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We introduce a new method for solving variational inequalities with monotone and Lipschitz-
continuous operators acting in a Hilbert space. The iterative process based on the well-known
projection method and the hybrid (or outer approzimations) method. However, we do not use
an extrapolation step in the projection method. The absence of one projection in our method
1s explained by a slightly different choice of sets in the hybrid method. We prove the strong
convergence of the sequences generated by our method.

Introduction. Variational inequality theory is an important tool in studying a wide class of
obstacle, unilateral, and equilibrium problems arising in several branches of pure and applied
sciences in a unified general framework. This field is dynamical and is experiencing an explosive
growth in both theory and applications. Several numerical methods have been developed for sol-
ving variational inequalities and related optimization problems (see [1, 2] and references therein).

We consider the classical variational inequality problem, which is to find a point z* € C
such that

(Az*,z —2") >0 VzeCl, (1)

where C'is a closed convex set in the Hilbert space H, (-,-) denotes the inner product in H, and
A: H — H is some mapping. We assume that the following conditions hold:

[(C1)] The solution set of (1), denoted by S, is nonempty.

[(C2)] The mapping A is monotone on C, i.e., (Az — Ay,x —y) > 0Vax,y € C.

[(C3)] The mapping A is Lipschitz-continuous on C' with constant L > 0, i.e., there exists
L > 0 such that ||Ax — Ay|| < L||lz — y|| Vz,y € C.

In order to construct an algorithm which provides the strong convergence to a solution of
(1), we propose the following method:

x0,20 € C,
Znt+1 = Po(xn, — ANAzy,), (2)

Tn+1 = Pe,no, o-

Here, Py denotes the metric projection on the set M, A € (0,1/L), and the sets C,, and @,, are
some half-spaces which will be defined in what follows.

The oldest algorithm that provides the convergence of a generated sequence under the above
assumptions is the extragradient method proposed by G.M. Korpelevich in [3|. At present,
there exist many efficient modifications of the extragradient method [4-9]. The natural question
that arises in the case of an infinite-dimensional Hilbert space is how to construct a modified
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Korpelevich’s extragradient algorithm, which will provide the strong convergence. To answer this
question, Nadezhkina and Takahashi [5] introduced the following method:
(xg € C,

Yn = Po(on — AnAzy),

zn = Po(xn — M\ Ayn),

Cn =A{w € C: [lzn — || < [lan —wl]},

Qn={weC: (x, —w,z9—xy,) >0},

Tn41 = PCnﬂQn'IOa

where A, € [a,b] C (0,1/L). Under the above assumptions (C1)-(C3), they proved that the
sequence (x,) generated by (3) converges strongly to Pgxz. Their method is based on the
extragradient method and on the hybrid method proposed in [10]. The computational complexity
of (3) on every step is three computations of a metric projection and two computations of A.
Inspired by this scheme, Censor, Gibali, and Reich [11, 12| presented the following algorithm:
(

T € H,

Yn = PC(xn - )\Axn)7

T,={we€ H: (x, — Nz, — yn,w — y,) < 0},

Zn = oy + (1 — ay) P, (2, — Auyy), (4)

Cp=A{w € H: ||z —w|| < ||z, —w|},

Qn={we H: (x, —w,xg— ) = 0},

\ Tn+1 = PCnﬂQn$0~

In contrast to (3), the sets C),, and @, are half-spaces. Hence, it is much more simplier to

calculate P, N Qn0 than that on the general convex set C'. Therefore, we will not take into
n n

consideration this projection in the next schemes. On the second step, only the projection onto
the half-space T;,, rather than onto the set C' like in (3), is calculated. However, on every step
of (4), we need to calculate A at two points, as well as in (3).

In this work, we show that, with some other choice of sets C,,, it is possible to throw out the
step of extrapolation in (3) or in (4), which consists in y, = Po(z, — AAxy,). It is easy to see
that our method (2) on every iteration needs only one computation of the projection (as in (4))
and only one computation of A.

Preliminaries. In order to prove our main result, we need the following statements (see [2]).
At first, the following well-known properties of the projection mapping will be used throughout
this paper.

Lemma 1. Let M be a nonempty closed convex set in H, x € H. Then

i) (Pyx —z,y — Pyx) > 0VYy € M;

i) |Paz — yl* < llz = yl® — |z — Puz|® vy € M.

Two next lemmas are also well-known.
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Lemma 2. Assume that A: C — H is a continuous and monotone mapping. Then x* is a
solution of (1) iff x* is a solution of the following problem:

findx € C, such that (Ay,y —x) =0 VyeC.

Remark 1. The solution set S of the variational inequality (1) is closed and convex.

We write x,, — x to indicate that the sequence (z,) converges weakly to x, and x, — x
implies that (z,) converges strongly to x.

Lemma 3 (Kadec—Klee property of a Hilbert space). Let (z,) be a sequence in H. Then it
follows from ||x,|| — ||z|| end z, — x that x, — x.

At last, we need the following result.

