Киев Поступило в редакцию 26.08.2011

М. В. Рожков, В. Л. Карбівський, В. Х. Касіяненко, В. А. Дубок, академік НАН України А. П. Шпак

Синтез і властивості нанопорошків фосфату кадмію

Аморфний фосфат кадмію отримано методом осадження з водного основного розчину. Продукт синтезу розділяли на дві частини, одна з яких була промита водою і висушена при температурі $150\,^{\circ}$ С, інша — додатково промита ацетоном і висушена на повітрі при кімнатній температурі. Зразки досліджувалися методами рентгенівського фазового аналізу $(P\Phi A)$, атомної силової мікроскопії (ACM), рентгенівської фотоелектронної спектроскопії $(P\Phi C)$, Оже-спектроскопії, термогравіметричного диференціального термічного аналізу $(T\Gamma, \, \mathcal{I}T\Gamma, \, \mathcal{I}TA)$. Результати досліджень показали, що отримані зразки відповідають складу $\mathrm{Cd}_5\mathrm{H}_2(\mathrm{PO}_4)_4\cdot 4\mathrm{H}_2\mathrm{O}$. Картини морфології синтезованих порошків дозволяють судити про нанорозмірні частинки, розміри яких знаходяться в діапазоні від 30 до 60 нм.

N. V. Rozhkov, V. L. Karbovskiy, V. Kh. Kasiyanenko, V. A. Dubok, Academician of the NAS of Ukraine A. P. Shpak

Synthesis and properties of cadmium phosphate nanopowders

Cadmium amorphous phosphate is obtained by the precipitation method from a basic aqueous solution. The product of synthesis consisted of two parts, one of them was washed with water and dried at 150 °C, while the other was washed further with acetone and dried in air. Samples were investigated by X-ray powder diffraction analysis (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and thermal analysis (TG, DTA and DTG). The results of investigations show that the composition of obtained samples corresponds to the formula $\mathrm{Cd}_5\mathrm{H}_2(\mathrm{PO}_4)_4\cdot 4\mathrm{H}_2\mathrm{O}$. Pictures of the morphology of synthesized powders show the presence of nanosized particles with a size of above 30–60 nm.