Н. Н. Шаталов

Тектонический контроль даек и дайковых поясов Украинского щита

(Представлено академиком НАН Украины Н. П. Щербаком)

Выявлены латеральные характеристики тектоники Украинского щита. Установлено структурно-тектоническое положение даек и дайковых поясов в границах Украинского щита с помощью структурно-тектонических данных.

На Украинском щите (УЩ) автором выявлено и изучено не менее 20 крупных и ряд мелких дайковых поясов (рис. 1). В их пределах локализованы серии пестрых по составу (от ультраосновных до кислых и щелочных) даек различного возраста (от архея до мезозоя).

Архейские дайки и дайковые пояса развиты главным образом в пределах Приднепровского мегаблока УЩ, т. е. среди интенсивно метаморфизованных докембрийских гранит-зеленокаменных ассоциаций пород архея. Дайковые пояса здесь имеют преимущественно субширотное и субмеридиональное простирание. Архей-неопротерозойский, рифейский и фанерозойский циклы формирования дайковых комплексов в гетерогенной структуре кристаллического фундамента УЩ проявились в пределах регенерированных и более сиалических мегаблоков: Волынского, Кировоградского и Приазовского. Простирание даек и дайковых поясов в указанных мегаблоках преимущественно северо-западное, реже здесь развиты дайки субширотного и северо-восточного направлений. Важно отметить, что дайки имеют пестрый состав и более молодой возраст.

Пространственное размещение дайковых образований на УЩ находится в тесной зависимости от разломно-блоковой тектоники региона. Формирование крупных геоблоков (в границах мегаблоков) и дайковых поясов в их пределах обусловлено латеральными неоднородностями и большой длительностью эволюции и становления докембрийской литосферы Украины [1–15]. Вместе с тем локализация дайковых поясов и индивидуальных даек на УЩ почти не зависит от характера докембрийских пликативных структур. Дайковые пояса и дайки секут пликативные структуры, гранитогнейсовые купола, гнейсогранулитовые зоны или их фрагменты. Теснейшим образом индивидуальные дайковые тела и дайковые пояса связаны с зонами глубинных разломов ортогональной и диагональной систем, по которым происходило внедрение магм, сформировавших дайки. Наиболее благоприятными структурами для внедрения даек являются границы геоблоков и узлы пересечения глубинных разломов, где докембрийский кристаллический фундамент был более раздроблен и проницаем для магматических расплавов.

Дайки и дайковые пояса сформировались на УЩ при специфической геодинамической обстановке, а именно, в условиях преобладающего растяжения зон глубинных разломов, к которым они приурочены. Данные аэрофотосъемки, структурно-геологические и геофизические исследования строения дайковых поясов нередко свидетельствуют также о том,

[©] Н. Н. Шаталов, 2014

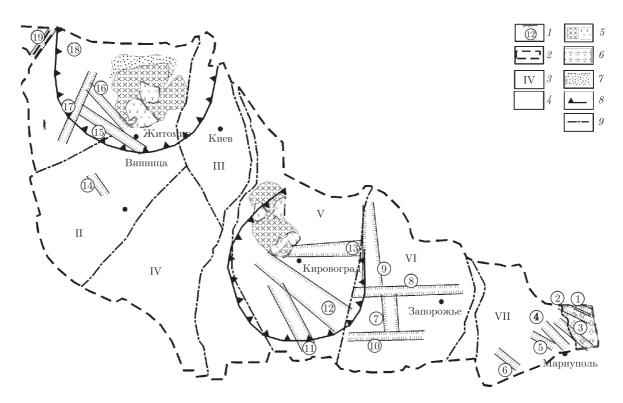


Рис. 1. Схема мафических дайковых поясов Украинского щита:

1- дайковые пояса (цифры в кружках): Кузнецово-Михайловский (1), Антон-Тарамский (2), Павло-поль-Октябрский (3), Малоянисольский (4), Каменномогилский (5), Елисеевский (6), Базавлукский (7), Девладовский (8), Пятихатский (9), Чортомлык-Веселянский (10), Розановский (11), Бобринецкий (12), Субботско-Мошоринский (13), Хмельникский (14), Новоград-Волынский (15), Емильчинский (16), Городницкий (17), Томашгородский (18), Горынский (19); 2- мафические дайки: Рудня-Базарская и Звиздаль-Залесская; 3- мегаблоки УЩ: Волынский (I), Подольский (II), Белоцерковский (III), Приднестровский (IV), Кировоградский (V), Приднепровский (VI), Приазовский (VII); 4- докембрийские породы, вмещающие дайки; 5- рапакиви-граниты и габбро-анортозиты Коростенского и Корсунь-Новомиргородского плутонов; 6- граниты и граносиениты Восточного Приазовья; 7- Овручский грабен УЩ; 8- контуры Волынской, Кировоградской и Восточно-Приазовской кольцевых структур; 9- межблоковые зоны глубинных разломов

что разломные зоны, вмещающие дайки, испытывают не только вертикальные, но и латеральные сдвиговые тектонические перемещения.

