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The exact travelling wave solutions for convective, higher-order convective, and convective-
viscous Cahn—Hilliard equations are obtained. Without any additional restrictions on the para-
meters, the solutions with non-zero propagation velocity exist only for an asymmetric potential.
However, for an additional constraint on the higher-order convective term or for a special
balance between nonlinearity and viscosity, the non-zero velocity exists for a symmetric potential
as well. In the latter case, the exact two-wave solution is obtained; asymptotically, it converges
to the well-known static kink solution.

Recently, the nonlinear convective Cahn—Hilliard equation in one space dimension for a symmetric
double-well potential was introduced in several articles [1-6]. Leung [1| proposed this equation as
a continual description of the lattice gas phase separation under the influence of an external field.
Similarly, Emmott and Bray [2] proposed this equation as a model of the spinodal decomposi-
tion of a binary alloy in an external field. In both cases, the dependence of the mobility on
the order parameter is presumed, which introduces, in turn, the connection to the external fi-
eld. In [3-4], this equation was derived in a model of kinetically controlled evolution of two-
dimensional crystals. Several approximate solutions and only two exact static kink and anti-kink
solutions were obtained; the “coarsening” of domains separated by kinks and anti-kinks was also
discussed [1-6]. Here, we consider the slightly different equation corresponding to an asymmetric
potential; we also rescale the variables to get

up — auny = (u® — 6u? — U — Upy)za- (1)

In (1), « is the (rescaled) applied field; in accord with [2] « is positive for positive direction of
the external field. For § = 0, the case of symmetric potential is recovered. For the classic Cahn—
Hilliard equation [7], the static kink solution corresponding to asymmetric potential was generally
discarded [8], because it violates the global conservation of the order parameter. However, there
is generally no global conservation for (1). Even more, the very notion of coarsening or “Ostwald
ripening, ” as considered in the theory of first-order phase transitions [9], relates to the competi-
tive growth of stable-phase domains inserted into the metastable phase. In terms of the quartic
free energy for the Cahn—Hilliard equation, this corresponds to unequal depths of two potenti-
al wells and 0 # 0 in (1). The asymmetric potential naturally arises in some applications and
generalizations of the convective Cahn—Hilliard equations [3, 10].

Here, we give the exact travelling wave solutions of (1). Introducing the travelling wave
coordinate z = x — vt and integrating once yield
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where ¢ is an arbitrary constant. At z = +oo, all derivatives equal zero; that is, the left-hand
side also equals zero. This yields a quadratic equation; the roots of this equation, i.e., the values
of u at +oo, are

v V2
U2 = —— F1, n=1\/—3tc
o o

The travelling kink solutions connecting u; and ug are

; (3)

_up +ugexp{2kn(z — vt)}
YT exp{2rn(x —vt)} (4)

In addition to (3), there are three relations for «, v, n:
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If k > 0, the solution increases monotonically from a smaller stationary value u; at z = —oo to a
larger stationary value ug at z = +o0; it is usually called “kink”. If k < 0, the solution decreases
from uy at z = —oo to uy at z = 400; it is usually called “anti-kink”. For § = 0, i.e., v = 0, this

solution reduces to the well-known static symmetric kink /anti-kink solutions [1, 2|. Emmott and
Bray [2] pointed out that the “negative-field-kink” combination is equivalent to the “positive-field-
anti-kink” one. They have also shown that, for a negative field, the static kink solution is stable,
while the anti-kink solution is unstable. This simple symmetry is broken for § # 0. Depending
on the signs of a and 9, there are four cases for the travelling-wave solutions, as shown in Fig. 1.
The study of the stability of these solutions is more complicated and will be given elsewhere.

The convective Cahn—Hilliard equation with cubic nonlinearity in the convective term was
introduced and approximately solved in [3|. Higher-order polynomials both for the convective
term and the potential were also considered in [10]. Here, we give the exact travelling-wave
solutions of the equation

up — ity + 200u3uy = (U — 6u? — U — Upy) ge- (6)
The scaling and notations here and below differ from those of [3] and other cited papers, to match
our above consideration. Introducing the travelling-wave coordinate z = z — vt and integrating
once, we obtain

a4 Qi o 20 3 _ sul
- I - - - - - - - 7
5 (u 2u 2u c> (u U — U — Uyy)s, (7)

where ¢ is an integration constant. As different from (2), the polynomial on the left-hand side is
of the fourth order. For large enough (positive) ¢, this polynomial has at least two real roots u;
and usg; for definiteness, we take u; < wa. They will be the stationary values of u at z = Fo00,
where the right-hand side of (7) equals zero. Then the solutions may be again written in the
form (4); however, the system of equations for , v, n and uq, ug is more complicated and admits
several different solutions:

2% —1- 22—

6K ’ (8)
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277 = U9 — U1. (12)

For ag = 0, (8) reduces to the first constraint in (5). For arbitrary non-zero aa, (8) is a cubic
equation; it has three different real roots if a3 < 8/3, and only a single real root if a3 > 8/3.
It is evident from (9) and (10) that, for arbitrary s, the non-zero velocity of a kink is possible
if & # 0 only. Solving system (10), (11), we find the corresponding stationary values u, ug for
each root of (8):

2K0

= 13
u1,2 o + 3 +n, (13)
3 K26%(3k — « 1/2
n = ( ;in+m : (14)
200 + 3k | (a2 + 3k) 2
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The substitution of (13) into (9) determines the kink velocity v. If § = 0, we still have either a
single or three static kink solutions, depending on the number of the roots of (8). On the other
hand, for § = 0 and the additional constraint imposed on a9 and k,

042 2
— +3k“=0 15
4k +oR ’ (15)

relation (10) is satisfied for arbitrary values of (uj + ug). It is possible, however, only for the
special value of oz% = 9/4 and the corresponding k = —awe/3. In other words, even for § = 0,
there is a travelling kink solution for ey = —3/2 and the anti-kink one for sy = 3/2; and there
is only the single constraint (11) imposed on wuq, us.

