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We study the Hilbert boundary-value problem for analytic functions in the Jordan domains satisfying the quasi-
hyperbolic boundary condition by Gehring—Martio. Assuming that the coefficients of the problem are functions of the
countably bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we
prove the existence of solutions of the problem in terms of angular limits. As consequences, we derive the correspond-
ing results concerning the Dirichlet, Neumann, and Poincaré boundary-value problems for harmonic functions.
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1. Introduction. D. Hilbert studied the boundary-value problem formulated as follows: To find
an analytic function f(z) in adomain D bounded by a rectifiable Jordan contour C that satis-
fies the boundary condition

limRe(M(D)f ()} =0(%) VEeC, (1

where both the coefficient A and the boundary data ¢ of the problem are continuously differen-
tiable with respect to the natural parameter s on C. Moreover, it was assumed by Hilbert that
A #0 everywhere on C. The latter allows us, without loss of generality, to consider that |\ |=1
on C. In this case, the quantity Re{Af} from the left in (1) means a projection of f onto the
direction A interpreted as vectors in R?.

Historic surveys in the subject can be found in the recent papers [1-3]. Here, we substantially
weaken the regularity conditions on the functions A and ¢ in the boundary condition (1) and on
the boundary C of the domain D . On the one hand, we will deal with the coefficients A of coun-
tably bounded variation and the boundary data ¢ which are measurable with respect to the loga-
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rithmic capacity. On the other hand, the fundamental Becker—Pommerenke result in [4] allows us
to study the Hilbert boundary-value problem in domains D with the quasihyperbolic boundary
condition introduced in [5].

Recall that the quasihyperbolic distance between points z and z, in a domain D < C is the

quantity k,(z, z,) = infjds/d (§,0D), where d(,0D) denotes the Euclidean distance from
Y

v
the point {e D to dD, and the infimum is taken over all rectifiable curves y joining the points z
and z, in D, see [6]. Further, it is said that a domain D satisfies the quasihyperbolic boundary
condition if, for constants @ and b and a point zy€ D,

d (zy,0D)
d(z,0D)

Let D be a Jordan domain in C such that it has a tangent at a point {e dD A path in D
terminating at { is called nontangential if its part in a neighborhood of { lies inside of an angle
in D with the vertex at {. The limit along all nontangential paths at C is called angular at the
point. The latter notion is a standard tool for the study of the boundary behavior of analytic and
harmonic functions, see, e.g., [7-9]. Further, the Hilbert boundary condition (1) will be under-
stood precisely in the sense of angular limit.

The notion of the logarithmic capacity is the important tool for our research. Dealing with
measurable boundary data functions ¢@({) with respect to the logarithmic capacity, see defini-
tions in [3], we will use the abbreviation q.e. ( quasieverywhere) on aset E c C, if a property holds
for all {e E except its subset of zero logarithmic capacity [10].

2. Some definitions and preliminary remarks. Later on, D denotes the unit disk {ze C:| z|<1}.
Given a Jordan domain D in C, we call A:9D —C a function of bounded variation, write
Ae BV (D), if

kp(z,zy)<a+bln Vze D. (2)

j=k
V}\,(aD)::SU‘pZ’}\'(Cj+1)_7\‘(cj)’<°° (3
j=1
where the supremum is taken over all finite collections of points { = oD, j=1,...,k, with the
cyclic order meaning that g; lies between §;,q and §;_ for every j=1,..., k. Here, we assume
that {,, =8 ={;,. The quantity V; (D) is called the variation of the function \ .
Now, we call A:9D — C a function of the countably bounded variation, write e CBYV (D),
if there is a countable collection of mutually disjoint arcs vy, of dD, n=1,2,... on each of which
the restriction of A is of bounded variation V,, supV, <eo, and the set dD\ Ly, has loga-

n
rithmic capacity zero. In particular, the latter holds true if dD\ Uy, is countable. It is clear
that such functions can be singular enough.
The following statement was proved as Proposition 5.1 in paper 3], where the function o,
has been called by a function of the argument of A .
Proposition 1. For every function A : 0D — 9D of the class BY (0D), there is a function a : 0D — R
of the class BV (0D) with Vo‘x < V.3 /2 such that A({)=exp{ioy (§)} forall {eoD.

