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The one-dimensional version of a nonstandard viscous Cahn–Hilliard system (proposed by Colli et al.) for the order 
parameter and chemical potential with a generally asymmetric polynomial double-well potential is considered. For 
this system, an exact travelling wave solution, which describes the advancing front of a phase transformation in an 
infinite domain, is found.
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Introduction. The Cahn—Hilliard equation [1, 2] is now the well-established phenomenological 
model in the theory of phase transitions. The basic underlying idea of this model is that, for an in-
homogeneous system, e.g., a system undergoing a phase transition, the thermodynamic potential 
(e.g., free energy) should depend not only on the order parameter (here, the term “order param-
eter” denotes a field, whose values characterize the phase), but also on its gradient as well. The 
idea of such dependence was introduced by van der Waals [3] in his theory of capillarity. Due to 
this dependence, instead of the usual second order, the resulting diffusion equation for the order 
parameter becomes a fourth-order PDE.

The stationary form of this equation was introduced in [1]. In [2], a linearized version of the 
time-dependent equation was treated, and the corresponding instability (“spinodal decomposition”) 
of the homogeneous state was identified. However, it was only much later on that the intense study 
of the fully nonlinear form of this equation was started [4]. The impressive amount of work has now 
been done on the nonlinear Cahn–Hilliard equation (see [5]), as well as on its numerous modifica-
tions. One of the most interesting modifications was introduced by Gurtin [6]. Following the gen-
eral trend in the development of nonlinear continuous mechanics, he based his derivation “on the 
separation of the basic balance laws (such as those for mass and force), which are general and hold 
for large classes of materials, from the constitutive equations (such as those for elastic solids and 
viscous fluids), which delineate specific classes of material behavior”, see [6, p. 179]. Additionally, 
he introduced a new balance law for microforces and used the second law of thermodynamics in the 
form of a dissipation inequality, see [6] for details. Then he obtained the standard Cahn—Hilliard 
equation and the viscous Cahn—Hilliard equation [7] as special cases of his model.
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The next step was done by Podio-Guidugli [8]: keeping the balance of microforces as in [6], he 
replaced the dissipation inequality by the imbalance of entropy and the mass balance by the ener-
gy balance. In his derivation, the chemical potential plays the same role as the “coldness” (inverse 
absolute temperature) in the derivation of the heat equation. Based on the latter approach, Colli 
et al. [9] introduced and studied the following system of governing equations for two unknowns, 
the chemical potential μ  and the order parameter ρ : 

( 2 ) 0
t t

∂μ ∂ρε + ρ + μ − Δμ =
∂ ∂

,  (1)

( )f
t

∂ρδ − Δρ+ ρ = μ′
∂

.  (2)

Here, ε  is a regularization constant introduced to preserve the parabolic structure of Eq. (1) 
(see [9]), δ  is the characteristic time for the evolution of the order parameter, and ( )f ρ  is some 
double-well potential. They proved the existence and uniqueness of a global-in-time smooth solu-
tion to the associated initial-boundary-value problem and studied the long-time behavior of the 
solution.

In the present communication, we consider the one-dimensional version of this system with a 
generally asymmetric polynomial double-well potential ( )f ρ , i.e.

3 2( )f r qρ = ρ − ρ − ρ+ η′ .  (3)

For this system, we give the exact travelling wave solution, which describes the advancing 
phase transformation in an infinite domain.

Travelling wave solution. Looking for the travelling-wave solution ( ), ( )z zμ ρ , where z =
x vt= − , Eqs. (1) and (2) yield

2

2
( 2 ) 0

d d d
v v

dz dz dz

μ ρ με + ρ + μ + = ,  (4)

2
3 2

2

d d
v r q

dz dz

ρ ρ− δ − +ρ − ρ − ρ+ η = μ .  (5)

Now, we introduce our ansatz, by presuming that μ  is the n -th power polynomial of ρ , 
( )nPμ = ρ . Comparing the powers of the nonlinearities, it is easily seen that it should be 3n� ; 

postponing the discussion of other possibilities to the further communications, we consider the 
simplest case 1n = :

μ = γρ+ω .  (6)

