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We consider equations of hydrodynamics with certain additional constraints. Group-theoretical methods are applied
to find invariant solutions of a system of Euler equations that satisfy the Rankine—Hugoniot conditions.
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The past century in mathematical physics was marked with a large number of research papers on
particular solutions of nonlinear differential equations. Besides the fact that exact solutions are
almost always interesting themselves, they also have a valuable practical application to the verifi-
cation of various numerical methods of solution of nonlinear differential equations.

There are many examples of explicitly solved problems of fluid mechanics in the literature. All
known solutions and multiparametric families of new particular solutions appear to be obtainable
by means of group-theoretical methods [1-8]. Moreover, these methods are useful for finding the
particular solutions of nonlinear differential equations that satisfy certain prescribed initial or
boundary conditions.

In the present paper, we look for invariant solutions of a system of Euler equations that satisfy
the Rankine—Hugoniot conditions.

1. Formulation of the problem. To describe the motion of a nonviscous compressible liquid,
we use the system of equations

Dk (t, x)+p~ 'V, p(t, ) =0, Dp(t, x)+pV uk (t, x) =0, (1)

where e R!, xe R" (n=1,...,3), uk(t, x) stands for the k-th component of medium's velocity
(k=1, ..., n),pisthe pressure, p is the liquid density, and D, :%+ukvk is the total derivative
with respect to the time with V, = %. Repeating indices mean the summation, unless otherwise
stated.

The main thermodynamical characteristics of the medium p, p, and T are expected to be con-

nected by an expression

p=o(p, 1), (2)
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where @ is a smooth (piecewise smooth) function. We also assume that the process described by
system (1), (2) is either isothermal (T'= const) or homothermal (v,7=0,k=1, ..., n). Therefore,
T does not depend on spatial coordinates, and the equation of state (2) reads

p=FKp,T) 3)
with another function F.

In order to represent system (1) in a form convenient for the following analysis, we introduce
the notations

k
. ou d 9
uu =a—, p'_l :—py pk =—p’
o ox, ox,
where k=1,...,n,u=0,...,n, and x,=t. Using these notations, we represent system (1) in the
form
ué”+u?uj+p_1pk:0, p0+ujp]-+pu§:0. (4)
Substituting (3) into the first equation of (4), we obtain
uf +ulul +p7' Fp, =0, 5)
po+ulp;+pul =0, (6)
_oF
where F, =5

For the symmetry analysis of system (5), (6), we use the infinitesimal Sophus Lie method. Its
brief description is the following. Let

Fv(x,u,u(l)):O, v=1,..., N, (7)
be a system of first-order differential equations, where x = (x, ..., x,), u = (u', ..., u™),and Ugy=
= Du. We consider a one-parameter local group G of transformations

x'=f(x,u;a): f|a:0 =x,u =g(x,u;a): g|a:0 =u ©)

in the space R™™ of the variables (x, ). Transformations (8) induce a one-parameter group of
transformations in the space of the variables Uy

u(1)/ = \P(x, U, U(1), CZ) . \P|a:0 = u(1) y (9)

where W(x,u, Uty; a) is a function which can be determined, if we know f and g. As a result,
we have a one-parameter group G, of transformations in the space R™™ ™ of the variables
(2, u, ugyy). Transformations (9) are referred to as the prolongation of transformations (8), and the
group G, is the first prolongation of G [1, Chapter 2.3].

Definition 1. System of equations (7) is said to be invariant with respect to the group G of point
transformations (8), if the manifold determined by Eqs. (7) in the space R"*™*"™" isinvariant with
respect to the first prolongation Gy of the group G.

Let
X =E/(x, u)iﬂ]“(x,u)i, (10)
8 j aua
where
Ef(x,u)zM (11)

oa |,
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og(x,u,a)

. 12
da 20 (12)

n%(x,u) =

The operator X is said to be the infinitesimal operator of the one-parameter group G' of trans-
formations, and the functions & and n® are its coordinates. The first prolongation of the group
G! corresponds to an infinitesimal operator of the form

ad

X(1)=X+§§xau—ar (13)
where ’
o o J J
C? :al+ul&lal_u7 a& l3 ag (14)
a.xl' au“ axi au

One of the prominent results in the group theory of continuous transformations is the fact
that the invariance criterion for a differential equation with respect to the group G! is stated in
terms of the correspondent infinitesimal symmetry operator, cf. [2].

Proposition 1. System of equations (7) is invariant with respect to the group G if and only if

X(1)Fv(x,u,U(1))F=0:0,V=1,...,N. (15)

Condition (15) is equivalent to a system of first-order linear differential equations in x, «, and
Uy called the system of determining equations.

Thus, the problem of finding the maximal local group of point transformations that are admis-
sible for system (7) is to determine the coordinates of the infinitesimal operators that generate its
one-parameter subgroups.

