

MEXAHIKA

УДК 519.81:681.51

Член-корреспондент НАН Украины М. Д. Борисюк, Т. Е. Александрова, А. С. Мазманишвили

Стохастическая оценка плавности хода многоопорного транспортного средства

Предложена стохастическая оценка плавности хода многоопорного транспортного средства путем пространственного моделирования случайной поверхности движения в виде нормального марковского двумерного поля с заданными стохастическими характеристиками и последующей оценкой вертикальных, продольно-угловых и поперечно-угловых случайных колебаний подрессоренной части транспортного средства.

Для стохастической оценки плавности хода многоопорного транспортного средства (TC) необходимо решить задачу пространственного моделирования двумерного поля на плоской поверхности с заданными стохастическими характеристиками. Из всего многообразия возможных вариантов и моделей двумерных случайных поверхностей наиболее предпочтительным является нормальное марковское двумерное поле (HMД-поле), поскольку этот объект удобен для анализа и любое его ортогональное сечение суть стационарный процесс Орнштейна–Уленбека [1].

Рассмотрим три системы координат, представленные на рис. 1: неподвижную OXY; подвижную $O_nX_nY_n$, начало которой связано с центром масс подрессоренной части TC, а оси параллельны осям неподвижной системы; связанную $O_cX_cY_c$, начало которой связано с центром масс подрессоренной части TC, а оси O_cX_c и O_cY_c совпадают с главными центральными осями инерции подрессоренной части.

Координаты точек контакта опорных катков с поверхностью грунта обозначим x_{ir} , y_{ir} по правому борту и x_{il} , y_{il} — по левому, где i — номер опорного катка при начале отсчета от переднего катка. Расстояния l_i в горизонтальной плоскости от точки контакта i-го опорного катка до поперечной связанной оси $O_c Y_c$ положительны для катков, расположенных впереди центра масс, и отрицательны для катков, расположенных сзади центра масс. Расстояние S_i в горизонтальной плоскости от центра масс подрессоренной части TC до точки контакта i-го опорного катка с грунтом определяется соотношениями

$$S_i = \sqrt{\left(\frac{B}{2}\right)^2 + l_i^2}, \qquad i = \overline{1, n},\tag{1}$$

где B — ширина колеи TC; n — число опорных катков по одному из бортов.

© М. Д. Борисюк, Т. Е. Александрова, А. С. Мазманишвили, 2013

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2013, № 6

Рис. 1. Системы координат

Углы φ_{ir} и φ_{il} составляют

$$\varphi_{ir} = \operatorname{arctg} \frac{2l_i}{B}, \qquad \varphi_{il} = \pi - \operatorname{arctg} \frac{2l_i}{B}, \qquad i = \overline{1, n}.$$
 (2)

Криволинейное перемещение TC характеризуется текущей скоростью движения центра масс V(t) и текущим углом поворота корпуса $\psi(t)$, при этом координаты центра масс изменяются в соответствии с формулами

$$x(t) = x_0 + \int_0^t V(t) \cos \psi(t) \, dt; \qquad y(t) = y_0 - \int_0^t V(t) \sin \psi(t) \, dt, \tag{3}$$

где x_0, y_0 — координаты начальной точки отсчета.

Исходя из рис. 1, можно записать соотношения для текущих координат точек контакта катков правого и левого бортов в процессе криволинейного движения TC:

$$x_{ir}(t) = x(t) + S_i \sin\left[\psi(t) + \arctan\frac{2l_i}{B}\right], \qquad i = \overline{1, n};$$
(4)

$$y_{ir}(t) = x(t) + S_i \cos\left[\psi(t) + \operatorname{arctg} \frac{2l_i}{B}\right], \qquad i = \overline{1, n};$$
(5)

$$x_{il}(t) = x(t) + S_i \sin\left[\psi(t) + \pi - \operatorname{arctg} \frac{2l_i}{B}\right], \qquad i = \overline{1, n};$$
(6)

$$y_{il}(t) = x(t) + S_i \cos\left[\psi(t) + \pi - \operatorname{arctg} \frac{2l_i}{B}\right], \qquad i = \overline{1, n}.$$
(7)

Поверхность грунта, по которому происходит криволинейное движение TC, характеризуется пространственными неровностями, иными словами, представляет собой поле H(x, y), которое в каждой фиксированной точке (x_*, y_*) имеет высоту неровности $h(x_*, y_*)$.