Наличие гравитационных ступеней, а также наиболее нарушенных и смещенных (на 3-5 км) участков поверхности Мохо однозначно указывают на значительные вертикальные перемещения соседних геоблоков УЩ по зонам глубинных разломов, контролирующих индивидуальные дайки и дайковые пояса [1-15].

Особое внимание следует обратить на структурно-объемно-пространственную приуроченность значительного количества даек к Волынской, Кировоградской, Приднепровской и Приазовской кольцевым мегаструктурам диаметром до 300 км [2–4]. Их границы в общих чертах совпадают с установленными Ю.П. Оровецким [10] транскоровыми акустическими аномалиями и глубинными магматическими диапирами. Следовательно, выявленные по результатам дешифрирования космических снимков разных уровней генерализации и разрешения кольцевые структуры на УЩ подтверждены геолого-геофизическими исследованиями [5–12]. Формирование этих концентрически-кольцевых морфоструктур (палеосво-

довых поднятий) происходило в различные этапы геологического развития УЩ под действием "всплывающего" мантийного вещества — тел астенолитов. Некоторым палеосводам (Волынская, Кировоградская, Приазовская) свойственно концентрически-зональное строение, приуроченность к центральным частям крупных очагово-купольных структур с большим объемом масс интрузивных основных и гранитоидных пород палеопротерозойского этапа активизации УЩ. Для центральных частей кольцевых структур характерно также уменьшение мощности земной коры (до 35 км), отсутствие сейсмических границ (K₂, K₃), повышенный тепловой поток и наличие транскоровых аномалий, достигающих глубины 120 км и имеющих форму перевернутой капли [10]. В этих участках УЩ установлены Коростенский, Кировоградский и Приазовский мантийные диапиры [2, 10, 11], внедрение которых в земную кору привело к сводообразованию с деструкцией, перекрывающей толщи пород, увеличению ее проницаемости и формированию радиально-концентрической, а на заключительных этапах — рифтогенной системы разломов и приуроченных к ним мощных мафических даек и дайковых поясов.

В тесной связи с формированием Волынского и Приазовского палеосводов находится образование в их обрамлении докембрийских троговых структур, контролирующих зоны дайкообразования. Так, к внешнему юго-западному кольцевому ограничению Приазовской кольцевой структуры приурочены многочисленные дайки метаультрабазитов, долеритов и жил пегматитов Сорокинской троговой структуры.

Базавлукский, Девладовский, Пятихатский и другие дайковые пояса в субширотном и субмеридиональном направлении рассекают Приднепровскую — наиболее древнюю из всех описываемых крупных сводовых кольцевых структур фундамента УЩ, представляющих собой сочетание более мелких изометричных гранитогнейсовых куполов и грабенообразных зеленокаменных неоархейских структур (Верховцевская, Чертомлыкская, Сурская, Белозерская, Конкская и др.).

Выявленные к настоящему времени на УЩ геоморфологически положительные концентрически-зональные кольцевые морфоструктуры в целом являлись благоприятными объектами для локализации в их пределах разновозрастных и пестрых по составу даек и дайковых поясов. Волынская структура и ее концентрические элементы контролируют размещение не только даек ультраосновного, основного, кислого и щелочного составов, но и многочисленные тела метасоматитов и редкометальных пегматитов. В целом, данной кольцевой структуре соответствует овальная возвышенность в современном рельефе, поднятие поверхности Мохо до 35 км в ее восточной части и широкое развитие даек различных простираний в ее центральной части и обрамлении.

Разновозрастные и разноориентированные дайки и дайковые пояса в различных участках прорывают здесь основные и кислые породы Коростенского плутона и обрамлющие плутон гнейсомигматитовые и осадочно-вулканогенные образования тетеревской и овручской серий, а также породы осницкого и пержанского комплексов, слагающую наиболеее крупную на УЩ Волынскую структуру диаметром около 300 км [2], примерно совпадающую с ранее охарактеризованным по геолого-геофизическим данным североукраинским тектоконцентром [6].