Lemma 4. Let (ay,), (by,), (¢n) be nonnegative real sequences, o, f € R, and let, for alln € N,

o0
the inequality a, < by, — acpi1 + By, hold. If > by, < 400 and o > 8 > 0, then lim a, = 0.
— n—oo

3. Algorithm and its convergence. Wg now formally state our algorithm.
Algorithm 1 (Hybrid algorithm without extrapolation step).

1. Choose xq, zg € C and two parameters k > 0 and A > 0.

2. Given the current iterate x,, and z,, compute

Zn+1 = Po(x, — ANAzy,). (5)
If 2,41 = x, = 2z, then stop. Otherwise, construct sets C, and @,, as
Co=H,

Co={w € #: Jonss — 0l <l — 0l + Kl — 21| -

1
- (1—E—)\L>Hzn+1—an2+)\LHzn—zn_1H2}, n=l1,

Qo =H,
Qn={we H: (x, —w,xg — x,) > 0}, n

V
-

and calculate

Tn41 = PCnﬂanO-

3. Set n < n + 1 and return to step 2.

We remark that the sets C), look like slightly complicated in contrast to (4). However, it
is only for superficial examination; for a computation, it does not matter. In (6) and in (3),
both C,, are some half-spaces.

First, we note that the stopping criterion in Algorithm 1 is valid.

Lemma 5. If z,11 = ©, = 2z, in Algorithm 1, then xz, € S.

The next lemma is central to our proof of the convergence theorem.

Lemma 6. Let (x,) and (z,) be two sequences generated by Algorithm 1, and let z € S. Then

1
MHrAP<wme+w%—%4W—Q—E—M)wmrwwﬂwm%—%Aw
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Proof. By Lemma 1 we have
241 — ZH2 < llzn — Az, — Z||2 — lzn — Az, — Zn+1H2 =
= llan — 21> = |20 = 2ns1|? = 2M(A2n, 2n 41 — 2). (7)

Since A is monotone and z € S, we see that (Az,,z, — z) > 0. Thus, adding 2A(Az,, 2, — z)
to the right-hand side of (7), we get

o = 212 < lm — 207 = 1 — 20112 — 2\(Azi 2041 — 20) =
= llzn — 21> = |20 = pal® = 2(2n — Tn1,Tn1 = Zn41) —
~llzn—1 = zn41ll® = 2XA(Azn, 2n41 = 20) = |l2n = 2|* = [l — zpa|* —
= 2(xn — Tn1,Tn1 = Znt1) = 1 — zall” = 120 — 20 |” —
—2X(Azp — Azp—1, Znt1 — 2n) + 2(Tn—1 — AMzpn—1 — 2n, Znt1 — 2n)- (8)
As z, = Po(xp—1 — Mz,—1) and z,411 € C, we have
(-1 — AAzp—1 — Zny Zn+1 — 2n) < 0. 9)
Using the triangle, Cauchy—Schwarz, and the Cauchy inequalities, we obtain
2(xy — Tn—1,Tp—1 — 2Zn+1) <
< llwn =@ l® + len1 — zall® + kllan — 2o | + %Hznﬂ — 2| (10)
Since A is Lipschitz-continuous, we get
2AN(Azy, — Azp—1, Znt1 — 2n) < 2AL) 20 — zn—1||||2n+1 — 2nl| <
SAL(|zn41 = 2zl + 20 = 2z0-1]1%)- (11)
Combining inequalities (8)—(11), we see that

1
Vemss = 21 < lan— 22+ klln— a1 [P~ (1 L AL) Voass = zallP+ ALl20 — zaa

which completes the proof.

We now can state and prove our main convergence result.

Theorem 1. Assume that (C1)-(C8) hold, and let A € (0,1/(2L)), k > 1/(1 —2AXL). Then
the sequences (x,,) and (z,) generated by Algorithm 1 converge strongly to Psx.

Proof. It is evident that the sets C,, and @Q,, are closed and convex. By Lemma 6, we have
that S C C, for all n € Z'. Let us show by induction that S C @, for all n € Z'. For
n = 0, we have Qg = H. Suppose that S C @Q,. It is sufficient to show that S C @,,+1. Since
ZTn+1 = Po,ng,xo and S C Cy, [ Qn, it follows that (zp41 — 2,20 — Tpt1) = 0 Vz € S. From
this by the definition of @,,, we conclude that z € @Q,4+1 Vz € S. Thus, S C @,+1 and, hence,
S C C,Qnforalln € ZT. For this reason, the sequence (z,,) is defined correctly. Let Z = Pgx.
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Since 41 € Cp, (1 Qn and T € S C Cy, [ Qn, we have [|z,4+1 — 20| < ||Z — x0]|. Therefore, (z,)
is bounded. From z,41 € C,,(1Qn € @y and z,, = Py, 0, we obtain

[ = 2ol < [J2nt1 = zol- (12)