ISSN 1025-6415 Доповіді Національної академії наук України, 2013, №6

53

Случайное поле $H_1(x, y)$ в прямоугольнике $\{x \in [0, a], y \in [0, b]\}$ можно описать уравнением Ланжевена для процесса Орнштейна–Уленбека [2]

$$\left(\frac{\partial}{\partial x} + \nu_x\right) \left(\frac{\partial}{\partial y} + \nu_y\right) h(x, y) = \sigma u(x, y),\tag{8}$$

где u(x,y) — случайное поле, обладающее свойствами гауссовского двумерного "белого" шума единичной интенсивности.

В качестве граничных условий в (14) используем два нормальных стохастических процесса, описываемых уравнениями Ланжевена

$$\left(\frac{\partial}{\partial x} + \nu_x\right)h(x,0) = \sigma u(x,0), \qquad \left(\frac{\partial}{\partial y} + \nu_y\right)h(0,y) = \sigma u(0,y) \tag{9}$$

и реализующихся вдоль осей x и y с начальным условием

$$h(0,0) = \sigma u(0,0). \tag{10}$$

Решения уравнения (8) с условиями (9) и (10) следующие:

$$h(x,0) = \exp(-\nu_x x)h(0,0) + \sigma \int_0^x \exp[-\nu_x (x-x')]u(x',0) \, dx', \tag{11}$$

$$h(0,y) = \exp(-\nu_y y)h(0,0) + \sigma \int_0^y \exp[-\nu_y (y-y')] u(0,y') \, dy', \tag{12}$$

$$h(x,y) = \exp(-\nu_x x - \nu_y y)h(0,0) + \sqrt{2\nu_x}\sigma \int_0^x \exp[-\nu_x (x-x')]u(x',0) \, dx' + + \sqrt{2\nu_y}\sigma \int_0^x \exp[-\nu_y (y-y')]u(0,y') \, dy' + + \sqrt{4\nu_x\nu_y}\sigma \int_0^x \int_0^y \exp[-\nu_x (x-x') - \nu_y (y-y')]u(x',y') \, dx' dy'.$$
(13)

Уравнение (8) вместе с решением (11)–(13) описывает НМД-поле первого порядка $H_1(x, y)$, порождающим полем для которого является поле "белого" шума u(x, y).

Случайное НМД-поле второго порядка $H_2(x,y)$ в прямоугольнике $\{x \in [0,a], y \in [0,b]\}$ можно описать уравнением

$$\left(\frac{\partial^2}{\partial x^2} + 2\beta_x \frac{\partial}{\partial x} + \Omega_x^2\right) \left(\frac{\partial^2}{\partial y^2} + 2\beta_y \frac{\partial}{\partial y} + \Omega_y^2\right) h(x, y) = \sigma u(x, y), \tag{14}$$

где $\beta_x,\,\Omega_x$
и $\beta_y,\,\Omega_y$ — парциальные декременты и частоты, отвечающие движению по ося
мxиyсоответственно.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2013, № 6

54

Пусть $\gamma_{1,x}, \gamma_{2,x}$, а также $\gamma_{1,y}, \gamma_{2,y}$ — решения уравнений $\gamma^2 + 2\beta_x \gamma + \Omega_x^2 = 0, \gamma^2 + 2\beta_y \gamma + \Omega_y^2 = 0$. Тогда (14) можно записать в виде системы из двух уравнений

$$\left(\frac{\partial}{\partial x} + \gamma_{1,x}\right) \left(\frac{\partial}{\partial y} + \gamma_{1,y}\right) h_1(x,y) = \sigma u(x,y),\tag{15}$$

$$\left(\frac{\partial}{\partial x} + \gamma_{2,x}\right) \left(\frac{\partial}{\partial y} + \gamma_{2,y}\right) h_2(x,y) = h_1(x,y).$$
(16)

