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As is known, an elementary excitation of a many-particle system with boundaries is not characterized by a defi-
nite momentum. We obtain the formula for the quasimomentum of an elementary excitation for a one-dimensional
system of N spinless point bosons under zero boundary conditions (BCs). In this case, we use Gaudin's solutions
obtained with the help of the Bethe ansatz. We have also found the dispersion laws of the particle-like and hole-like
excitations under zero BCs. They coincide with the known dispersion laws obtained under periodic BCs.
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The theory of point bosons [1—6] based on the Bethe ansatz is a valuable part of the physics
of many-particle systems, since the system of equations for quasimomenta k; can be solved exactly
at any coupling constant vy, and the thermodynamic quantities can be determined from Yang—
Yang’s equations [4] at any temperature. This allows one to test the solutions for real nonpoint
bosons, the equations for which can rarely be solved.

In the present work, we will study a one-dimensional (1D) system of spinless point bosons
in the exactly solvable approach based on the Bethe ansatz. For the real systems, the boundary
conditions (BCs) are closer to the zero ones (W(xy,..., x5 )=0 on the boundaries), than to the
periodic BCs. Therefore, it is important to find the ground-state energy and the dispersion law
under the zero BCs. The ground state was already studied [5, 7], but the dispersion law was not
found. To find it, one needs to determine the energy and the quasimomentum of a quasipar-
ticle. These problems will be considered in our work. The main difficulty consists in obtaining
the formula for the quasimomentum, because the ordinary method with the use of the operator
of momentum fails under the zero BCs.

Under the periodic BCs [2], a quasiparticle possesses the momentum [3, 6, 8, 9]

N
p= (K, —k;), (D
j=t
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where k; are the solutions for the ground state, kj'. are the solutions for the state with one qua-
siparticfe. This definition of the momentum of a quasiparticle is self-consistent: the thermody-
namic velocity of sound (vﬁh =JmP /9p, P= —0E, /dL, p=N /L) coincides with the mic-
roscopic one (" =dE(p) /dp|,0) [3]-

Under the zero BCs, the quasimomentum of a quasiparticle was obtained similarly to (1)
[7,10]:

N
p=3 (k;|=Ik;D. 2)
j=1
However, in such approach, the equality vfﬁh = vg’”b is strongly violated [7]. Below, we will
define the quantity p in such a way that this difficulty disappears.
Initial equations. Consider Nspinless point bosons placed onaline oflength L. The Schrodinger
equation for such system reads

82

—zax—2‘I‘+2628(xl—x])‘P=E‘P (3)
VAR I<j

We use the units with Z=2m=1. Under the periodic BCs, for each of the domains x; <

< ¥y <...< Xy, asolution of the Schrédinger equation is the Bethe ansatz [2, 5]

N
\p{k}(x1,...,xN)=Za(P)e121 , (4)
P

where kp is one of kj,...,ky, and P means all permutations of k. Under the zero BCs, the so-
lution is a superposition of counter-waves [5]:

‘P{|k|}(x1,,xN)= %C(Ep..., SN)W{k}(X1, ceey xN), (5)
€

where k; =¢; |k; [, e; =+1. Under any BCs, the energy of the system is
E=k:+ks+.. . +k. (6)

Under the periodic BCs, k; satisfy Lieb—Liniger’s equations [2] that are usually written in
Yang—Yang’s form [4]

il ki—k
ij=2nlj—22arctan , j=1,...,N. )
I=1 ¢

We will use Lieb—Lininger’s equations in the Gaudin’s form [5]:

N
ij = 27m]- + 2Zarctan

, j=1,...,N, 8)
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where 7; are integers. For the ground state of the system, 7; =0 for all j=1,..., N. The sys-

tems of equations (7) and (8) are equivalent [5]. In this case, I; =n; +j - N+1 .
Under the zero BCs, k; satisty the Gaudin’s equations [5]:
c
L|k = mn; + arctan ———— +arctan ———— lei» J=1..,N, 9)
2[ %117 ] |kj|+|k,|) e

where n; are integers, n; >1 [5,11]. The ground state corresponds to n; =1 for all j. We de-
note p= N/L Y=c/p.

Equations (8) has the unique real solution {k;} [6], and Egs. (9) have the unique real solu-
tion {|&; |y [11].

The quasiparticles are commonly described with the help of Yang—Yang’s I, -numbering (7).
Below, we will introduce the quasiparticles with the help of Gaudin’s n; -numbering (8), (9),
since this way is simpler and more physical [12] and allows one to sight the Bose properties of
quasiparticles [7]. These two ways of introduction of quasiparticles are equivalent. For example,

under the periodic BCs, the “particle” {Ij}=(1—M o, N=1- N2+1,N— N2+1+l) with the
help of the n;-numbering is written as {n;}=(0,...,0,/). In the n;-language, the “hole”
{I-}=(1—N+1 ...,N—2—N2+1,N—N2+1,N+1—N—+1) is {n;}=(0,...,0,1,1). A way of intro-

duction of quasiparticles with the help of the n; -numbering was proposed in [7].