In the case of system (5), (6), the infinitesimal symmetry operator is expected to be of the
form

Z=8" (o, )=, ) =+ A 1, p) (16)
dx, out ap
whereu=1,..,n,k=1,.. . ,n
Acting by operator (16) on Egs. (5), (6), we obtain a rather cumbersome system of first-order
linear differential equations. Eliminating the variables ué’ and p,, by virtue of their expressions
from (5) and (6), we transform it to another system of equations, where the quantities x_, u*,
f , and p; will be treated as independent variables. As the coordinates of the infinitesimal opera-
tordo not depend on u* 7 and Py the two equations obtained from (5) and (6) by means of criterion
(15) can be split with respect to these variables. As a result, we have the system of differential

equations

“ul 48, =0, ntul +Ef =0, k=l

W g —E] - N e =0, A +p ' A+E}—E) Ut =0,
i=1

Ag+ Y @A +pul)=0, (17)
i=1
2F, (80 —Ef)+ Fy A+ Fy 80 =0, (18)
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where £ =¢° (x9), gk = &k (%), nt =nf(x,u), A=A(x,u, p) . In all formulae (17), (18), there is
no summation over repeating indices.

Note that the arbitrary function Fappears only in (18). This equation is referred to as a clas-
sifying condition.

2. Symmetry of system (5), (6). It is easy to check by direct calculations that system (17)
has the solution

g0 :9x§+kx0 +o, A:(C—géo(xo)]p,

n
gk :(%io(xo)ﬁi)xk +ukxo +2a,kx, +vk
=1
k EoNe b 120 k
N =0x, +p*+ Y afu’ + 5—§§ (x0) ", 19)
=1
where &°(xy)=d&’ (xy)/dx,, alk = —a,é, and ¢, a, 8, 0, A, p, and v are arbitrary parameters. Sub-
stituting this solution into (18), we have

(gé%xo)—c)@p ~&% = (&"(x))-20)9, (20)

where @(p,t)= Ey(p,t). Note that the parameters a,k , ik, and v* (and « in the case where @, = 0)
are not involved in system (20). Therefore, for an arbitrary function F(p,t), system (17), (18)
admits the solution

n n

0 k k k k k ki .k k j

£'=0,¢ =Za]-x]-+u xp+VE, M =2aju]+u , a; =—aj. (21)
= =

In the case F, =¢(p) the same solution with £ = o= const is also possible.

The functions £°, & and n* (=1, ... n) defined by (21) correspond to the differential
operators

P, :i, G, :xoi+ik, J, = xki—xr 9 4y ar —u' E)k .

oX, ox, odu oX, X, ou au

It is easy to check that the vector space (P,, Gy, J4,.), k=1,...,n,r=1,...n,is closed under
the Lie bracket

X,Y [X,Y]=XY-YX, (23)
and, therefore, the space of these operators possesses the structure of a Lie algebra. This is a general
property [2], namely, the set of infinitesimal operators that generate the one-parameter groups of
transformations admissible for a differential equation (or a system) necessarily form a Lie algebra.
Operators (22) with B, :% (the case a=E" #0) form the Lie algebra of the Galilean group.

(22)

Therefore, the following statement holds.

Theorem 1. For an arbitrary function F ,=¢(p,t), the system of equations (5), (6) admits an

@ -parameter group of transformations with the Lie algebra generated by operators (22). In the

case where E does not depend on x,, explicitly, system (5), (6) admits the Galilean group G(n).
Thereby, we have found the symmetry of system (5), (6) under any functional relationship

p=F(p,t). However, for some values of F, the symmetry of this system appears to be essentially
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wider. In order to list all the cases of symmetry extensions, it is necessary to get the set of solutions
of Eq. (20) under various constraints on the parameters involved in this equation.

As a result of solving Eq. (20), we have found 12 cases of symmetry extension for the system
in question. The corresponding functions ¢, and the set of infinitesimal symmetry operators ad-
mitted by system (5), (6) are presented in Table.

Observe that, for all state equations that admit an extension of the symmetry (except the first
one, where ¢=q@; = Mp?/™), an arbitrary one-parameter invariance group of Euler equations is
generated by an operator of the form

0
ox,

+Axki+Buki+Lpi (24)

Z= AX, .
(OL + 0) axk auk ap

Operator (24) with the constraint o = 0 is referred to as the generator of scale transforma-
tions. The solutions of system (5-6) that are invariant with respect to this operator are called
self-similar solutions.

