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We give an algebraic characterization of rainbow graphs. A connected graph T" is called rainbow
if there is a vertex coloring of I', which is bijective on the set of neighbors of each vertex of I'.

A rainbow graph [3] is a connected graph I" with the set of vertices V(I') and the set of edges
E(I") that can be vertex-colored x : V(I') — & so that every color x € k is represented once,
and only once, among the neighbors N (v) = {u € V(I'): {u,v} € E(T')} of each vertex v € V(T').
For applications of rainbow graphs, see [1]. If one removes the edge-matching of the monochrome
edges of a rainbow graph, one gets a kaleidoscopical graph [2, Chapter 6].

Let k be a cardinal. A rainbow semigroup RS(k) is a semigroup in the alphabet x determined
by the relations zzx = z, xyx = x for all z,y € k. We identify RS(x) with the set of all non-
empty words in k with no factors zzx, ryz.

For x € k, a rainbow group RG(k,z) is a subset of RS(k) containing = and all words of the
form 2wz, w € RS(k). The word zx is the identity of RG(k,z), 2~ = x, and (zwz) !
where w is the word w written in the reverse order.

Theorem 1. For any cardinal k and each x € k, the following statements hold:

(i) the idempotents of RS(k) are only yz, where y, z € k;

(1i) RG(k,x) is a free product of the cyclic group (x) of order 2 and the family of infinite
cyclic groups {(xabz): a,b € k,a # x,b # z};

(7it) RS(k) is a sandwich product RS(k) = L(z) X RG(k,x) X R(x), where L(x) = {yz: y €
€ k}, R(x) = {xy: y € K}, and the multiplication (l1,w1,71)(l2, we,72) = (1, w1r1lows, 12).

Let k be a cardinal, z € k. An equivalence ~ on RS(k) is called a rainbow equivalence if,
for any wi, wa € RS(k), we have

o w; ~ wy = l(wy) = l(wq), where [(w) is the first letter of w;

o wi ~ wy = yw; = yws for each y € k;

e [(w) = y = w and yw are not equivalent;

o w ~ wxx for each w € KS(k).

Each rainbow equivalence ~ on RS(k) determines the rainbow graph I'(k, k) as follows. The
set V(T') of vertices of I is a factor-set RS(k)/ ~= {[w]: w € RS(k)}, where [w] is the class of
equivalence ~ containing w. By definition, {u,v} € E(I') if and only if u # v, and there exists
w € wu such that yw € v. Then the mapping x: V(I') — & defined by x([w]) = {(w) does not
depend on the choice of w and determines a rainbow coloring of I.

In turn, every rainbow equivalence ~ on RS(k) is uniquely determined by the subgroup

= XWX,

S, = [zz] | RG(k, x)
of RG(k,z) because

wy ~ wy <= l(wy) = l(w) N zwizx ~ TWTT > (xwlxx)fl(xngx) € S,.
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We say that two rainbow graphs I'y, T's with rainbow colorings xi: V(I'y) — &,
x2: V(I'2) — & are rainbow isomorphic if there exists a bijection f: V(I';) — V(I'2) such that

e Vu,veV(): {uv} € E(I') < {f(u), f(v)} € E(Iy);

e Vu € V(T): xa(u) = xof ().

Now, we are ready to characterize all rainbow graphs up to rainbow isomorphisms.

Let T" be a rainbow graph with rainbow coloring x: V(I') — k. We define a transitive action
of RS(k) on the set V(I') as follows. Let v € V(I'), € k. Pick u € N(v) such that x(u) =z
and put x(v) = u. Then we extend the action onto K S(k) inductively. If w = RS(k), w = zw/,
T € k, we put w(v) = x(w'(v)). Given any vy, ve € V(I'), the sequence of colors of the vertices
on a path from v; to vy determines a word w € RS(k) such that w(v) = va, so RS(k) acts on
V(I') transitively. Clearly, the group RG(k,x) acts transitively on the set of vertices of color x.

We fix v € V(I') with x(v) = x, determine a rainbow equivalence ~ on RS(k) by the rule

w~w = w) =w'(v),

and note that the graphs I' and I'(k, ~) are rainbow isomorphic via the bijection f: V(I') —
— KS(k)/ ~, f(u) ={w € KS(k): w(v) = u}.

Thus, we get the following statement.