Definition of the quasimomentum of an elementary excitation. We now find how the quasi-
momentum of an elementary excitation can be determined under the zero BCs. Under the peri-
odic BCs, the relation [2]

N p) N
z(—iBTJ~\|l{k}(x1,...,xN)= Zk] W{k}(xl,...,XN) (10)
j=1

Jj=t J

holds in the whole domain xy, ..., x5y €[0, L]. Therefore, the system has the total momentum
N
P=Yk;, (11)
=1
and the momentum of a quasiparticle is given by formula (1). Under the zero BCs, the relation

N
%(_ia%jjwﬂk}(xp e X8 = FQ Rl Loy D gy (e, )
=

is not satisfied. Therefore, the system has no definite momentum. To find the formula for the
quasimomentum of an excitation, we use the following property. It is known that the momentum
(quasimomentum) of a quasiparticle is quantized by the law p; =#2mj/L (j=%1,%2,...) under
the periodic BCs [13], and p; =hmj/L (j=1,2,...) under the zero BCs [14,15]. Starting from
these relations, one can guess the formula for the momentum (quasimomentum).
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Consider a periodic system. Equations (8) yield

N 9 N
2k =T 2 (12)
2

. . N . . .
It is seen that the quantity P = 2].: 1k]- is quantized in the same way as the momentum of an

ensemble of quasiparticles [ 13]. Therefore, it is natural to identify P with the total momentum of

the system (in the reference system, where the center of masses is at rest). We obtain that
. N . .

Py = 2?7:1]6]' =0 is for the ground state and P, = Zj: \kj =2mr /L for the state with one particle-

like excitation (n; ¢ y_4 =0, ny =7 #0). The momentum of a particle-like excitation

27mN 2nr

p= PO_Z(k —k;)= I

(13)

corresponds to formula (1) and to momentum quantization p; =2mj/L [13]. We have solved
system (8) numerically, found the energies of the ground and excited states, and obtained that
the equality vﬁh =™ holds with high accuracy: for p=1, N =200,1000,5000 andy=0.1, 1, 10,
the equality vth =™ holds with an error of <0.1%. In this case, the error depends strongly
|Umzc th | B 0.01

th - YN )

S

on vy and N:

We now consider the system under the zero BCs. Relation (9) yields

Z|k |== Zn +— Zarctan (14)
L2 T T,
Introduce the quantity
N
Pk D= |k |- arctan ————— (15)
21k ,]21 BT,
then relations (14) and (15) yield
Y
P({|k; |})=z_21”j- (16)
i

Since P is quantized similarly to the quasimomentum of the ensemble of quasiparticles for an in-
teracting system under the zero BCs [15], it is natural to identify P with this quasimomentum. It
is essential that the quasiparticles are introduced for a system of point bosons in such a way that
the total number of quasiparticles is <N (the same limitation exists also for a system of nonpoint
bosons [12]). This agrees with (16). The smallest quasimomentum of the system corresponds to
the ground state:

T N T
PO:P(nKN:1):EZ1=T:np. 17)
j=t
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The quasimomentum of a particle-like excitation is

Pr— =P(”j<N—1 =1 ny =r)—P(nj<N =)=

= |k || % |) arctan———— —arctan —— | (18)
2( l§1 |k} [+ k| oy [+ [ )7

where {|£}[} and {/%; |} are solutions of Gaudin’s equations (9) for the states with one par-
ticle-like excitation and without excitations, respectively. Relations (16), (18) yield

Pr =TE(7’—1)/L, (19)

where 7 is equal to the value of ny for the state with one particle-like excitation: » =ny =2, 3, 4,.
n;< n— =1.We have obtained the quantity with the required law of quantization: p; = n]/L
[14, 15]. The numerical analysis has shown that the equality o =o™* is satisfied with an

errorof < 1% for p=1;y=0.1,1,10; N =200,1000, 5000. This error depends on y and N approxi-
‘ pMmic _vth | 0

vﬁh B ﬁN

It is significant that, for the zero and periodic BCs, the error disappears as N — . In other
words, this error is due to the finiteness of a system (for very large N, one more error related to
a numerical method should appear). The equality v v’mc must be exact in the thermodyna-
mic limit and may be violated for not 1arge N, L. Thus in the thermodynamic limit, our formu-
lae agree with the exact equality v o™, Hence, formulae (18) and (19) for the quasimomen-
tum are exact, at least as N, L — oo .