Структуры уравнений (15), (16) и (8) совпадают, следовательно, решения системы (15), (16) в соответствии с (11)–(13) записываются в виде

$$h_1(x,0) = \exp(-\gamma_{1,x}x)h_1(0,0) + \sigma \int_0^x \exp[-\gamma_{1,x}(x-x')]u(x',0)\,dx',\tag{17}$$

$$h_1(0,y) = \exp(-\gamma_{1,y}y)h_1(0,0) + \sigma \int_0^y \exp[-\gamma_{1,y}(y-y')]u(0,y')\,dy',$$
(18)

$$h_{1}(x,y) = \exp(-\gamma_{1,x}x - \gamma_{1,y}y)h_{1}(0,0) + \sqrt{2\gamma_{1,x}}\sigma \int_{0}^{x} \exp[-\gamma_{1,x}(x-x')]u(x',0)\,dx' + \sqrt{2\gamma_{1,y}}\sigma \int_{0}^{x} \exp[-\gamma_{1,y}(y-y')]u(0,y')\,dy' + \sqrt{4\gamma_{1,x}\gamma_{1,y}}\sigma \int_{0}^{x} \int_{0}^{y} \exp[-\gamma_{1,x}(x-x') - \gamma_{1,y}(y-y')]u(x',y')\,dx'dy',$$
(19)

а также

$$h_2(x,0) = \exp(-\gamma_{2,x}x)h_1(0,0) + \int_0^x \exp[-\gamma_{2,x}(x-x')]h_1(x',0)\,dx',$$
(20)

$$h_2(0,y) = \exp(-\gamma_{2,y}y)h_1(0,0) + \int_0^y \exp[-\gamma_{2,y}(y-y')]h_1(0,y')\,dy',$$
(21)

$$h_{2}(x,y) = \exp(-\gamma_{2,x}x - \gamma_{2,y}y)h(0,0) + \sqrt{2\gamma_{2,x}}\sigma \int_{0}^{x} \exp[-\gamma_{2,x}(x-x')]h_{1}(x',0)\,dx' + \sqrt{2\gamma_{2,y}}\int_{0}^{x} \exp[-\gamma_{2,y}(y-y')]h_{1}(0,y')\,dy' + \sqrt{4\gamma_{2,x}\gamma_{2,y}}\int_{0}^{x}\int_{0}^{y} \exp[-\gamma_{2,x}(x-x') - \gamma_{2,y}(y-y')]h_{1}(x',y')\,dx'dy'.$$
(22)

ISSN 1025-6415 Доповіді Національної академії наук України, 2013, № 6

55

Из соотношений (17)–(22) следует, что для НМД-поля второго порядка $H_2(x, y)$ производящим является НМД-поле $H_1(x, y)$ первого порядка, а для НМД-поля $H_1(x, y)$ первого порядка производящим является поле "белого" шума $H_0(x, y) = u(x, y)$ нулевого порядка. При решении практических задач, связанных с определением возмущений, действующих на подрессоренную часть корпуса TC со стороны грунта, требуется не только знание случайной функции двух переменных $h(x, y) = h_2(x, y)$, но и ее производной по времени

$$\dot{h}(x,y) = \frac{\partial h(x,y)}{\partial x} \dot{x}(t) + \frac{\partial h(x,y)}{\partial y} \dot{y}(t).$$
(23)

Для описания величин $h(x_{ir}, y_{ir}), h(x_{il}, y_{il}), \dot{h}(x_{ir}, y_{ir}), \dot{h}(x_{il}, y_{il})$ $(i = \overline{1, n})$ в формулы (17)–(22) следует подставить соотношения (3)–(7).

В табл. 1 подставлены значения констант уравнения Ланжевена (14) для различных типов грунтов в предположении, что стохастические свойства НМД-поля одинаковы в направлениях Ox и Oy.

