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Let L be an algebra over a field F with the binary operations + and [ , ]. Then L is called a
Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity

[a, [b, c]] =[[a, b], c] + b, |a, c]] forall a, b, c € L.

If L is a Lie algebra, then L is a Leibniz algebra. Conversely, if L is a Leibniz algebra such that
[a, a] = 0 for each element a € L, then L is a Lie algebra. Therefore, Lie algebras can be characte-
rized as the Leibniz algebras in which [a, a] = 0 for every element a. In other words, Lie algebras
can be described as anticommutative Leibniz algebras.

The following analogy comes up:

{Abelian groups} < {Lie algebras} and
{non-Abelian groups} < {Leibniz algebras}.

It is immediately understandable that such an analogy cannot be sufficiently deep, since the pro-
perties of commutativity and anticommutativity differ significantly (they coincide in the case of
algebras over a field of characteristic 2). In this, we convince ourselves by looking at cyclic sub-
groups in groups and cyclic subalgebras in Leibniz algebras. Cyclic subgroups in an arbitrary
group are commutative, while cyclic subalgebras in Leibniz algebras do not generally possess
anticommutativity, as can be seen from their description given in [1].
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A Leibniz algebra L has one specific ideal. Denote, by Leib(L), the subspace generated by the
elements [a, a], a € L. It is possible to prove that Leib(L) is an ideal of L. Moreover, L/Leib(L)
is a Lie algebra. Conversely, if H is an ideal of L such that L/H is a Lie algebra, then Leib(L) < H.
The ideal Leib(L) is called the Leibniz kernel of the algebra L.

We can consider the Leibniz kernel as an analog of the derived subgroup in a group. To this
analogy, we will come again later. So, the difference between Lie algebras and Leibniz algebras is
that they have a non-zero Leibniz kernel, just as the difference between Abelian groups and non-
Abelian groups is in the presence of non-trivial derived subgroups in the latter.

Let us try to continue the analogy with the theory of groups. Along with the derived sub-
group in G, there is another characteristic subgroup, namely, its center {(G), that is, the set of
all elements z such that zg = gz for each element g € G. Taking into account the fact that the dif-
ference between Leibniz algebras and Lie algebras consists in the absence of anticommutativity,
we naturally come to the next object in Leibniz algebras.

Let L be a Leibniz algebra. Put

a(L)={z € L|[a, z] = |z, a] for every elements a € L}.

This subset is called the anticenter of a Leibniz algebra L.
Clearly, the anticenter is a subspace of L. It is also a subalgebra of L. Indeed, let z, y € a(L) and
a be an arbitrary element of L. Then

[[Z’ y]’ a] = [Z’ [Z/, a]] - [Z/, [Z’ a]] Z_[Zr [a’y]] + [Z/, [CZ, Z]] =
Z_[Z’ [Cl, _7/]] - [[07 Z]’y] = _([[a’ Z]’y] + [Zv [Cl, y]]) = _[a’ [27 y]]

Moreover, the anticenter is an ideal of L. In fact, let z € a(L), and let a be an arbitrary element of
A. For every element b € A, we have

[[Z’ Cl], b] = [Zv [d, b]] - [d, [2’ b] =- [av
—[la, b], 2] + [[a, b], 2] + [, [a, 2]] = [b,

[[a, 2], b] = [a, [z, b]] - [z, [a, b] = —[a, [b, 2]] + [[a, b], 2] =
]

Note that, in [2], the Lie-center term for a Leibniz algebra is used. However, the property
of anticommutativity is inherent not only to Lie algebras. Therefore, instead of the Lie-center
term, it seems preferable to us to use a more general term: anticenter.

Note also that if char(F) = 2, then the anticenter of Leibniz algebra coincides with the set

{z € L|[a,z] =]z a] for every elements a € L}.

This set, in general, is not an ideal. Therefore, it is worthwhile to use the considerations related
to the anticenter over the field Fsuch that char(F) # 2. Here, we assume that char(F) = 2.

In a Leibniz algebra L, the concept of a center is introduced as follows: The center {(L) is
the set of all elements z such that [z, x] = [x, z] = 0 for an arbitrary element x € L. Clearly, the
center is an ideal of L. The following concept is naturally connected with the center.
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Let L be a Leibniz algebra over a field F, M be non-empty subset of L, and H be a subalgebra
of L. Put

Anny(M) = {a € H|[a, M] =(0) = [M, a]}.

