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The first thing in the study of all types of algebras is the description of algebras having small dimensions. Unlike the
simpler cases of 1- and 2-dimensional Leibniz algebras, the structure of 3-dimensional Leibniz algebras is more com-
plicated. We consider the structure of Leibniz algebras of dimension 3 over a finite field. In some cases, the structure
of the algebra essentially depends on the characteristic of the field. In others, it depends on the solvability of specific
equations in the field, and so on.
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Let L be an algebra over a field F with the binary operations + and [-,-]. Then L is called a Leibniz
algebra (more precisely, a left Leibniz algebra), if it satisfies the (left) Leibniz identity

[[a, D], c] =|a, b, c]] - |b, |a,c]] forall a, b, c e L.

We will also use another form of this identity:

[a, [bv cll=lla, b]’ c]+ [b’ [a, c]].

Leibniz algebras appeared first in the papers of A.M. Bloh [1—3], in which he called them the
D-algebras. However, in that time, these works were not in demand, and they have not been prop-
erly developed. Only after two decades, a real interest in Leibniz algebras rose. It happened thanks
to the work of J.-L. Loday [4] (see also [5, Section 10.6]), who “rediscovered” these algebras and
used the term Leibniz algebras, since it was Gottfried Wilhelm Leibniz who discovered and proved
the Leibniz rule for the differentiation of functions.

Let L be a Leibniz algebra over a field F. If A, B are subspaces of L, then [A, B] will denote a
subspace generated by all elements [a, b] where a € A, b € B. As usual, a subspace A of L is called
a subalgebra of L, if [x, y] € A for every x, y € A. It follows that [A, A] < A.

Let L be a Leibniz algebra over a field F, and let M be a non-empty subset of L. Then (M) de-
notes the subalgebra of L generated by M.

A subalgebra A of L is called a left (respectively, right) ideal of L, if [y, x] € A (respectively,
[x,y] € A) for every x € A, y € L. In other words, if A is a left (respectively, right) ideal, then [L,
A] <A (respectively, [A, L] <A).
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A subalgebra A of L is called an ideal of L (more precisely, two-sided ideal), if it is both a left
ideal and a right ideal, i. e., [y, x], [x, y] € A for everyx € A, ye L.

If Ais anideal of L, we can consider a factor-algebra L/A. Tt is not hard to see that this factor-
algebra also is a Leibniz algebra.

As usual, a Leibniz algebra L is called abelian, if [x, y] = 0 for all elements x, y € L. In an Abe-
lian Leibniz algebra, every subspace is a subalgebra and an ideal.

Denote, by Leib(L), the subspace generated by the elements [a, a], a € L. It is possible to
prove that Leib(L) is an ideal of L such that L/Leib(L) is a Lie algebra. Conversely, if H is an ideal
of L such that L/H is a Lie algebra, then Leib(L) < H.

The ideal Leib(L) is called a Leibniz kernel of the algebra L.

We note a following important property of the Leibniz kernel:

[[a, a], x] =1a, [a,x]] - [a, [a, x]] = 0.

This property shows that Leib(L) is an abelian subalgebra of L.

As usual, we say that a Leibniz algebra L is finite-dimensional, if the dimension of L as a vector
space over Fis finite.

The first step in the study of all types of algebras is the description of algebras having small
dimensions.

If dim(L) = 1, then L is an abelian Lie algebra, i. e, is L = Fa for some element a and
[a,a]=0.

If dimp(L) = 2 and L is not a Lie algebra, then there are the following two non-isomorphic
Leibniz algebras:

L ,=Fa+Fb,|a,a]l=0b,[b,a]l=]a, b]=[b,b]=0,
and
L,=Fc+Fd, [c,cl=]c,d]=d,|d c]=|d d]=0

(see, e. g., survey [6]). The structure of 3-dimensional Leibniz algebras is more complicated. The
study of Leibniz algebras, having dimension 3, has been conducted in papers [7—10] for the fields
of characteristic 0, moreover for a field C of complex numbers or an algebraically closed field of
characteristic 0. We consider the opposite situation, where the structure of Leibniz algebras of
dimension 3 over a finite field should be described. As we will see later, the situation here is much
more diverse. In some cases, the structure of the algebra essentially depends on the characteristic
of the field, in others on the solvability of specific equations in the field, and so on. We will see
that the Leibniz algebras of dimension 3 are soluble. Therefore, a first natural step of our study is
a consideration of nilpotent algebras.
Let L be a Leibniz algebra. Define the lower central series

L= y1(L) > YQ(L) >... YQ(L) 2V 4 1(L) Z... YS(L)

of L by the following rule: y,(L) = L, y,(L) = [L, L], and, recursively vy, , ,(L) = [L, y,(L)] for all
ordinals aandy,(L) =N, , v,(L). It is possible to show that every term of this series is an ideal of
L. The last term y4(L) is called the lower hypocenter of L. We have yy(L) = [L, y5(L)].