Уравнения возмущенного движения подрессоренной части корпуса (ПЧК) TC получены в работе [3] и имеют следующий вид:

$$\frac{G}{g}\ddot{z}(t) + 2q\delta\dot{z}(t) + 2ncz(t) + \delta\sum_{j=1}^{2q}\mu_{j}\dot{\varphi}(t) + c\sum_{i=1}^{2n}\mu_{i}\varphi(t) = \\
= c\sum_{i=1}^{n}[h(x_{ir}, y_{ir}) + h(x_{il}, y_{il})] + \delta\sum_{j=1}^{q}[\dot{h}(x_{ir}, y_{ir}) + \dot{h}(x_{il}, y_{il})]; \quad (24)$$

$$J_{y}\ddot{\varphi}(t) + q\sum_{j=1}^{2q}\mu_{j}^{2}\dot{\varphi}(t) + c\sum_{i=1}^{2n}\nu_{i}^{2}\varphi(t) + \delta\sum_{j=1}^{2q}\mu_{j}\dot{z}(t) + c\sum_{i=1}^{2n}\nu_{i}z(t) = \\
= c\sum_{i=1}^{n}\nu_{i}[h(x_{ir}, y_{ir}) + h(x_{il}, y_{il})] + \delta\sum_{j=1}^{q}\mu_{j}[\dot{h}(x_{ir}, y_{ir}) + \dot{h}(x_{il}, y_{il})]; \quad (25)$$

$$J_{x}\ddot{\vartheta}(t) + \frac{q\delta B^{2}}{2}\dot{\vartheta}(t) + \frac{qcB^{2}}{2}\vartheta(t) = \frac{cB}{2}\sum_{i=1}^{n}[h(x_{ir}, y_{ir}) - h(x_{il}, y_{il})] + \\
+ \frac{\delta B}{2}\sum_{i=1}^{q}\mu_{j}[\dot{h}(x_{ir}, y_{ir}) - \dot{h}(x_{il}, y_{il})] - \frac{G}{2}V(t)\dot{\psi}(t)[h_{0} + z_{k}(t)]\,\mathrm{sign}\,\dot{\psi}(t), \quad (26)$$

$$z_{j=1}$$
 y
где $z(t), \dot{z}(t)$ — обобщенная координата и обобщенная скорость вертикальных колебаний
центра масс ПЧК TC; $\varphi(t), \dot{\varphi}(t)$ — обобщенная координата и обобщенная скорость про-

ица 1. Ко 	онстанты уравнения Ланжевена	для различных	типов грунтов 0^{-1}	
_	1 ип поверхности движения	0, м	Ω, м	σ , m
	Асфальтобетон	0,191	$0,\!444$	0,012
	Мостовая	0,105	0,669	0,024
	Грунтовая дорога	0,337	1,065	0,105

дольно-угловых колебаний ПЧК TC; $\vartheta(t)$, $\dot{\vartheta}(t)$ — обобщенная координата и обобщенная

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2013, № 6

Рис. 2. Фазовые карты случайных колебаний ПЧК ТС

скорость поперечно-угловых колебаний ПЧК; G — вес ПЧК; g — ускорение силы тяжести; J_y — момент инерции ПЧК относительно оси O_cY_c ; J_y — момент инерции ПЧК относительно оси O_cX_c ; c — коэффициент жесткости рессоры; δ — среднее значение коэффициента демпфирования амортизатора; q — число амортизаторов по каждому из бортов; μ_j — расстояние в горизонтальной плоскости от оси O_cY_c до точки крепления j-го амортизатора; ν_i — расстояние в горизонтальной плоскости от оси O_cY_c до точки крепления i-й рессоры; $\dot{\psi}(t)$ — угловая скорость поворота ПЧК; h_0 — расстояние от поверхности грунта до центра тяжести ПЧК в состоянии покоя ТС при его расположении на идеально горизонтальной поверхности.

В качестве примера рассмотрим многоопорное TC с шестью опорными катками по каждому из бортов. Численные значения конструктивных параметров транспортного средства составляют: $G = 42 \cdot 10^4$ H; $J_x = 10.4 \cdot 10^4$ H · м · c²; $J_y = 16 \cdot 10^4$ H · м · c²; q = 3; n = 6; $\delta = 103836$ H · м⁻¹ · c; c = 200000 H · м⁻¹; $\mu_1 = 2,273$ м; $\mu_2 = 1,575$ м; $\mu_3 = -1,755$ м; $\nu_1 = 2,230$ м; $\nu_2 = 1,485$ м; $\nu_3 = 0,620$ м; $\nu_4 = -0,100$ м; $\nu_5 = -0,980$ м; $\nu_6 = -1,845$ м; $l_1 = 2,528$ м; $l_2 = 1,817$ м; $l_3 = 0,954$ м; $l_4 = 0,233$ м; $l_5 = -0,649$ м; $l_6 = -1,515$ м;

ISSN 1025-6415 Доповіді Національної академії наук України, 2013, № 6

 $S_1=2,\!873\,$ м; $S_2=2,\!272\,$ м; $S_3=1,\!665\,$ м; $S_4=1,\!385\,$ м; $S_5=1,\!511\,$ м; $S_6=2,\!084\,$ м; $B=2,\!73\,$ м; $h_0=1,\!1\,$ м.