The subset Ann (M) is called the annihilator or the centralizer of M in the subalgebra H. It is
not hard to see that the subset Ann (M) is a subalgebra of H. If M is an ideal of L, then Ann;(M)
is also an ideal of L. The center of L is the intersection of the annihilators of all elements of L.
This leads us to the following concept.

Let L be a Leibniz algebra over a field F, M be a non-empty subset of L, and H be a subal-
gebra of L. Put

AC, (M) ={a € H|[a, u]=—[u, a] for all x € M}.

The subset AC,(M) is called the anticentralizer of M in the subalgebra H. It is clear that the anti-
center of L is the intersection of the anticentralizers of all elements of L. But, on this, all the good
ends. Unlike an annihilator, the anticentralizer of a subset is not always a subalgebra, so an anti-
centralizer can no longer be such a good technical tool as a centralizer. This can be seen from the
following example.

Example 1. Let F be an arbitrary field, and let L be a vector space over F having a basis
{a, b, ¢, d}. Define the operation [ , ] on the elements of the basis by the rule

ld,al=—c,|d,bl=b+c,|d cl=-b,|a,d|=b+c,[bd]=|c,d]=0,|d d]=b,
[a,al=0b,|a,bl=c,|a,c]=-b-c, |c,al=[b,al=[b,c]=]c, b]=0

and expand it in a natural way on all elements of L. It is possible to prove that L becomes a Leibniz
algebraover F. If x=—2d + a, p=0, p =1, then the elements x = — 2d + aand y =d + b + ¢ belong
to AC,(a), but [x, y] = -2b — c ¢ AC,(a).

In Leibniz algebras, the derived ideal [L, L] generated by all elements [x, y], x, y € L is dual
to the center. From our analogy, we can consider a(L) as an analog of the center, while a subspace
(L, LD, generated by all elements €x, yd =[x, a] + [a, x|, x, a € L, can be considered as an analog of
the derived subgroup. At once, we remark that this subspace is an ideal. Moreover, if x, y, z € L,
then the element [[x, a] + [a, x], y] = 0 for every element y € L. Indeed,

([ y] + [y, 2], 2] = [[x y], 2] + [[y, x), 2] = [, [, 2]] 2,5— [y, [x, 2]) + [, [x, 2] = [, [y, 2]] = .
Further,

[Zr [X, y] + [Z/, X]] = [Z’ [x) Z/]] + [Z’ []/, X]] = [[Z’ X],y] + [x’ [Z’ y]] + [[Z’ y],X] + [yr [Zr X]] =

=([[z ], y] + [y, [z, x]D + ([, [z, y]] * [[2 y], x]).

On the other hand, [a, a] + [a, a] = 2[a, a] € 4L, LD, and char(F) # 2 implies that [a, a] € €L, LD,
so that Leib(L) < €L, LD. Since L/Leib(L) is a Lie algebra, [x, a] + [a, x] € Leib(L), so that
Leib(L) = L, LD. Thus, with this approach, the Leibniz kernel is dual to the anticenter. In this
connection, it is useful to recall the presence of another important ideal in Leibniz algebras, na-
mely, the left center. If L is a Leibniz algebra, then we put

Cleft(ll) ={x e L|[x,y] =0 for each element y € L}.
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It is possible to prove that ¢™(L) is an ideal of L and Leib(L) < ¢™(L).
Starting from the anticenter, we define the upper anticentral series

(0= og(L) < ey (L) S o(L) < .oy (L) S 0y L (D)< .. o (L) = o1, (L)

of a Leibniz algebra L by the following rule: a,;(L) = a(L) is the anticenter of L, and, recursively,
a, . ((L)/o, (L) = a(L/a, (L)) for all ordinals %, and a(L)=u,_ o L) for the limit ordinals p.
By definition, each term of this series is an ideal of L. The last term o (L) of this series is called
the upper hyperanticenter of L. A Leibniz algebra L is said to be hyperanticentral if it coincides
with the upper hypercenter. Denote, by al(L), the length of upper central series of L. If L is hy-
peranticentral and al(L) is finite, then L is said to be antinilpotent.