We note that, for the zero BCs, the error is larger by 1—2 orders of magnitude, than in the
periodic BCs case. We suppose that this is connected with a nonuniformity of the wave function
near boundaries. In particular, for a periodic system, the solution for the ground-state energy E,
becomes close to Bogoliubov’s asymptotic solution Ey(N —e) [13], if N >100; for the zero
BCs, this occurs for larger N: N >1000.

Thus, we have obtained the formula for the quasimomentum of a quasiparticle for the sys-
tem under the zero BCs. Apparently, quasimomentum (15), (16) corresponds to an accidental
integral of motion. It would be of interest to clarify which operator corresponds to quasimo-
mentum (15).

Let us find the dispersion law E(p) of particle-like excitations for a system under the zero
and periodic BCs. Under the zero BCs, we are based on (19), and the formula for the energy of a
quasiparticle is [3]

mately as . In this case, the linearity of the dispersion law requires \NN >1.

N v
E=Y ((k;)’ —k). (20)
j=t

Under the periodic BCs, we use formulae (13), (20). We find the solutions {k}-} and {k;} from
Egs. (8) under the periodic BCs and from Egs. (9) under the zero BCs. In this case, {k}} cor-
responds to the state with one quasiparticle (7;<y_1=0,ny =r for the periodic BCs and
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E * A
[ ]
20.0 = A
[ ]
175 ' ' i
’:’ Dispersion curves E(p) obtained by the nume-
15.0 F : : ye : rical solution of Egs. (8), (9) within the Newton
. o R method for N= L= 1000. 1) y=1: E(p) of parti-
125¢ ' LAY ‘ o cle-like excitations under the periodic BCs (open
100 ° circles), under the zero BCs (open triangles),
ok , . ,
. ie ¥ and the Bogoliubov law [13] E =/ p? + 4yp?p?
751 " . 4 ¢ A (crosses); 2) v =10 : E(p) of particle-like excita-
sol 7 A % A tions under the periodic BCs (circles), under the
: ° s zero BCs (triangles), the Bogoliubov law (stars),
ko4 a ® * 0400
251 me INE RIS PEE RS 2 o ¢ 0 and Girardeau’s law [1] E=p2+27tp|p| (squa-
oo % ° res); 3) y=1.725: E(p) of hole-like excitations
#rO7 | i i i i i under the periodic (open diamonds) and zero

njcng=bny=r>1 for the zero BCs), whereas {;} corresponds to the ground state (n; y =0
for the periodic BCs and n; .y =1 for the zero BCs). We have solved Egs. (8), (9) numerically
and determined the dispersion law E(p) for the zero and periodic BCs. As is seen from Figure, the
dispersion laws E(p) under the periodic and zero BCs coincide. The numerical solution of
systems (8) and (9) indicates that the ground-state energy ( E, ) under the zero BCs exceeds E,
under the periodic BCs by only a small surface contribution AE, ~ E, /N [7]. For interacting
nonpoint bosons, the picture is similar: at any repulsive interatomic potential, the values of E,
and E(p) of a 1D system under the zero BCs [15] coincide with E, and E(p) of a periodic sys-
tem [13]. Moreover, for a 1D system of interacting bosons, it was found in the harmonic-fluid
approximation that the sound velocity is identical under the periodic and zero BCs [14].

We have also calculated the dispersion law of hole-like excitations. It is seen from Figure
that the dispersion law is the same under the zero and periodic BCs. Visually, it coincides with
the dispersion law of holes obtained by Lieb [3]. Under the zero BCs, holes correspond to the
states with the following quantum numbers nimg = 1, <N = 2, where [=0,1,..., N-2.
Under the periodic BCs, holes are the states with Mmejc1=0,mcy=10=01..,N-2) and
the states with 7y ; o, =-1, m ;< y =0 (k=2,3,..., N). Formula (16) implies that the quasimo-
mentum of a hole under the zero BCs is p = n (N-/)/L; the largest quasimomentum is p = tN/L= np.
Under the periodic BCs, the hole has momentum (1), (12), which takes values from p=-2mp to
p =2mp . Note that, as shown in work [12], a hole is a set of interacting particle-like excitations.

We note that the formulae for the quasimomentum and the solutions for the dispersion
laws, obtained above under the zero BCs, are new results.