Let us first consider Eq. (4). The substitution of (6) into (4) for μ  yields

[ ]
2

2
3 ( )

d d
v

dz dz

ρ ργρ+ εγ +ω = −γ .  (7)

Integrating Eq. (7) once, we get

2
1

3 2
( )

2 3
d

v C
dz

⎡ ⎤ ρ− ρ + εγ +ω ρ+ =⎢ ⎥γ⎣ ⎦
, (8)
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where 1C  is the integration constant. We are looking for the monotone “kink-” or “antikink-”like 
solution approaching the limiting values

1 2,z z→−∞ →+∞ρ = ρ ρ = ρ .  (9)

At this level of phenomenology, there is no reason to attach any particular value neither to 

1ρ , nor to 2ρ . It is important only that the different values are assigned to different homogeneous 
phases. For definiteness, we presume 1 2ρ < ρ , i.e. the kink solution. We will get such a solution for 
ρ , if Eq. (8) takes the form

1 2 1 2( )( );
d
dz
ρ = −κ ρ−ρ ρ−ρ ρ ρ ρ� � .  (10)

For Eq. (8) to take form of (10), the following constraints should be satisfied:

3
2

vκ = ,  (11)

2
( )

3
Xεγ +ω = −

γ
.  (12)

Here, we have denoted 1 2( )X = ρ +ρ  for brevity. Because 1C  is an arbitrary constant, there 
are only two constraints, (11) and (12). The integration of Eq. (10) yields

1 2 2 1
2 1tanh ( )( )

2 2 2
z c

ρ +ρ ρ −ρ κ⎡ ⎤ρ = + ρ −ρ +⎢ ⎥⎣ ⎦
,  (13)

where c  is the integration constant. It is natural to take the position of the maximal value of the 

derivative 
d
dz
ρ

 (where 
2

2
0

d

dz

ρ = ) as 0z = ; then 0c = . The constant κ  has the same sign as the 

velocity v  [see (11)], so solution (13) is a kink for positive v , and an antikink for negative v . In 
other words, the state with a lower value of the order parameter is always advancing. The evident 
formal reason for this is that Eq. (4) is linear and homogeneous in μ .

Now, let us consider Eq. (5). Using (10), the second derivative 
2

2

d

dz

ρ
 is easily calculated:

2
2 3 2 2

2
2 3 (2 )

d
X Y X XY

dz

ρ ⎡ ⎤= κ ρ − ρ + + ρ−⎣ ⎦ , (14)

where 1 2Y = ρ ρ . Substituting expressions (6), (10), and (14) for μ , 
d
dz
ρ

, and 
2

2

d

dz

ρ
, respectively, 

into Eq. (5) and equating the coefficients at all powers of ρ  to zero yield four constraints

21 2 0− κ = , (15)
23 0v X rδκ + κ − = , (16)

2 2[2 ]v X Y X q− δκ −κ + − = γ ,  (17)

2v Y XYδκ +κ + η = ω .  (18)

For definiteness, we will presume 0κ >  below, i.e., we consider the kink solution. 
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The substitution of expressions (11) and (15) for v  and κ  into (16) yields

2
3 3

X r
δ⎛ ⎞= −⎜ ⎟⎝ ⎠

.  (19)

Substituting expressions (17) and (18) for γ  and ω  into constraint (12), we get

3 21
9 6( ) 2(9 2 ) 12( )

4( 3 3 )
Y X X q X q

X
⎡ ⎤= + δ + ε + + δε + ε − η⎣ ⎦δ − − ε

.  (20)

The detailed study of the parametric dependence of 1 2,ρ ρ , i.e. of X  and Y , will be given 
elsewhere. Here, we present the short version only. In system (1—2), the terms proportional 
to ε  and δ  were introduced in [9] for the purpose of regularization of this system, with some 
a posteriori justification. Setting 0ε = δ =  simplifies expressions (19) and (20) for X  and Y  
substantially:

2
3

X r= ,  (21)

21 3 3
3 2 2

Y r q
r
η⎡ ⎤= − + −⎢ ⎥⎣ ⎦

.  (22)

Correspondingly, the limiting values of the order parameter at ∞∓  are

2
1, 2

1 4 3 3
3 9 2 2

r r q
r
ηρ = + −∓ .  (23)