Given a Jordan curve T < C, L7 (I') denotes the class of all functions a.:T'— R which are
measurable with respect to the logarithmic capacity and q.e. bounded.
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Proposition 2. For every function A:0D — 0D in the class CBV(0D), there is a function
oy, 190D - R inthe class L. (dD)NCBY (dD) such that

A(C) =exp{ioy (§)} g.e.ondD. (4)

Proof. Denote, by A, the function on 9D that is equal to A on 7, and to 1 outside of v,,. Let ct,,
correspond to A, by Proposition 1. Then its variation V; <V,3mn/2. With no loss of generality,

we may assume that o, =0 outside of y,,. Set o= Zocn. Then ave CBY (aD) and A(8) = exp{ia({)}
n=1

g.e. on 0D Applying the corresponding shifts (divisible 2n ), we may change o, on vy, through
ot with |o; | <7 at the middle point of y, . Then it is clear that the new function o € CBY (9D)
and A({)=exp{ioa” ({)} q.e. on 9D and, moreover, |o*|<m+V,3n/2 on every vy, , ie |a’| is
bounded outside of the set dD\ uy,,. In addition, by construction, the function o is conti-
nuous g.e. on dD Hence, o € L7 (D).

We say that a Jordan curve T in C is almost smooth if T has a tangent quasieverywhere.
Here, we say that a straight line L in C is tangent to T at a point z,e T if

lim sup dist(z 1) _ 0. ()
2z, 2el | zZ=z |

In particular, T" is almost smooth if T" has a tangent at all its points except a countable set.
The nature of such Jordan curves T is complicated enough because the countable set can be eve-
rywhere dense in T'.

Remark 1. By Corollary of Theorem 1 in [4], a conformal mapping of a Jordan domain D in
C with the quasihyperbolic boundary condition onto the unit disk D as well as its inverse are
Holder continuous in the closure of D and D, respectively. Since the logarithmic capacity of a
set coincides with its transfinite diameter, these mappings keep the sets of the logarithmic capa-
city zero on the boundaries of D and D. Consequently, by Remark 2.1 in [3], such mappings
also keep boundary functions which are measurable with respect to the logarithmic capacity.
These facts are key for the research of the boundary-value problems in the given domains.

3. Correlation of conjugate harmonic functions. The following statement was first proven
for the case of bounded variation in [3] as Theorem 5.1. Here, we give an alternative proof of this
significant fact and extend it to the case of countably bounded variation.

Lemma 1. Let o.:9D — R bein the class L, (0D)NCBV (D), let u:D—R be a bounded har-
monic function such that

ll_)mg u(z)=a(%) (6)

at every point of continuity of o, and let v be its conjugate harmonic function. Then v has the
angular limit

limv(z)=B() g.e. onaD, (7
z-5¢

where B:9D — R is measurable with respect to the logarithmic capacity.
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Proof. Let us start from the case ae BY(dD). In this case, o has at most a countable set S
of points of discontinuity and, consequently, .S is of zero logarithmic capacity. Hence, by the gen-
eralized maximum principle, see the point 115 in [11], such a function # is unique and, thus, u
can be represented as the Poisson integral of the function o, see Theorem 1.D.2.2 in [8],

2

u(re™)= Fo(e ). (8)

Y
2_'[1 Zrcos(ﬁ t)+r

Here, the Poisson kernel is a real part of the analytic function ({+z)/({—z), {=e", z=re™,

and, by the Weierstrass theorem, see Theorem 1.1.1 in [12], the Schwartz integral

d
@)= J a© Ak é ©
gives the analytic function f=wu+iv in D with u=Re f, v=Im f, and
LT i _Fo
= dt, 10
[(@)=o J = (10)

where F(t)=e "a(e”) and C= 2i _[Oc(eit)dt. By Theorem 2(c) in [13], the function f(z) has
T

angular limits /() as z—{ q.e. on dD, because the function F is of bounded variation. It re-
mains to note that f({)=lim f,(§), where f,(§)=f(r,£), for an arbitrary sequence r, ->1-0
Nn—soo

as n— o q.e. on dD. Thus, f({) is measurable with respect to the logarithmic capacity, be-
cause the functions f, ({) are so as continuous functions on 0D, see 2.3.10 in [14].

Now, let a.e CBY (D). Then its set of points of discontinuity is at most of zero logarithmic
capacity. Hence, again by the generalized maximum principle, the bounded function u satisfying
(6) is unique. Moreover, a.e L7 (dD) and, consequently, « can be represented by the Poisson in-
tegral (8), and the Schwartz integral (9) gives the analytic function f=u+iv in I, where

; 17 2rsin(V0—t)
iy _ L
o(re )—27t J.