List of inequivalent cases for the equations of state and the corresponding operators

©o=F, Z, Notes
o, = Mp*/" Zy = 0Py + ALy +8Ly +n(8—%) Ly +6L,
Ly = T XX 5+ (X —xouk)a%pL(—D"xoPaa—p ’ = % 7
@y = Mp° Zy = 0Py + ALy +8Ly +2(8-1)L, 6+0
03 = Mx$p® Zy =M +8L, +[ 2(3-3)- 0|1, 00
0, =p*"G(Y) , Zy =My +E0Ly +nM(E-1)L, o=1-2«
v=p""af
05 = Mx§ Zs =MLy + 0Ly +(u—20) Ly
05 =% 'G(p) Zg =MLy
0, =D(p?"xT) Zy=My+5Ly+nSALy o=1-2
Qg =D(p*/"e ) Zg=aby+nSol,
9y = ™I (p) Zy =0l +5oLy
P10 =25 P(p) Zy9 :X[Q +GT+1L2:|
911 =P(p) Z;, = 0P, +7»[L1+%L2]
92 =p D(x) Ziy=3(L3+5Ly)
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Theorem 2. The symmetry extension of system (5), (6) is possible in 12 cases presented in Table.
The maximal invariance group for this system is the

|:n("2+3) + 4] -parameter projective group

This group is admissible for system (5), (6) if and only if F, = cp?/™.

Remark 1. Observe that the one-dimensional case is special. Namely, the two first equations in
system (17) appear only when n > 1. As was demonstrated in [9], for the equation of state of the
form p= % p?, which describes an ideal polytropic gas, system (5), (6) under 7 = 1, admits an infi-
nite group. Due to this fact, the general solution was obtained for system (5), (6) in this case [9].

3. Invariant solutions of system (5), (6) and Rankine—Hugoniot conditions. In this sec-
tion, we find solutions of system (5), (6) in the case n = 1 that are compatible with the Rankine—
Hugoniot conditions.

In this case, each operator that generates a one-parameter group of admissible transforma-
tions for system (5), (6) can be presented as

d
op’
where ¢ = x;, x=x; a, 8,0, A, u, and v are arbitrary constant parameters, B=38 — 1/2, A=B + },
and L is a function of these parameters.

Following the well-known technique [ 1, 2], we find the solutions of (5), (6) that are invariant
with respect to a one-parameter group of transformations with infinitesimal symmetry operator
of the form (25) by means of the transition to invariant variables, which can be expressed via solu-
tions of the equation

ZJ(t, x,u, p)=0. (26)

In order to list the cases where invariant solutions are applicable to the description of a point
explosion in the medium with the state equation p = F(p, t), it is necessary to analyze the invari-
ance of the manifold determined by the boundary conditions with respect to transformations gen-
erated by operator (25).

The role of “boundary conditions” in the case of point explosion is played by the Rankine—
Hugoniot conditions [10]

Po(uy=D)+p D=0, py(uy—D)*+p,=pD*+py, (27)

which represent the discontinuity of main characteristics of shock waves in a material medium. In
formula (27), the quantities with index 2 describe the values of these functions behind the shock
wave front, and those with the index 1 before it. The medium is expected to be motionless, u, = 0,
D is the velocity of the shock wave front, and p,, p, are constants, p, > 0.

It is obvious that, in the one-dimensional case, the motion of the shock wave front in the point
explosion problem can be determined by a relation x; . = g(¢) with a certain function g. There-
fore, the manifold M defined by the boundary conditions (27) is determined by the system

Z= (a+kt+et2)%+(ut +v+Ax+ext)ai+(ex+u+3u—etu)ai+(L—et)p (25)
X u

x—g()=0, (28)
plu—g()]+p18(1)=0, (29)
plu—g(®)* + p(p,t)—p1&* (1)~ p, =0, (30)
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where p,, p, are constants that are equal to initial values of the density and the pressure in the
medium, correspondingly, g is the unknown function, and g(¢)=dg(¢) / dt .

Note that infinitesimal operator of the form (25) with coefficients involving quadratic terms
is admissible if and only if p = %p?’. In this case system (5), (6) has a general solution. Therefore,
we can set 0 =0 in (25).

Applying the infinitesimal invariance criterion (15) to the manifold M, we obtain the system

u-Lg=0, (31)

VAt + Ag(t) — (o + M) g () =0, (32)
2

p?1g2(t)(L+2B)+PLPp +(a+At)p, —2p(u+Bg)E=0. (33)

To satisfy condition (31) in the case L#0, it is necessary that g(¢)=S5t+R, where S and R
are some constants, S #0. Formula (32) implies that L = —B. Analyzing the functions ¢ = F and
the corresponding operators Z, (see Table 1), we conclude that the case L#0 is possible only for
a state equation of the form

M
===, M =(Spy)*, (34)

which corresponds to the function ¢ = Mp® with ¢ = —2.
Since L = 0 for the other cases, conditions (31-33) can be represented as

w=L=0, (35)

v+ Ag—(0+ Mg =0, (36)
2

2BPL g2 ~9p 82B+(o+At)p, =0. (37)
p

It is necessary to analyze condition (37) now. Note that the operators listed in Table 1 can be
partitioned into two groups according to the criterion whether L is a multiple of B. Thereby, the
first group consists of Z,, Z,, Z,, Z,, and Z,,. For the operator Z,, the restrictions (35) imply that
the corresponding function ¢, does not depend on ¢ and, therefore, coincides with ¢,,. For the
operator Z,,, the restriction L = 0 makes the operator to vanish.