If o=k is a positive integer, then y (L) =L, [L, [L, ...]...]]. Note the following useful properties
of subalgebras and ideals.
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A Leibniz algebra L is called nilpotent, if there exists a positive integer & such that y,(L) = (0).
More precisely, L is said to be nilpotent of the nilpotency class c, ify, , (L) =(0), buty (L) #(0). We
denote, by ncl(L), the nilpotency class of L.

The left (respectively, right) center {*ft(L) (respectively, 8 (L)) of a Leibniz algebra L is
defined by the rule:

gef(L) = {x e L | [, y] = 0 for each element y € L}
(respectively,
¢rieht(L) = {x € L| [y, x] = 0 for each element y € L}).

It is not hard to prove that the left center of L is an ideal, but this is not true for the right
center. Moreover, the last equality shows that Leib(L) < {'*ft(L), so that L/Z'*ft(L) is a Lie algebra.
The right center is an subalgebra of L. In general, the left and right centers are different; they even
may have different dimensions. We will construct now a following examples [11].

Of course, we will consider a case where L is not a Lie algebra.

Nilpotent Leibniz algebra of dimension 3. In this section, we will suppose that L is nilpotent.
Since ncl(L) <dimy(L), we have ncl(L) <3.

Let L be a Leibniz algebra. The intersection of a maximal subgroup of L is called the Frattini
subalgebra of L and denoted by Frat(L). If L does not include maximal subalgebras, then we put
L =Frat(L).

We will need the following important property of Frattini subalgebras.

Proposition 1. Let L be a finite-dimensional Leibniz algebra over a field F. If L is nilpotent, then
[L, L] = Frat(L).

Indeed, since L is nilpotent, every maximal subalgebra of L is an ideal [12, Lemma 2.2], so we
can apply Proposition 7 of paper [6].

Theorem 1. Let L be a nilpotent Leibniz algebra over a field F. If L is not a Lie algebra and
ncl(L) = 3 = dimg(L), then L has a basis {a, b, c} such that |a, a] = b, [a, b] = ¢, [c, a] = [a, c] =
= [c, b] = [b, c] = [b, b] = [c, c] = 0. Moreover, Leib(L) = Cl’(L) = [L, L] = Fb ® Fc, ¢sh(L) =
=C(L) =y5(L) = Fc. In particular, L is a nilpotent cyclic Leibniz algebra.

Further, the relation L = A ® B means that L is a direct sum of the subspaces A and B or the
subalgebras A and B. If L = A ® B, A is an ideal of L, and B is a subalgebra of L, then we will say
that L is a semidirect sum of A and B and use the symbol L =A - B.

Theorem 2. Let L be a nilpotent Leibniz algebra over a field F. Suppose that L is not a Lie alge-
bra,dim (L) = 3, ncl(L) = 2 and L has an element b ¢ v,(L) such that [b, b] = 0. Then L is an algebra
of one of the following types:

I. L =A@ B, where A, B are the ideals, B = Fb, |b, b] =0, A = Fa @ Fc is a cyclic nilpotent sub-
algebra, [a, a] = ¢, [¢, a] = |a, c] = [c, ¢] = 0. Moreover, Leib(L) = [L, L] = Fc, {'*\(L) = ¢right(L) =
—¢(L)=Fb® Fe.

II. L = A+ B, where A= Fa @ Fcis a cyclic nilpotent subalgebra, |a, a] = ¢, ¢, a] = [a, c]
=[c, ¢] =0, B is an abelian subalgebra, B = Fb, |b, b] =0, and |a, b] = c, |b, a] =0 = [b, c] = [c, b].
Moreover, Leib(L) = [L, L] = £"g"(L) = ¢(L) = Fc, (L) = Fb ® Fc.

III. L = A B, where A = Fa ® Fc is a cyclic nilpotent subalgebra, [a, a] = ¢, [c, a] = [a, c] =
= [¢, ¢] =0, B is an abelian subalgebra, B = Fb, |b, b] =0, and |a, b] = ¢, |b, a] =yc,y#0, |b, c] = ¢,
b] = 0. Moreover, Leib(L) = [L, L] = £left(L) = ¢risht(L) = ¢(L) = Fe.
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Theorem 3. Let L be a nilpotent Leibniz algebra over a field F. Suppose that L is not a Lie alge-
bra, dim(L) = 3, ncl(L) = 2, and |d, d] # 0 for each element d & y,(L) such that [b, b] = 0. Then L is
an algebra of one of the following types:

I. L = A + B, where A, B are the nilpotent ideals, A = (a), B=(b), AN B=_((L) =Fc, |a, a] =
=[b, bl =c, |c,al=|a,c] =|c c]=|c, bl =1b, c] =|a, b] = [b, a] = 0. Moreover, Leib(L) =L, L] =
= (left(L) = ¢right(L) = {(L) = Fc, char(F) # 2, and the equation x* + 1 = 0 has no solution in F.

