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The one-dimensional version of a nonstandard viscous Cahn—Hilliard system (proposed by Colli et al.) for the order
parameter and chemical potential with a generally asymmetric polynomial double-well potential is considered. For
this system, an exact travelling wave solution, which describes the advancing front of a phase transformation in an
infinite domain, is found.
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Introduction. The Cahn—Hilliard equation [1, 2] is now the well-established phenomenological
model in the theory of phase transitions. The basic underlying idea of this model is that, for an in-
homogeneous system, e.g., a system undergoing a phase transition, the thermodynamic potential
(e.g., free energy) should depend not only on the order parameter (here, the term “order param-
eter” denotes a field, whose values characterize the phase), but also on its gradient as well. The
idea of such dependence was introduced by van der Waals [3] in his theory of capillarity. Due to
this dependence, instead of the usual second order, the resulting diffusion equation for the order
parameter becomes a fourth-order PDE.

The stationary form of this equation was introduced in [1]. In [2], a linearized version of the
time-dependent equation was treated, and the corresponding instability (“spinodal decomposition”)
of the homogeneous state was identified. However, it was only much later on that the intense study
of the fully nonlinear form of this equation was started [4]. The impressive amount of work has now
been done on the nonlinear Cahn—Hilliard equation (see [5]), as well as on its numerous modifica-
tions. One of the most interesting modifications was introduced by Gurtin [6]. Following the gen-
eral trend in the development of nonlinear continuous mechanics, he based his derivation “on the
separation of the basic balance laws (such as those for mass and force), which are general and hold
for large classes of materials, from the constitutive equations (such as those for elastic solids and
viscous fluids), which delineate specific classes of material behavior”, see [6, p. 179]. Additionally,
he introduced a new balance law for microforces and used the second law of thermodynamics in the
form of a dissipation inequality, see [6] for details. Then he obtained the standard Cahn—Hilliard
equation and the viscous Cahn—Hilliard equation [7] as special cases of his model.
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The next step was done by Podio-Guidugli [8]: keeping the balance of microforces asin [6], he
replaced the dissipation inequality by the imbalance of entropy and the mass balance by the ener-
gy balance. In his derivation, the chemical potential plays the same role as the “coldness” (inverse
absolute temperature) in the derivation of the heat equation. Based on the latter approach, Colli
et al. [9] introduced and studied the following system of governing equations for two unknowns,
the chemical potential u and the order parameter p:

oL dp
20) 4+ U= —Au=0, 1
(e+ p)at+“at u (1)
J ,
Sa—i—Apﬁ (P)=u. (2)

Here, € is a regularization constant introduced to preserve the parabolic structure of Eq. (1)
(see [9]), 8 is the characteristic time for the evolution of the order parameter, and f(p) is some
double-well potential. They proved the existence and uniqueness of a global-in-time smooth solu-
tion to the associated initial-boundary-value problem and studied the long-time behavior of the
solution.

In the present communication, we consider the one-dimensional version of this system with a
generally asymmetric polynomial double-well potential f(p), i.e.

['(P)=p’ —rp* —gp+n. (3)

For this system, we give the exact travelling wave solution, which describes the advancing
phase transformation in an infinite domain.

Travelling wave solution. Looking for the travelling-wave solution p(z),p(z), where z =
=x—uot, Egs. (1) and (2) yield

du dp d*u
U(8+2p)E+UME+F:0, (4)
dp d*
082SR p’ —rp’ —gp+n=n. (5)

dz  dz?