Theorem 2. For every rainbow graph T' with rainbow coloring x: V(I') — k, there exists
a rainbow equivalence ~ on RS(k) such that " and I'(k, ~) are rainbow isomorphic. Every rainbow
equivalence on RS(k) is uniquely determined by some subgroup of RG(k,x).

Let I'(V, E) be a connected graph with the set of vertices V', and let the set of edges F, d be
the path metric on V, B(v,r) ={u € V:d(v,u) <r},veV,recw={0,1,...}.

A graph T'(V, E) is called kaleidoscopical [6] if there exists a coloring (a surjective mapping)
X: V — K, K is a cardinal such that the restriction x | B(v,1): B(v,1) — & is a bijection on
each unit ball B(v,1), v € V. For kaleidoscopical graphs, see also |2, Chapter 6| and [5].

Let G be a group, and let X be a transitive G-space with the action G x X — X, (g,z) —
— gx. A subset A of X, |A| = k is said to be a kaleidoscopical configuration [4] if there exists
a coloring x: X — k such that, for each g € G, the restriction x | gA: gA — & is a bijection.

We note that kaleidoscopical graphs and kaleidoscopical configurations can be considered as
partial cases of kaleidoscopical hypergraphs defined in [2, p.5]. Recall that a hypergraph is a pair
(X,§), where X is a set, § is a family of subsets of X.

A hypergraph (X,§) is said to be kaleidoscopical if there exists a coloring x: X — k such
that, for each F' € §, the restriction x | F: I — k& is a bijection.

Clearly, a graph I'(V, E) is kaleidoscopical if and only if the hypergraph (V,{B(v,1): v € V'})
is kaleidoscopical. A subset A of a G-space X is kaleidoscopical if and only if the hypergraph
(X,{9(A): g € G}) is kaleidoscopical.

We say that two hypergraphs (X1, §1), (X2, F2) with kaleidoscopical colorings x1: X1 — K,
Xx2: Xo — K are kaleidoscopically isomorphic if there is a bijection f: X7 — X5 such that

e VAC Xi: A€ F — f(A) € Fo;

eV € Xi: x1(x) = xo(f(2)).

We describe an algebraic construction which gives all kaleidoscopical graphs up to isomor-
phisms.

The kaleidoscopical semigroup KS(k) is a semigroup in the alphabet x determined by the
relations zz = x, xyx = x for all z,y € k. For our purposes, it is convenient to identify KS(k)
with the set of all non-empty words in x with no factors xx, zyx, where =,y € k.
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For every = € k, the set KG(k,x) of all words from K S(k) with the first and the last letter x
is a subgroup (with the identity x) of the semigroup K S(x). To obtain the inverse element to
the word w € KG(k, x), it suffices to write w in the inverse order. The group KG(k,x) is called
the kaleidoscopical group in the alphabet x with the identity x.

For finite cardinals &, the following theorem is proved in [2, pp. 64-66|: but corresponding
arguments work for arbitrary k.

Theorem 3. For any cardinal k, the following statements hold:

(1) idempotents of the semigroup KS(k) are the only words x, xy, where x,y € Kk, © # vy,

(ii) the kaleidoscopical group KG(k,x) is a free group with the set of free generators

{eyza:y,z € s\ {a}y # 2},

(7it) the kaleidoscopical semigroup KS(k) is isomorphic to the sandwich product L(zx) X
x KG(k,x) x R(x) with the multiplication

(I1,91,71)(l2, 92,72) = (I1, 91711292, 72),

where L(x) = {yz:y € k}, R(zx) = {zy: y € K}.
We fix x € k, denote the first letter of the word w € KS(k) by a(w), and say that an
equivalence ~ on K S(k) is kaleidoscopical if, for all w,w’ € KS(k) and y € k,

w~w = w(w) = 2(w) Ayw = yw',
w~w = wr ~w'z.

Let [w] be the class of equivalence ~ containing w € KS(k).
We put

Sy =[] KG(k,x),
observe that S, is a subgroup of KG(k,z), and show that ~ is uniquely determined by S,:
w~w = a(w) = e(w) A zws ~ zw's <= (zwz) " (zw'z) € S,

We see also that any subgroup of K G(k,x) can be taken as S, to determine a kaleidoscopical
equivalence on KS(k).