Let A, B be the ideals of L such that B < A. The factor A/B is called anticentral, if A/B <
< a(L/B). By definition, the factor A/B is anticentral if and only if [x, a] + [a, x] € B for each a
e Aand eachx € L.

If U, V are the ideals of L, then we denote, by €U, VD, a subspace generated by all elements
[u, v] + [0, u], u € U, v € V. As we have seen above, [u, v] + [0, u] € Clett(L). Using the above ar-
guments, can show that €U, VD is an ideal of L.

You can immediately note that a factor A/B is anticentral if and only if 4L, AD < B.

Now, we can introduce an analog of the lower central series. Define the lower anticentral
series of L,

L=wx,(L)>2xy,(L)>...x (L) 2w, (L) >...x4(L),

by the following rule: « (L) = L, «,(L) = 4L, LD, and, recursively, x, , (L) = 4L, x, (L)) for all or-
dinals A and k(L) =n, . x (L) for the limit ordinals p. The last term k(L) is called the lower
hypoanticenter of L. We have k(L) = 4L, «5(L)D.

As we have seen above, k,(L) = 4L, LD = Leib(L) = K. Furthermore, k,(L) = 4L, 1,(L)b. If
x €L, aeK=x,(L), then dx, ab = [x, a] + [a, x] = [«, a], because Leib(L) < Z;left(L). It follows
that k(L) = [L, k,(L)] = [L, Leib(L)].

If A is an ideal of L, then we put y, ,(A) = A, vy, ,(A) = [L, A], and, recursively, v, , , (A) =
=[L,y, ,(A)] for all positive integers .

Thus, we obtain «,(L) = L, k(L) = Leib(L), 4(L) =7, ,(Leib(L)), x, , (L) =7, ,(Leib(L))
for all positive integers 7.

Suppose now that L has a finite series of ideals

0)=A, <A <A, <...<A =L

This series is said to be anticentral, if every factor A./A s anticentral, 1 <j < n.
Proposition 1. Let L be an Leibniz algebra over a field F and

0)=C,<C,<...<C,=L

be a finite anticentral series of L. Then
D x(L)<C, ;50 thatx, . (L) ={0).
(i) C; < a(L), so that a, (L) = L.
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These statements were proved in [2] for right Leibniz algebras; for left Leibniz algebras,
the proof is similar.

Corollary. Let L be an antinilpotent Leibniz algebra. Then the length of the lower anticentral
series coincides with the length of the upper anticentral series. Moreover, the length of these two series
is the smallest among the lengths of all anticentral series of L.

The length of the upper anticentral series (or lower anticentral series) is called the class of
antinilpotency of a Leibniz algebra L and is denoted by ancl(L). Note that, in [2], a Lie-nilpotent
algebra and the class of Lie-nilpotency are considered. However, the concept of Lie-nilpotency
arose much earlier in the theory of associative rings. So, in order to avoid confusion, it is better to
use another term. In addition, as we have already noted, the property of anticommutativity is in-
herent not only in Lie algebras. Therefore, we focus on it.

Note some properties of hyperanticentral Leibniz algebras.

Proposition 2. Let { L, | . € A '} be a family of Leibniz algebra over a field F.

(i) If nis a positive integer, then o, (Cr, _ , L,)=Cr, _, o (L,).

(ii) If o is a first infinite ordinal, then o (Cr, _, L,) < Cr, _, o (L;).

(iii) If wis an arbitrary ordinal, then o0 (@, A L) =9, _,a,L) in particular, if every al-
gebra L, is hyperanticentral, then the direct sum @ , _ , L, also is hyperanticentral.

(iv) If every algebra L, is antinilpotent and there exists a positive integer k such that ancl(L,) <
< kforall )k € A, then the Cartesian product Cr, _ , L, is also antinilpotent and ancl(Cr, _ , L,) < k.

(v) If every algebra L, is antinilpotent and the set A is finite, then Cr, _, L, =&, _, L, is an-
tinilpotent, moreover, ancl(® , _ , L,) < max {ancl(L,) | A € A}.

Proposition 3. Let L be a Leibniz algebra over a field F.

(i) If L is hyperanticentral, then every subalgebra of L is hyperanticentral and every factor-
algebra of L is hyperanticentral.