Interestingly, the dispersion law of particle-like excitations (see Figure) differs at y=1
from the Bogoliubov law only by 5 %. In this case, the available criterion of applicability of
the Bogoliubov model in the 1D case for the zero and periodic BCs is as follows (at T=0) [15]:

ﬂlnN—ﬁ<<1. (21)
21 T
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According to (21), it should be y— 0 as N — . But the solutions E, and E(p) for point
bosons are close to the Bogoliubov solutions even at N — o, y~1 (as for the periodic BCs, see
[2, 3]; for the zero BCs, it was found [7] that the solutions E, and E(p) obtained in the limit
N — o coincide (with an error of 1 %) with E; and E(p) found by directly numerically solving
Egs. (9) at N =1000; therefore, the dispersion law E(p)|y_s.. coincides with the above-found
one E(p)|y_1000 and is close to the Bogoliubov law, if y<1). We remark that the dispersion law
for y=10 (see Figure) is closer to the Bogoliubov law, than to Girardeau’s one. Though it would
be expected the contrary, since Girardeau’s formula is exact at y=+oo, whereas the Bogoliubov
formula loses its meaning at such y. The reason for the applicability of the Bogoliubov solu-
tions at not small vy is yet unclear.

It was obtained [7] that the dispersion laws of particle-like excitations under the zero and
periodic BCs are strongly different. However, this difference is unphysical: it arose because, under
the zero BCs, formula (2) was used instead of formula (18).

The question is how can one measure the dispersion law in a system under the zero BCs?
Apparently, this can be made with the help of an ordinary scattering. But we do not know how to
pass from Gaudin’s wave function (5) to a localized wave package with a definite momentum.

The present work was partially supported by the Program of Fundamental Research of the
Department of Physics and Astronomy of the National Academy of Sciences of Ukraine (project No.
0117U0000240).
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KBAS3IIMITYJIBC EJIEMEHTAPHOT'O 3bY/IKEHHA
JUIA CUCTEMHM TOYKOBIX BO30OHIB
3 HYJILOBMMU MEKOBMMU YMOBAMMU

Sk Binomo, eseMenTapte 30yKeHHsT HaraTO4acTUHKOBOL CUCTEMU 3 MeKaMK He MAE€ BU3HAYEHOTO IMITYJIbCY.
Mu orpumasii (hOpMYJIy Uit KBa3iiMITyJIbCy eleMEHTapHOT0 30yIKEeHHS OHOBUMIpHOI cuctemMut N 6e3CIiHOBUX
TOYKOBUX OO30HIB 3 HyJIbOBUMU MekoBuMuU ymoBamu (MY). [lpu npomMy Mu crivpasnuch Ha po3s’sisku Tozena,
OTpUMaHi 3a JOTIOMOTOM0 aH3ara bere. Takok MW 3HANIILIN 3aKOHW TUCTIEPCii TaCTHHKOMOAIOHUX Ta [iPKOTIO-
HMi6HUX 30y/KeHb 3a HyaboBUX MY. BoHu 36iraioThest 3 BiIOMUMU 3aKOHaMK AUCIIepCii, 3HaAlAeHUME TS Tie-
piognunux MY.

Kntouosi crosa: moukosi 6030mu, eremenmapne 30y0icenis, Keasiimnyivc, Hyib08i MeNco8i YMOBU.

M./JI. Tomuenxo
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KBASUUMITYJIBC 9JIEMEHTAPHOT'O BO3BY/KIEHNMA
JUIA CUCTEMbI TOYEYHbBIX BO30OHOB
C HYJIEBbIMU I'PAHNMYHDbBIMU YCJIOBUAMUN

Kax usBectHo, ateMenTapHoe Bo30ysKAeHIe MHOTOYACTUYHOI CHCTEMBI C TPAHUIIAME He MIMEET OIPEIeTeHHOTO
nMITyJIbca. MBI Tosydaem (opMyJIy /1715t KBa3NHMILYJIbCA 9JIEMEHTAPHOTO BO30Y KAEHNUS OZIHOMEPHOI crcTeMbl N
6ecCIMHOBBIX TOYEYHBIX GO30HOB ¢ HyJeBbiME rpaHudHbiME yeroBusivmu (I'Y). IIpu aTOM MBI HCIIOJIB3YEM pe-
mennst [ofieHa, MoryueHHbIe ¢ TOMOTIbIO aH3aia Bete. Takske Mbl HAIILIN 3aKOHBI ANCIEPCUH YaCTHIETO00HBIX
U JIBIPKOTIO00HBIX BO30Y KieHuil ripu HysieBbix ['Y. OHE COBIALAIOT C U3BECTHBIMU 3aKOHAMU JUCIIEPCHH, HAi-
JIeHHBIMHY 11pU Ilepuopndeckux I'Y.

Kroueevte crosa: moueunvie 6030Hbl, ajlemenmapnoe 6036y9/céeﬂue, K6A3UUMNYJIbC, HYJlesble e2panudnvle YCILo06UL.
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