A kaleidoscopical equivalence ~ determines a graph I'(k, ~) with the set of vertices K S(k)/ ~
and the set of edges E defined by the rule:

(u,v) € E <= Jw € uldy € k: &(w) #y Ayw € v.

A coloring x: KS(k)/ ~— k defined by x(Jw]) = &(w) shows that I'(x, ~) is kaleidoscopical.

Now let I'(V, E) be a kaleidoscopical graph with kaleidoscopical coloring y: V. — k. We
define a transitive action of the semigroup KS(x) on the set V as follows. Let v € V, = € k.
Pick u € B(v,1) such that x(u) = = and put z(v) = u. Then we extend the action onto KS(k)
inductively. If w = KS(k), w = zw’, w' € KS(k), * € k, we put w(v) = z(w'(v)). Given any
v1,v9 € V, the sequence of colors of the vertices on a path from v to vy determines a word
w € KS(k) such that w(v1) = va, so KS(k) acts on V transitively. Clearly, the group KG(k,x)
acts transitively on the set x~!(x) of vertices of color .
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We fix v € V with x(v) = z, determine a kaleidoscopical equivalence ~ on K S(k) by the rule
w~w = w) =w'(v),

and note that the graphs I'(V, E') and T'(k, ~) are kaleidoscopically isomorphic via the bijection
iV — KS(k)/ ~, f(u) ={w € KS(k): w(v) = u}.

All above considerations are focused in the following theorem.

Theorem 4. For every kaleidoscopical graph I'(V, E) with kaleidoscopical coloring x: V —
— K, there exists a kaleidoscopical equivalence ~ on the semigroup KS(k) such that T'(V, E) is
kaleidoscopically isomorphic to T'(k,~). Every kaleidoscopical equivalence ~ on KS(k) is uni-
quely determined by some subgroup of the group KG(k,x).

Every group G can be considered as a G-space with the left regular action (g,z) — yx.
Let A be a kaleidoscopical configuration in G. By [4, Corollary 1.3|, A is complemented, i.e.
there exists a subset B of G such that the multiplication A x B — G, (a,b) — ab is bijective.

Let A be a system of generators of a group G such that A = A™! and e € A4, e is the identity
of G. We consider the Cayley graph Cay(G, A) with the set of vertices G and the set of edges FE
defined by the rule:

(9,h) €EE =g 'he A g#h.

Clearly, Cay(G, A) is connected. Assume that Cay(G, A) is kaleidoscopical with kaleidoscopi-
cal coloring x: G — |A|. Since B(g,1) = gA and Y is bijective on each ball B(g,1), we see
that A is a kaleidoscopical configuration. On the other hand, if A is a kaleidoscopical confi-
guration in G with kaleidoscopical coloring x: G — A, then x is bijective on each set gA. So,
Cay(G, A) is kaleidoscopical. Thus, we get the following theorem.

Theorem 5. Let G be a group, and let A be a system of generators of G such that A = A"
and e € A. Then A is a kaleidoscopical configuration if and only if Cay(G, A) is kaleidoscopical.

We conclude the paper with two open questions.

Question 1. How can one detect whether a kaleidoscopical hypergraph is kaleidoscopically
isomorphic to a hypergraph of unit balls of some kaleidoscopical graph?

Question 2. How can one detect whether a kaleidoscopical hypergraph is kaleidoscopically
isomorphic to a hypergraph determined by a kaleidoscopical configuration in a G-space?
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K. /1. IIporacosa, T. M. IIpoBoTap

Becenkosi rpacdu i HaniBrpynu
Ompumano anzebpaiuny rapaxmepusayito secearxosur 2pagis. 36’asnut epad I' nasusaemovcs se-

CENKOBUM, AKULO iCHYE Po3dapbysanna muodcunu eepwun L', wo € 6iekmushum HG MHONCUHI
cycidie xootcnot eepuuruy L.

K. /1. IIporacosa, T. M. IIpoBoTap

Panxy>xkxHbie rpadbl 1 NOJIyTPYIIIIbI
Hoayvena anzebpauveckan xapaxmepudavus padyoichox epagos. Ceasznoili epad I' nasweaemces

PAOYIHCHBIM, ECAU CYULLCTNEYEM PACKPACKa muoxcecmsa eepwun I, buexmuenas na MHodicecmee
cocedeti dasa xascdoli eepuwuno, I,
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