Now, we introduce our ansatz, by presuming that p is the #n-th power polynomial of p,
u=P,(p). Comparing the powers of the nonlinearities, it is easily seen that it should be n<3;
postponing the discussion of other possibilities to the further communications, we consider the
simplest case n=1:

L=1pto. (6)
Let us first consider Eq. (4). The substitution of (6) into (4) for u yields

dp d*p
v[3yp+(ey+co)]E:— yEl (7
Integrating Eq. (7) once, we get
—%v[p2+%(ey+m)p+C1]:%, )
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where C; is the integration constant. We are looking for the monotone “kink-" or “antikink-"like
solution approaching the limiting values

P|Z_>_w =Py P|Z_>+°° =Py )

At this level of phenomenology, there is no reason to attach any particular value neither to
p{, norto p,. Itisimportant only that the different values are assigned to different homogeneous
phases. For definiteness, we presume p; <p,, i.e. the kink solution. We will get such a solution for
p,if Eq. (8) takes the form

d

o= K(P=p)(P=P2); Pr<P<Ps. (10)

For Eq. (8) to take form of (10), the following constraints should be satisfied:

K= %v , (11)
2

—(ey+m)=-X. (12)
3y

Here, we have denoted X =(p;+p,) for brevity. Because C; is an arbitrary constant, there
are only two constraints, (11) and (12). The integration of Eq. (10) yields

+ - K
p=PLP2 P2 2Pl iann| Z(p, —py)(z+0) |, (13)
2 2 2
where ¢ is the integration constant. It is natural to take the position of the maximal value of the
2
derivative % (where %= 0) as z=0; then ¢=0. The constant ¥ has the same sign as the
Z z

velocity o [see (11)], so solution (13) is a kink for positive v, and an antikink for negative v. In
other words, the state with a lower value of the order parameter is always advancing. The evident

formal reason for this is that Eq. (4) is linear and homogeneous in p.
2

Now, let us consider Eq. (5). Using (10), the second derivative d_g) is easily calculated:
dz
2
d_§=K2[2p3_3Xp2+(2nx2)p_xy], (14)
dz
o . dp d*p .
whereY =p;p, . Substituting expressions (6), (10), and (14) for u, a and prl respectively,
z 4
into Eq. (5) and equating the coefficients at all powers of p to zero yield four constraints
1-2k? =0, (15)
08Kk +3K°X —r =0, (16)
—08kX —Kk[2Y + X?]-q =7, (17)
kY +Kk2XY +n=w. (18)

For definiteness, we will presume k>0 below, i.e., we consider the kink solution.
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The substitution of expressions (11) and (15) for v and « into (16) yields

2 d
x=2{r-2]. 19
3(r 3) (19)
Substituting expressions (17) and (18) for y and @ into constraint (12), we get
1 3 2
Y=— | 9X" +6(0+€)X"+2(9g+20€)X +12(qe—7) |. 20
3% a0y HOG+OX 2099+ 260)X +12(ge - | (20)

The detailed study of the parametric dependence of py,p,,i.e. of X and Y, will be given
elsewhere. Here, we present the short version only. In system (1—2), the terms proportional
to € and 8 were introduced in [9] for the purpose of regularization of this system, with some
a posteriori justification. Setting €e=8=0 simplifies expressions (19) and (20) for X and Y
substantially:

2
X=2r, 21
Y (21)
1, 3 31
Y=o| =24 2g-20] 29
[37 21 27] (22)

Correspondingly, the limiting values of the order parameter at Feo are

1[4, 3 31
= r Rt ——. 23
PLa= 37 F\ g7 T 5d5, (23)

Using Egs. (21) and (22), the coefficients y and @ in ansatz (6) are easily calculated as

1 ) 1 3n
I S L PR 24
T=9" todmg, 0= (24)

So, finally, the solution for the chemical potential u is
1 2 1 31’]
_(L,2.1 _ _ 25
: (9r'+2q 27)(p ") (25)

where the order parameter p is given by Eq. (13).