Предположим, что TC совершает прямолинейное движение по грунтовой дороге с постоянной скоростью $V = 10 \text{ м} \cdot \text{c}^{-1}$. Генерируя случайное НМД-поле, находим случайные функции времени $h(x_{ir}, y_{ir}), h(x_{il}, y_{il}), \dot{h}(x_{ir}, y_{ir}), \dot{h}(x_{il}, y_{il}), i = \overline{1,6}$, в каждый момент времени, подставляем их в правые части дифференциальных уравнений (24)–(26) и интегрируем последние. В результате получаем случайные функции $z(t), \dot{z}(t), \varphi(t), \dot{\varphi}(t), \vartheta(t), \dot{\vartheta}(t)$.

На рис. 2 приведены фазовые карты, описывающие случайные колебания ПЧК ТС. По таким картам, построенным для различных типов грунтов и различных скоростей движения, может быть оценена плавность хода TC, а именно, максимальные линейные и угловые отклонения корпуса и максимальные линейные и угловые скорости корпуса при движении TC по неровностям. Так, анализ приведенных фазовых карт позволяет сделать вывод о том, что вертикальные отклонения корпуса TC при его движении по грунтовой дороге со скоростью $V = 10 \text{ м} \cdot \text{c}^{-1}$ достигают 0,17 м, а скорость вертикальных перемещений корпуса достигает величины 1 м/с; амплитуда продольно-угловых отклонений корпуса достигает 0,12 рад, а скорость продольно-угловых колебаний превышает 1,0 с⁻¹. Амплитуда поперечно-угловых колебаний достигает 0,18 рад, а угловая скорость этих колебаний доходит до величины 1,0 с⁻¹.

Таким образом, плавность хода многоопорного транспортного средства может быть оценена путем моделирования его движения на случайной поверхности, представляющей собою нормальное марковское двумерное поле.

- 1. *Мазманишвили А. С., Щербанъ В. Е.* Моделирование марковских случайных последовательностей и алгоритм генерации однородного двумерного марковского поля // Электронное моделирование. 1996. **18**, № 2. С. 93–95.
- 2. *Мазманишвили А. С., Александрова Т. Е.* Построение случайных поверхностей движения объектов бронетанковой техники // Системи озброєння та військової техніки. 2012. № 2. С. 68–71.
- 3. *Силаев А. А.* Спектральная теория подрессоривания транспортных машин. Москва: Машиностроение, 1972. 192 с.

HTУ "Харьковский политехнический институт" Сумский государственный университет Поступило в редакцию 03.12.2012

Член-кореспондент НАН України М. Д. Борисюк, Т. Є. Александрова, О. С. Мазманішвілі

Стохастична оцінка плавності ходу багатоопорного транспортного засобу

Запропоновано стохастичну оцінку плавності руху багатоопорного транспортного засобу шляхом просторового моделювання випадкової поверхні руху у вигляді нормального марківського двовимірного поля із заданими стохастичними характеристиками і подальшою оцінкою вертикальних, поздовжньо-кутових і поперечно-кутових випадкових коливань підресореної частини транспортного засобу.

ISSN 1025-6415 Reports of the National Academy of Sciences of Ukraine, 2013, № 6

Corresponding Member of the NAS of Ukraine M. D. Borisyuk, T. Ye. Alexandrova, A. S. Mazmanishvili

Stochastic estimate of the multisupporting vehicle ride

The article offers a stochastic estimation of the ride of a multisupporting vehicle with the help of the spatial modeling of a random surface movement in the form of normal Markov two-dimensional fields with given stochastic characteristics and the subsequent evaluation of vertical, longitudinal angular, and transverse angular random fluctuations of the vehicle sprung part.