Hence, there exists lim ||z, —zol|. In addition, since x,, = Pg,z and z,11 € @y, Lemma 1 yields
n—oo
|41 = zall* < 2nsr = zoll* — llzn — zo]*. (13)

o0
From this, it may be concluded that the series > ||zn41 — @, ||? is convergent. In fact, relati-

n=1
ons (13) and (12) yield
o0
S lzsr — zalP < 12 — 20l = llo1 — 2o < +oo.
n=1

Since xnp4+1 € Cp, we see that

1
Jont1 = st € Lo =l + Kl = sl = (1= 1 = AL ) ansa = 2P +
+ ALz — zn_1]*
Set an = llza+1 = Tps1ll®, by = [Tns1 = 20> + kllzn — 20a]?, e = 20 — z0|®, @ = (1 -
(e e]
— (1/k) — L), p = AL. By Lemma 6, since ) b, < +o0 and a > f3,
n=1
lim ||z, — x| =0.
n—oo

For this reason, (z,) is bounded, and
[2n+1 = znll < llznt1 = Tnaall + Zns1 — @l + [lon — 20]] = 0.

As (z,,) is bounded, there exists a subsequence (x,,) of (x,) such that (x,,) converges weakly
to some x* € H. We will show that z* € S. It follows from (5) by Lemma 1 that

(Zni-l—l — T, + )‘Aznuy - Zni—i—l) >0 vy eC.
This is equivalent to
0 < (Zni—l—l — Zn; + Zn; — Tn;yY — Zni-i-l) + A(A’lenlay - an) + )‘(Aznla Zn; — Zni—i—l) g

< (Zn7;+1 —Zn;y Y — Zn¢+1) + (Zni —Tn; Y — Zni+1))‘(Aya Yy — Zni) +
+ ANAzn,, 2n; — Zn;+1) VyeC. (14)
In the last inequality, we used the monotonicity of A. Taking the limit in (14) as i — oo
and using z,, — z* € C, we obtain 0 < (Ay,y — z") Vy € C. In view of Lemma 2, this

implies that 2* € S. Let us show z,, — z*. From z = Pgzp and 2" € S, it follows that
1z = @oll < [l2* = 2ol < liminf [y, —zoll < [|Z — ol Thus, lim ||z, —zol| = [l2" — zo]|. From
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this and z,,, — x9 — 2" — 29 by Lemma 3, we can conclude that x,, — zo — 2™ — xo. Therefore,
Tn, — 2. Next, we have

7

|zn, — EHQ = (p, — T, Tn, —T) + (x0 — T, Tpn, — ) < (Tg — T, Ty, — T).

As i — oo, we obtain ||z* — Z|* < (zo — &,2* — Z) < 0. Hence, we have z* = Z. Since the
subsequence (z,,) was arbitrary, we see that x,, — Z. It is clear that z, — Z.
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10. B. Maniupkuii, B. B. Cemenon

Hosuii ribpuaamnit MeToa Ajs po3B’dA3aHHs BapialliilHUX HepiBHOCTEM

3anponorosaro nosutl 2i6pudhuti memod OAs Po36°A3aHHA GAPIAUITHULT HEPIBHOCMET 3 MOHOTOH-
HUMU 1§ MNWUYEBUMYU ONEPAMOPAMU, WO 0U0Mb Y 2iabbepmosomy npocmopi. Imepauitinutl npo-
yec bazyemuvea wa 060x dobpe Gi0oMuT Memodax: NPoeKmusHomy ma 2ibpudromy (a6o 308HIUHIT
anpoxcumayiii). Ipuwomy He 8UKOPUCTNOBYEMBCA EXCTNPANOAAUITHUT KPOK Y NPOEKMUBHOMY Me-
modi. Bidcymmicmv odnici npoexuii docazaemsvea WAALOM THUW020 8UOOPY HAOOPIG MHOMCUH Y 216~
pudHomy memodi. Jloeedero cusvhy 36iCHICMb NOPOOHCEHUT MEMOJOM NOCATO08HOCMET.
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10. B. Manuukwuii, B. B. Cemenon

HoBblit rubpuaablii MeTOA, AJ1s PellleHns] BAPUAIMOHHBIX HEPABEHCTB

IIpednootcer 106wl 2uOPUIHBITE MEMOOD ONA PEULEHUS BAPUAUUOHHDIT HEPABEHCTNGE € MOHOMOHHBLMU
U AUNWUYELEBLMU ONEPATNOPAMU, JETCMBYOWUMY 6 2uAbbepMOoBsoM npocmpancmee. HUmepayuon-
HOL NPOUECC 0CHOBAH HA 08YL TOPOULO USBECTNHLIL MEMOOAL: NPOEKMUSHOM U 2UubPUOHOM (UAU
sHeWHUL annpokcumayud). ITpuiesm He UCnoAb3YEMCEa IKCMPANOAAYUOHHYIT Wa2 8 NPOEKMUSHOM
memode. Omceymemeue 00not npoekyuy JoCMUu2Gemcea NYMem uro20 6u00pa HaboPO8 MHONHCECTNG
6 eubpudnom memode. Joxazana cusbHaA CTOOUMOCTND NOPOAHCOEHHDIT MEMOIOM NOCAELAOBAMEND-
Hnocmed.
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