Discussion. It is reasonable to presume that the phase with the lower value of the chemical
potential p is advancing, so it should be y> 0. This imposes the following condition on the coef-
ficients of the polynomial potential:

19 1 3n

24 —g> 26

9 ' 2 7 2r (26)

Here, g is positive. So, if the last inequality is fulfilled, (23) always yields real py, p,. If n=0,
then py, py are real independently of the sign of 7. So, formally, the solution exists. However, the
case where n=0 results in the negative values of the chemical potential u. Indeed, the lowest
value of the chemical potential, which corresponds to p=py, is

2 4 9 3 3n
=yl -Zr—|=r*+=g-=-|. 27
U9} v( 379" +54 2r) (27)
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Surfaces A and B correspond to the lower limit in the first
inequality of (28) and to the upper limit in the second
inequality, respectively

For p, to be nonnegative, both » and m should
be negative, and it should be additionally
3 E‘n

1, 1
< <—r“+—q. 28
79<5<9" q (28)

9 2
Figure shows the surfaces A |n| = q|r| and B

==’ + <l
27 3 '

corresponding to the lower limit in the first inequal-
ity of (28), and to the upper limit in the second in-
equality, respectively. For values of the coefficients corresponding to the points ¢, |r|, and |n| in
the space between these surfaces, the physically reasonable solutions exist.

So, the physically reasonable exact solution exists for an essentially asymmetric potential
f(p) only. This is somewhat reminiscent of the situation with the convective Cahn—Hilliard
equation, where the exact travelling-wave solutions exist only for the asymmetric potential [ 10].

In the sequence of works, Colli et al. [11—15] introduced and studied the following general-
ization of system (1—2):

(1280 g (0) v (k(ut, IV =0, (29)
ap , ,
SQ—Amf (P)=ng’(p). (30)

If g(p) and x(u,p) are polynomials in p of the powers m and [, respectively, and if x(u, p)
is a polynomial in p of the power s, for several sets of m, [, and s, the above method is applicable
finding the exact travelling wave solutions of system (29)—(30) as well. These solutions will be
systematically studied in the following publications.
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TOYHE PO3B’A3AHHA CUCTEMI
HECTAHAAPTHUX BA3KUX PIBHAHDb KAHA—XIJIJITAPZTA

Po3ristHy TO OIHOBUMIPHUT BapiaHT HeCTAaHIAPTHOI cucTeMu piBHsHL Kana—Xinmiapza (3ampomonosanoi Colli
et al.) st mapameTpa OPSIAKY i XiMIYHOTO TIOTEHITiaTy 3 aCUMETPUIHUM TIOJTHOMHUM JIBOSIMHUM TTOTEHI[AIOM.
JL14 11i€l creTeMu 3HalICHO TOUHE PO3B’I3aHHS BUTJIALY PYXOMOI XBILII, TII0 OTIMCYE PYX (hpoHTY (ha30BoTO TIepe-
TBOPEHHS B HECKIHYeHHIH oOmacTi.

Kmouogi crosa: pisusnns Kana—Xinriapoa, pazosi nepemsopenns, po3e’sisanis 6udy pyxomoi Xeuii.
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TOYHOE PEHIEHUE CUCTEMbBI HECTAHAAPTHDBIX
BA3KNX YPABHEHUNI KAHA—XWJIJINAPIA

Paccmotpen opnoMepHBINT BapHaHT HeCcTaHJapTHOW cucTeMbl ypaBHenuil Kana—Xwuanuapzaa (IpesoxeHHoi
Colli et al.) nsg mapamerpa mopsaKa U XMMUYECKOTO IOTEHI[MAIA ¢ ACUMMETPUYHBIM [OJTMHOMUATBHBIM IBYIM-
HBIM TIOTeHIManoM. [liist 9TOl crcTeMbl HaliJIeHO TOUHOE pelieHre BrUa Oeryiieil BOJHbI, KOTOPOe OIKUCHIBAET
JBIKeHre hpoHTa (hazoBOro mpeBpaiieHus B 6eCKOHEeUHON 00JIaCTH.

Kntoueewie cnosa: ypasnenue Kana—Xuinuapoa, pasosvie npespawenust, peuenue euoa bezyuieti 0oL,
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