II. L = A + B, where A, B are the nilpotent ideals, A = {a), B={b), AN B={((L) = Fc, |a, a] =,
[b, b] = pc, where p is a primitive root of the identity of degree |F| — 1, [c, a] = [a, c] = [c, ¢] =[c, b] =
= [b, c] = [a, b] = [b, a] = 0. Moreover, Leib(L) = [L, L] = ¢left(L) = ¢risht(L) = (L) = Fe, char(F) # 2.

III. L = A + B, where A, B are the nilpotent ideals, A = {a), B=(b), AnB=C_(L) =Fc, |a,a] =
=c=|a, b], b, b]=nc, [c,a]l=]a, c]=]c, c]=]c, b]=|b, c] =[b, a] = 0. Moreover, Leib(L) =L, L] =
= (left(L) = ¢right(L) = ¢(L) = Fc, and a polynomial X?> + X + n has no roots in a field F.

Non-nilpotent Leibniz algebra of dimension 3 with one-dimensional Leibniz kernel. The
next step is a consideration of a case where L is non-nilpotent. We will consider Leibniz alge-
bras of dimension 3, which are not Lie algebras. It follows that Leib(L) # (0). Since Leib(L) is an
abelian ideal, L # Leib(L). Hence, for Leib(L), we have only two possibility: dim (Leib(L)) = 1,
dimp(Leib(L)) = 2.

In this section, we consider the case where dim(Leib(L)) =1, so that dim (L/Leib(L)) = 2.

Theorem 4. Let L be a non-nilpotent Leibniz algebra over a field F. Suppose that L is not a
Lie algebra, dim (L) = 3 and dim(Leib(L)) = 1. Then L is an algebra of one of the following
types:

I. L= A ® B, where A, B are the ideals, B = Fb, |b, b] =0, A is a cyclic subalgebra, A = Fa ® Fc,
where |a, a]l = c =|a, c|, [¢, a] = [c, c] =[c, b] = |b, c] = |a, b] = |b, a] = 0. Moreover, Leib(L) = [L,
L] = Fe, (L) = Fb @ Fe, Crishi(L) = ¢(L) = Fb.

II. L=A-| B,where B=Fb,[b,b]=0,A=Fa® Fcis a cyclic subalgebra, [a, a] = c = |a, c], |a,
bl=c, [c,al =[c, c] =[c, b] = b, c] = [b, a] = 0. Moreover, Leib(L) = [L, L] = Fc, {**(L) = Fb ® Fc,
C(L) = LML) =(0).

III. L= A+ B, where B=Fb,|b,b]=0,A=Fa® Fcis a cyclic subalgebra, |a, a] = c = a, c], [b,
al=1[b,cl=c, [c,al=]c, c] =[c, b] =[a, b] = 0. Moreover, Leib(L) = [L, L] = {'*(L) = Fe, ¢'8ht(L) =
= Fb, &(L) = (0.

IV.L=A- B, where B=Fb,|b,b] =0, A=Fa® Fcis a cyclic subalgebra, a, a] = c = |a, c],
[a,b]=a=—[b, a), b, c]=—2c, [c, a] =[c, c] = [c, b] = 0. Moreover, Leib(L) = [L, L] = {'ft(L) = Fc,
CriEh(L) = C(L) =(0).

V.L=A- B, where B=Fb,[b, b] =0, A =Fa® Fcis a cyclic subalgebra, [a, a] = c, [a, c] =
=0,|a,bl=a +vyc,y € F,|b,al=—a +yc, |b, c]=-2c¢, [c,a] = ¢, c] =]|c, b] = 0. Moreover, Leib(L) =
=[L, L] = (L) = Fe, ¢ri8ht(L) = ¢(L) = (0) whenever char(F) # 2 and {'8"(L) = (L) = Fc whenever
char(F)=2.

Non-nilpotent cyclic Leibniz algebra of dimension 3. The next step is a consideration of a
case where L is non-nilpotent, and dim(Leib(L)) = 2. Here, there appear two variants: L is a cy-
clic algebra and L is a non-cyclic algebra. In this section, we will consider a case where a Leibniz
algebra of dimension 3 is cyclic.