Значительное количество даек ультраосновных, основных и кислых пород приурочено к восточной и юго-восточной частям Кировоградской кольцевой структуры, сложенной преимущественно гранитоидами и гнейсами ингуло-ингулецкой серии пониженной плотности. В данном случае дайки подчеркивают ассиметричное строение кольцевой структуры и Кировоградского глубинного магматического диапира к ней приуро-

ченного, а также являются индикатором неоднородностей этого участка земной коры региона.

Примером структурной приуроченности даек и дайковых поясов к кольцевым магматогенным структурам может служить также Приазовская сложноконцентрическая кольцевая структура [3]. Кузнецово-Михайловский, Антон-Тарамский и Павлополь-Октябрьский дайковые пояса северо-западного простирания в различных участках секут данную кольцевую структуру, определяя расположение зон растяжения в ее пределах, а крупный Малоянисольский дайковый пояс приурочен к юго-западному ограничению ее внутреннего концентра — Восточно-Приазовской структуры [3, 4].

Таким образом, тектонический контроль даек и дайковых поясов осуществляется зонами глубинных разломов ортогональной и диагональной систем (создающих каркас разломно-блоковых структур), по которым происходило внедрение магм, сформировавших дайки. Благоприятными структурами для внедрения даек являются крупные кольцевые структуры, регенерированные мегаблоки УЩ и узлы пересечения глубинных разломов, где докембрийский кристаллический фундамент был более раздроблен и проницаем для магматических расплавов.

- 1. *Ахметшина А. К.* Анализ закономерностей пространственной ориентировки даек на Украинском и Канадском щитах // Докл. АН УССР. Сер. Б. − 1975. № 1. С. 3–5.
- 2. *Балуев А. С., Нечаев С. В.* Волынская кольцевая структура и некоторые минерагенические аспекты // Геол. журн. 1984. № 2. С. 37–45.
- 3. *Быстревская С. С., Шаталов Н. Н.* Глубинная структура земной коры по космическим изображениям (на примере Восточного Приазовья) // Исследования Земли из космоса. 1980. № 5. С. 10–16.
- 4. *Верховцев В. Г., Веремьев П. С., Шаталов Н. Н.* Кольцевые структуры Приазовского блока Украинского щита по данным дешифрирования космических снимков // Там же. − 1989. − № 5. − С. 15−22.
- 5. *Галецкий Л. С.* Основные этапы развития, геоблоковая делимость и минерагения Восточно-Европейской платформы // Геол. журн. − 1993. − № 4. − С. 3–9.
- 6. *Гинтов О. Б.* Структуры континентальной земной коры на ранних этапах ее развития. Киев: Наук. думка, 1978. 164 с.
- 7. Гинтов О. Б., Исай В. М., Трипольский А. А. О характере блоковых движений в процессе формирования земной коры Украинского щита // Геол. журн. − 1983. − № 1. − С. 38–45.
- 8. Глевасский Е. Б., Каляев Г. И. Тектоника докембрия Украинского щита // Минерал. журн. 2000. № 2./3. С. 77–91.
- 9. *Кирилюк В. П.* Геотектонічна періодизація раннього докембрію // Геол. журн. 2010. № 3. С. 111–119.
- 10. *Оровецкий Ю. П.* Транскоровые акустические аномалии в структуре Украинского щита // Геофиз. журн. 1981. № 2. С. 100–107.
- 11. Соллогуб В. Б. Литосфера Украины. Киев: Наук. думка, 1986. 183 с.
- 12. *Чебаненко И. И.* Теоретические аспекты тектонической делимости земной коры. Киев: Наук. думка, $1977.-82~\mathrm{c}.$
- 13. Шаталов Н. Н. Дайки Приазовья. Киев: Наук. думка, 1986. 192 с.
- 14. Щербаков И.Б. Петрология Украинского щита. Львов: ЗУКП, 2005. 364 с.
- 15. Щербак Н. П., Артеменко Г. В., Лесная И. М., Пономаренко А. Н. Геохронология раннего докембрия УЩ. Архей. Киев: Наук. думка, 2005. 244 с.

Институт геологических наук НАН Украины, Киев

Поступило в редакцию 22.07.2013

М. М. Шаталов

Тектонічний контроль дайок та дайкових поясів Українського щита

Виявлено латеральні характеристики тектоніки Українського щита. Визначено структурно-тектонічне положення дайок та дайкових поясів у межах Українського щита за допомогою структурно-тектонічних даних.

N. N. Shatalov

The tectonic control over dykes and dyke swarms of the Ukrainian Shield

The lateral features of the tectonics for the Ukrainian Shield are revealed. The structure-tectonic position of dykes and dyke swarms within the Ukrainian Shield are determined by the structure-tectonic data.