(ii) If L is antinilpotent, then every subalgebra of L is antinilpotent, and every factor-algebra
of L is antinilpotent.

(iii) If A is a non-zero ideal of L such that A ™ o (L) #(0), then A n a. (L) = (0).

(iv) If A, B are antinilpotent ideals of L, then A + B is an antinilpotent ideal of L.

The above properties show a certain analogy between nilpotent and antinilpotent Leibniz
algebras. However, this analogy is very shallow. Thus, every principal central factor of a Leibniz
algebra L has dimension 1. On the other hand, every principal factor of a Lie algebra is anticentral,
but it can have infinite dimension. Further, a finitely generated nilpotent Leibniz algebra has
finite dimension [3, Corollary 2.2]. On the other hand, there are finitely generated Lie algeb-
ras, which have infinite dimension.

Note the following analog. In work [4, Corollary B1], it was proved that if a center of a Leibniz
algebra has finite codimension, then a derived ideal has finite dimension.

Proposition 4. Let L be a Leibniz algebra over a field F. If the anticenter of L has finite co-
dimension d, then the Leibniz kernel of L has finite dimension at most d°.

Proof. Let A = a(A). Then L = A @ B for some subspace B. Choose a basis {a, | A € A}in A
and a basis { b,,..., b, } in B. If y is an arbitrary element of L, then y =a + X <j<d ijj, where
aeA,BjeF,igjgd.Wehave

[y, yl=la+2, gjgdﬁjbj’ a+z1<k<dﬁkbk] =

=laal a2y << a BRI+ 2 By Al T 12 < caBby 2y << a Pibil:
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Since a € a(A), [a,a]=0and [¢, X, _, _, Bkbkj] Ll DI ijj, a] =0. So, we obtain

[ v1=21 <can<ncaBiBelb; byl

It follows that Leib(L) generates by the elements {[b, b,] |1 <j<d, 1<k<d) Inparticular,
dim (Leib(L)) < d".

We note at once that the converse is not true. The following example justifies this.

Example 2. Let F= Q be a field of all rational numbers and let L be a vector space with a basis
{a,c,},neN. Wecan define an operation [,] on L, assuming that [a,a,]=c,[a,c,]=]c,a,l=
= [c,, ¢,] = 0 and expanding this operation, using the property of bilinearity, to all elements of L .
It is not difficult to verify that such a particular operation makes L, a Leibniz algebra over Q.
Moreover, this algebra is nilpotent and ncl(L,) = 2. It is possible to show that {(L) = Leib(L) =
= o(L). Thus, Leib(L) has a dimension 1, but a(L) = Leib(L) has infinite codimension.

In conclusion, we give a result arising from another, more familiar analogy. Above, we already
noted one of the results of work [4, Corollary B1], which states that if the center of a Leibniz al-
gebra has finite codimension, then the derived ideal has finite dimension. This result is analogous
to the next known group-theoretic result.

If the center of a group G has finite index, then the derived subgroup of G is finite.

This theorem first appeared in the work by B.H. Neumann [5]. Nevertheless, very often it is
called the Schur theorem (see [6] on this subject). The inversion of this theorem is false both for
groups and for Leibniz algebras. Nevertheless, if the derived subgroup of a group is finite, then
the second hypercenter of G has finite index [7]. The same situation holds for the Leibniz algebras,
as our following result shows.

Theorem. Let L be a Leibniz algebra over a field F. Suppose that the derived ideal of L has finite
dimension d. Then the second hypercenter of L has finite codimension at most 2d*(1 + 2d).
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ITPO POJIb AHTUKOMYTATUBHOCTI B AJITEBPAX JIEMBHIIIA
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O POJIM AHTUKOMMYTATUBHOCTU B AJITEBPAX JIEMBHUIIA

AusreGpot JIu npegacraBisior coboil anTMKOMMYyTaTuBHble anre6pbl JleliGuuia. PaceMoTper KpaTkuil aHaniu3
mozaxo/a K anrebpe JleitOHMIA, KOTOPBIN GasupyeTcst Ha KOHIeMuu aHTuieHTpa (JIn-1enTpa) U aHTHHUIIBITO-
TeHTHOCTH (JIN-HUIBIIOTEHTHOCTH).
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