By virtue of (35), the functions ¢,, ¢,, and ¢, correspond to the same infinitesimal symmetry
operator

d d
Zyp =+ M)+ (VA - (38)

Therefore, we can consider these three cases together. Denote the function that corresponds
to operator (38) by ®;(p)=01(p) =@y(p) =¢;1(p). It is clear that p;; =D, (p)H(¢) with a cer-
tain function H(t). For operator (38), Eq. (37) is equivalent to the condition

(a+A0)(pp)e =0, (39)
which leads to H = ¢ = const.

Draw our attention to other cases. If L =0, then the functions ¢, and ¢4 coincide with ¢, , and
the functions @, 05, ¢, and @, can be represented as

O =t°®(p) (40)
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due to the fact that the infinitesimal symmetry operator for all these cases is the same, namely

0 0 0

Zy =\ — Ac)—+ Bu— 41

il at+(V+ )8x+ u— (41)
where A=2(6+2), B=22,620.

Formula (37) enables one to recover p,,,,

P =°@(p)+ H(?). (42)
Observe that the derivative of p,,, with respect to ¢ can be expressed as
c dH
() =— (P —H)+——. (43)
t dt
So, condition (37) is equivalent to the equation
dH
opy—oH+t—=0. 44
Py 7 (44)
Hence, H(t)=¢t° +¢, and
pur =t°®(p)+c, c=p;. (45)

The last case to be considered is F, = ¢,. Then
pry =e*O)+H(t), Zyy =o vl , (46)
ot ox ou

and, hence, B = xo. Expressing (p;y ), in terms of p, H, and ‘fi—[j and using formulae (29) and (30),
we find that

pry =€ @(p)+ py. (47)

Hereby, all the functional relationships p = F(p,t), for which the corresponding invariance
solutions are compatible with the Rankine—Hugoniot conditions, are listed. In what follows, we
determine the function g(z) for each of these cases and verify that g=const, i.e. that a shock wave
really propagates in a medium. Solving Eq. (36), we obtain

o cy+ot, if A=0, (48)
()=
g c(a+r)—2, if A0,
in the case Z=Z;, p=®(p)+ py;
ylnt+cs, if 0=F+1=0,

gm ()= (49)
ot =%, if 00,

in the case Z=Z;;, p=t°®(p)+ p,; and
£)=cse —— 50
() =cye -~ (50)

forZ=7., p= e”™®(p)+ p,. In expressions (48-50), Cy, €4, and ¢, are arbitrary constants.

Therefore, if we restrict the consideration to the symmetry operators that do not contain any
quadratic terms in their coefficients, the following theorem holds.
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Theorem 3. The four classes of invariant solutions to system (5), (6) compatible with the Rank-
ine—Hugoniot conditions under n =1 are:

a) solutions that are invariant with respect to the one-parameter subgroup generated by the
operator

ZI:(a+xt)—+(v BSt+Ax)—+Bui+Lpi
ou op
where L=—-B, a, \, v, A, B, and S are constants, B#0 and S #0,if

2
oo

b) solutions invariant with respect to the one-parameter subgroup generated by the operator
d ad
Zy=(0+A)—+(V+rx)—,
1 =( ) ~ ( ) o

if p=@(P)+py;
¢) solutions invariant with respect to the one-parameter subgroup generated by the operator
0

u

where A:k(%ﬂ), B:M Jif p=t°®(p);

d) solutions invariant with respect to the one-parameter subgroup generated by the operator

d d d

Ly =0—+(v +KOUC)—+ Ko —,

ot ox ou
if p=e?(p)+p;.

Hereby, the cases where the boundary-value problem (5), (6), (27) admits invariant solutions
are exhaustively described. Some special cases are considered in [11].

Conclusion. In this paper, the group analysis of a system of Euler equations with the equation
of state of a medium is carried out, and the cases where the point explosion problem has invariant
solutions are listed. The group classification provided for the state equations is of great practical
importance, because there is no unified analytical expression that satisfactorily describes the re-
lationship of thermodynamic parameters of a liquid throughout the domain, where these parame-
ters vary. In many cases, the state equations listed in Table coincide with functional relationships
known as the equations of state for a liquid in the limited ranges of thermodynamic parameters.
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