The viscous Cahn—Hilliard (VCH) equation was introduced by Novick-Cohen [11] to include
some viscous effects, which are neglected in the derivation of the classic Cahn—Hilliard equa-
tion [7]. The VCH equation could also be derived [12] as a certain limit of the classic phase-
field model (as for the phase-field model and its relations to other phase-separation models,
see [13, 14| and references therein). To study the joint effects of nonlinear convection and vis-
cosity, Witelski [15] introduced the convective-viscous-Cahn—Hilliard equation with a general
symmetric double-well potential. With an additional constraint on nonlinearity and viscosity,
the approximate travelling-wave solution was obtained in [15]. Here, we consider a polynomial
generally asymmetric potential, i.e., the equation

up — oty = (u® — 6u® — U — Upy + Pt oo (16)

Equation (16) has exact travelling kink solutions of the form (4), where the five parameters x,
v, n and uy, ug are given as the solutions of the system

22 =1, (17)
3

2y =5 18

v<w a) , (18)

2+(2ma—3)v—2— 1+ =) =0 (19)
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v

UL+ ug = —2—, (20)
«

Uy — U = 21. (21)

If the “driving force” o and the viscosity p are given independently, the travelling kinks are
possible for 0 # 0 only, i.e., for an asymmetric potential (see (18)). However, relation (18) with
6 = 0 is satisfied for arbitrary non-zero v if kap = 3, i.e., for a special balance between the
driving force and the viscosity, which is in accord with the result in [15]. Even more, in this
case, (16) has the exact two-wave solution

o exp{o(x +vt) + ¢} —exp{—0c(x — vt) + ¢}

YT + exp{o(z + vt) + ¢} + exp{—c(x — vt) + ¢}’ (22)

where 2k = 1, v = (a0)/(2k), 0 = (1/2 + «/(4x))"/?, and ¢ is an arbitrary constant. This
solution is obtained using the bilinear Hirota method. For x > 0, it consists of two kinks (or
anti-kinks for x < 0) moving toward each other and merging asymptotically (as ¢ — oo) into the
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well-known symmetric static kink/anti-kink solution [1, 2]. The discussion on the stability and
applications of the above solutions will be given in the following communications.
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I1. O. Muegnos-Ilerpocsan, . FO. Komiiiuenko

Touni po3B’sa3ku A1 Jesakux moamdikalliii HeJliHIfHOrO piBHAHHS
Kana—Xwnmmapaa

Ompumaro mouni po3e’asku y euzasdi 6iocywoi TEUN ONA KOHBEKMUBHO20, KOHBEKMUBHO020 3 biAb-
WUM CYNEHEM HENHITHOCTE Ma KOHBEKMUBHO-6’A3K020 pieHanns Kana—Xianrapda. Bes 6ydo-
AKUT 0006MKOBULT 0OMENCEHD HA NAPAMEMPU PO3E A3KU 3 HEHYADOBOIO WEUIKICTNIO ICHYIOMDb MiAb-
KU OAf acumempuyrozo nomewyiany. Odnak npu 000amro6oMy 0OMEHCEHHT HA KOHBEKMUGHU
YAEH CTNAPUL020 CIYNEeHsA ab0 Y 6UNaiKY CNEUiasbH020 DANGHCY MINHC HEATHITHICTII0 Ma 8 A3KICMI0
PO36°A3KU 3 HEHYALOBOI WEUIKICTIVIO TCHYIOMDb & OAA CUMEMPUUHO20 nomenyianry. is ocman-
HDO20 BUNGIKY OMPUMAHO T MOUHUT 080TBUNBOSUT PO3 A30K; ACUMNMOMUYHO Git 30i2aembCa Jo
6100M020 CMAMUYHO20 KiHK-PO3 A3KY.
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II. O. Muennos-Ilerpocsn, . FO. Koneiiuenko

Tounble pereHus A HEKOTOPBIX MoANUKANNIT HEJIMHEITHOTO
ypaBHenusa Kana—Xwuiapaa

Hoayuenvr mourvie pewerus 6 sude be2yuleti 60AHbL OAA KOHBEKMUBH020, KOHBEKMUBHO20 C 60-
A€e BHICOKOT CMENEHDBIO HEAUHETHOCTNU U KOHBEKMUBHO0-643K020 ypashenull Kana—Xuanapda. Bes
KAKULT-AUO0 QONOAHUMEALHDIT 02PAHUNEHUT HA NAPAMEMPBE PEWEHUA C HEHYACBOT CKOPOCTBIO Pa-
CNPOCNPANEHUA CYWELCTNEYIOM, MOALKO ONf ACUMMEMPULHO020 NOMeHUUaAa. Oornaro npu donosru-
MEABHOM 02PEHUMEHUL WA KOHBEKMUBHBIT YAeH CMAPULE20 NOPAOKG UAY OAA CAYYAA CREYUALALHO20
banaHCca MENCAY HEAUNETHOCTNIDIO U BAZKOCTNDIO PEULEHUS C HEHYAEBOT CKOPOCMDBIO CYULECTNEYIOM
U OAS CUMMEMPUYHO20 NOMEHUUAAG. [TAA NOCACOHE20 CAYHAA NOAYUEHO U MOUHOE 08YLEOAHOB0E
peweHue; acuMNMOMUYECKY OHO CTOOUMCA K USBECTVHOMY CMATMUYECKOMY KUHK-DEWEHUI.
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