Theorem 5. Let L be a non-nilpotent cyclic Leibniz algebra of dimension 3 over a field F. Then L
is an algebra of one of the following types:
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I.L=D- A, where D=Fd,|d,d]=0,A=Fa® Fcis a cyclic nilpotent subalgebra, |a, a] = ¢, |a,
c]=0,[a, d]|=38d,0%8 € F,|c,a]l=c c]=|c, d]|=|d, c]=|d, a] =0. Moreover, Leib(L) = [L, L] =
Cleft(L) = Fd @ Fe, C(L) = C8hi(L) = Fe.

II. L =D~ B, where B=Fb,|b, b]=0, D =Fd® Fcis an abelian subalgebra, |d, d] = |d, c] =
=[c,d]=]c,c]=0,]b,c]l=d, |b,d]=vyd+38d,0=vy,8 € F, |c, b] =[d, b] = 0. Moreover, Leib(L) =
—[L, L] = Ceft(L) = Fd @ Fe, Csh(L) = Fb, C(L) = (0).

Non-nilpotent Leibniz algebra of dimension 3 with two-dimensional Leibniz kernel.
The last case of our consideration is the case where L is non-nilpotent, non-cyclic, and
dimp(Leib(L)) = 2. Then dimg(L/Leib(L)) = 1. In particular, L/Leib(L) is Abelian.

Theorem 6. Let L be a non-nilpotent non-cyclic Leibniz algebra of dimension 3 over a field F.
Suppose that L is a not Lie algebra and dim (Leib(L)) = 2. Then L is an algebra of one of the fol-
lowing types:

I.L=A- D, where D="Fd, |d d]| =0, A=Fa® Fcis a cyclic subalgebra, |a, a] = c = [a, c],
la,d] =d, [c,a]l=c, c]=][c, d] =|d, c]=d, a] = 0. Moreover, Leib(L) = [L, L] = (lt(L) = Fd @ Fc,
C(L) = CTEM(L) = (0).

II. Char(F) #2,L=A-| D, where D=Fd,|d,d]=0,A=Fa® Fcis a cyclic subalgebra, |a, a] =
=c=|a,c|,|a, d|=c+2d, |c, al=]c, c]=|c d]|=|d, c]=]|d, a] = 0. Moreover, Leib(L) = [L, L] =
= (M(L) = Fd @ Fe, ¢(L) = C"8"(L) = (0).
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AJITEBPU JIEVBHIIIA BUMIPHOCTI 3 HAJ[ CKIHUEHHUMM I1OJISIMU

[TeprriM KPOKOM y BUBUYEHHI BCiX TUTIB aiareOp € OMie TaKuX aareOp, STk MatoTh Masti BuMipHocTi. Ha Biaminy Bin
GIJTBIIT TIPOCTUX BUIAAKIB OJIHO- i ABOBUMIpHUX anre6p JleibGHina, cTpykTypu TpuBUMipHUX anre6p Jleiibrina
ckIaaHinm. Y poboti posrisiacThest cTpykTypa aiareop Jleibnina BuMipHocTi 3 Hajl CKiHUEHHUM moJjieM. Y jesi-
KHUX BUIAJKaX CTPYKTypa ajreGp CYyTTEBO 3aJeKHUTh BiJl XapaKTEPUCTUKHU TIOJIs, B IHIIUX — Bifl MOXKJIMBOCTI
PO3B’s13aHHS KOHKPETHNUX PiBHAHD Y IO i T. 1.

Kmouoei cnosa: anzebpa Jletibniya, ioean, paxmop-anzebpa, nironomenmua anzebpa Jleibniya.
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AJITEBPBI JIEMBHUIIA PASMEPHOCTH 3 HAJI KOHEYHBIMU ITOJAMU

[TepBbIM MIAroM B M3YYEHUH BCEX TUIIOB aareOp ABJIACTCS ONMCAHKUE TAKUX aireOp, KOTOPhIE HMEIOT MaJIbIe Pas-
MepHOCTH. B oT/mume ot GoJtee MpoCTHIX CIydaeB OAHO- U ABYMEPHBIX airedp JleiGHuIa, cTpyKTyphl TpexMep-
HbIX anre6p Jlefibnuna ciaoxnee. B pabote paccmarpusaercst ctpykrypa anre6p JleiGuuna pasmepaocTn 3 Haz
KOHEYHBIM T10JIeM. B HEKOTOPBIX ciIydasx cTPyKTypa aareGpbl 3aBECHT OT XapPaKTEPUCTHKH OIS, B IPYTUX — OT
Pa3permmMOCTH KOHKPETHBIX YPAaBHEHUH B TTOJIE U T. TI.

Kntoueevte cnosa: anzebpa Jleibnuua, udean, paxmop-anzebpa, nurvnomenmuas anzebpa Jetibnuya.
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