Using Eqs. (21) and (22), the coefficients γ  and ω  in ansatz (6) are easily calculated as

21 1 3
;

9 2 2
r q r

r
ηγ = + − ω = −γ .  (24)

So, finally, the solution for the chemical potential μ  is

21 1 3
( )

9 2 2
r q r

r
η⎛ ⎞μ = + − ρ−⎜ ⎟⎝ ⎠

,  (25)

where the order parameter ρ  is given by Eq. (13).
Discussion. It is reasonable to presume that the phase with the lower value of the chemical 

potential μ  is advancing, so it should be 0γ > . This imposes the following condition on the coef-
ficients of the polynomial potential:

21 1 3
9 2 2

r q
r
η+ > . (26)

Here, q  is positive. So, if the last inequality is fulfilled, (23) always yields real 1 2,ρ ρ . If 0η= , 
then 1 2,ρ ρ  are real independently of the sign of r . So, formally, the solution exists. However, the 
case where 0η=  results in the negative values of the chemical potential μ . Indeed, the lowest 
value of the chemical potential, which corresponds to 1ρ = ρ , is

2
1

2 4 3 3
3 9 2 2

r r q
r

⎛ ⎞ημ = γ − − + −⎜ ⎟⎝ ⎠
.  (27)
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For 1μ  to be nonnegative, both r  and η  should 
be negative, and it should be additionally

23 3 1 1
2 2 9 2

q r q
r
η< < + .  (28)

Figure shows the surfaces A q rη =  and B 

32 1
27 3

r q rη = + , 

corresponding to the lower limit in the first inequal-
ity of (28), and to the upper limit in the second in-
equality, respectively. For values of the coefficients corresponding to the points ,q r , and η  in 
the space between these surfaces, the physically reasonable solutions exist.

So, the physically reasonable exact solution exists for an essentially asymmetric potential 
( )f ρ  only. This is somewhat reminiscent of the situation with the convective Cahn—Hilliard 

equation, where the exact travelling-wave solutions exist only for the asymmetric potential [10].
In the sequence of works, Colli et al. [11—15] introduced and studied the following general-

ization of system (1—2):

(1 2 ( )) ( ) div( ( , ) ) 0g g k
t t

∂μ ∂ρ+ ρ + μ ρ − μ ρ ∇μ =′
∂ ∂

,  (29)

( ) ( )f g
t

∂ρδ − Δρ+ ρ = μ ρ′ ′
∂

.  (30)

If ( )g ρ  and ( , )κ μ ρ  are polynomials in ρ  of the powers m  and l , respectively, and if ( , )κ μ ρ  
is a polynomial in μ  of the power s , for several sets of ,m l , and s , the above method is applicable 
finding the exact travelling wave solutions of system (29)—(30) as well. These solutions will be 
systematically studied in the following publications. 
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ТОЧНЕ РОЗВ’ЯЗАННЯ СИСТЕМИ 
НЕСТАНДАРТНИХ В’ЯЗКИХ РІВНЯНЬ КАНА—ХІЛЛІАРДА

Розглянуто одновимірний варіант нестандартної системи рівнянь Кана—Хілліарда (запропонованої Colli 
et al.) для параметра порядку і хімічного потенціалу з асиметричним поліномним двоямним потенціалом. 
Для цієї системи знайдено точне розв’язання вигляду рухомої хвилі, що описує рух фронту фазового пере-
творення в нескінченній області.

Ключові слова: рівняння Кана—Хілліарда, фазові перетворення, розв’язання виду рухомої хвилі.
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ТОЧНОЕ РЕШЕНИЕ СИСТЕМЫ НЕСТАНДАРТНЫХ 
ВЯЗКИХ УРАВНЕНИЙ КАНА—ХИЛЛИАРДА 

Рассмотрен одномерный вариант нестандартной системы уравнений Кана—Хиллиарда (предложенной 
Colli et al.) для параметра порядка и химического потенциала с асимметричным полиномиальным двуям-
ным потенциалом. Для этой системы найдено точное решение вида бегущей волны, которое описывает 
движение фронта фазового превращения в бесконечной области.

Ключевые слова: уравнение Кана—Хиллиарда, фазовые превращения, решение вида бегущей волны.