o (e )dt . (11)
_n1—2rcos(ﬂ—t)+r2

Let us apply the linearity of the integral operator (11). Namely, denote, by y , the character-
istic function of an arc vy, of d), where o is of bounded variation from the definition of CBV.
Setting o, =0y and o =o—o.,, we have oo = o, + 0. Then v=v, +v, where v, and v, corre-
spond to o, and o by formula (11). By the first item of the proof, there exists the angular limit

lim v« (2) =B« ({) q.e. on 9D, where B, :90D — R is a measurable function with respect to the
zZ—>

logarithmic capacity. Moreover, it is evident from formula (11) that v, (z) = B, (§) as z— € for
all {ev,, where Bj:v. = R is continuous on 7,. Thus, setting B=p, +p, on Y., we obtain the
conclusion of Lemma 1 because the collection of such arcs vy, is countable, and the completion of
this collection on 0D has zero logarithmic capacity.
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4. The Hilbert problem for analytic functions.
Theorem 1. Let L:9D — 9D be in the class CBY (dD) and ¢:9D — R be measurable with re-
spect to the logarithmic capacity. Then there is an analytic function [ : 1D — C with the angular limit

iiiB;Re[k(C)f(Z)] =¢(C) g.e.ondD. (12)
Proof. By Proposition 2, the function o, € LT (0D)NCBV (dD) . Therefore,

z+8 d¢
z-0 ¢

1
g(z2)=— | o, (0) zeD,
2maJ];) A

is an analytic function with u(z)=Re g(z) - 0, (§) as z— { for every {e dD except a set of
the discontinuity points for the function o, , which has zero logarithmic capacity, see Corolla-
ry IX.1.1 in [12] and Theorem I1.D.2.2 in [8]. Note that the function A(z)=exp{ig(z)} is also
analytic. By Lemma 1, there is a function B:0D — R that has the angular limit v(z)=Img(z) =
—B(C) as z—{ q.e.on 9D and B is measurable with respect to the logarithmic capacity. Thus,
by Corollary 4.1 in [3], there exists an analytic function B:ID — C that has the angular limit
U(z)=Re B(z2) = ¢(0)exp{B(0)} as z— { q.e.on dD Finally, an elementary computation shows
that the desired function has the form f=AB.

Theorem 2. Let D be a_Jordan domain with the quasihyperbolic boundary condition, let 0D have
a tangent q.e., let \.:0D — C,|M()|=1, be in CBV (D), and let ¢:0D — R be measurable with
respect to the logarithmic capacity. Then there is an analytic function f : D — C with the angular limit

limRe[AMO)f (2)]=0(L) gq.e.on oD (13)

Z—¢

Proof. Let g be a conformal mapping of D onto I that exists by the Riemann mapping
theorem, see Theorem I1.2.1 in [12], and by the Caratheodory theorem, see Theorem I1.3.4 in [12],
g be extended to a homeomorphism g of D onto D). By Corollary of Theorem 1 in [4], g« :=&|,p
and its inverse function are Hélder continuous. Then A:=Aogile CBY(ID) and @ :=@ogi' is
measurable with respect to the logarithmic capacity by Remark 1. Thus, by Theorem 1, there is an
analytic function A:1) — C that has the angular limit

lim Re{A(M)A()} =@ (M) g.c.ondD. (14)
®-N

Let us consider the analytic function f:=Aog and show that f is desired. Indeed, by
the Lindelof theorem, see Theorem I1.C.2 in [8], if dD has a tangent at a point (, then
arg[g(0)—g(z)]-arg[{—z] — const as z— (. In other words, the images under the conformal
mapping g of sectors in D with a vertex at { is asymptotically the same as sectors in I with a
vertex at @ = g({) . Consequently, nontangential paths in D are transformed under g into non-
tangential pathsin D and inversely q.e. on dD and dD respectively, because D is almost smooth
and g, and g;' keep sets of logarithmic capacity zero. Thus, (14) implies the existence of the
angular limit (13) g.e. on 9D .
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5. On Dirichlet, Neumann, and Poincaré problems. We reduce these boundary-value prob-
lems for harmonic functions to suitable Hilbert problems for analytic functions studied above.

Corollary 1. Let D be a Jordan domain with the quasihyperbolic boundary condition and let
oD have a tangent q.e. Suppose ¢:dD — R is measurable with respect to the logarithmic capacity.
Then there exists a harmonic function u: D — C that has the angular limit

limu(z)=0() gq.e.onadD. (15)
z¢

It is well known that the Neumann problem, in general, has no classical solution. The neces-
sary condition of solvability is that the integral of the function ¢ over 9D is equal to zero [15].

Theorem 3. Let D be a_Jordan domain with the quasihyperbolic boundary condition and let
oD have a tangent q.e. Suppose that v:9D — C,|v(Q)|=1, is in the class CBY and ¢:0D — R is
measurable with respect to the logarithmic capacity. Then there exists a harmonic function u:D — R
with the angular limit

lim o =@({) ge onadD. (16)
z—¢ ov

Proof. Indeed, by Theorem 2, there exists an analytic function f:D — C that has the an-
gular limit

irréRe[V(C)f(Z)] =9(0) an

g.e. on dD . Note that an indefinite integral F of f in D is also an analytic function and, cor-
respondingly, the harmonic functions u=Re F and v=Im F satisfy the Cauchy—Riemann sys-
tem v, =-u, and v, =u,. Hence f=F'=F, =u, +iv, =u, —iu, =Vu where Vu=u, +iu, is
the gradient of the function u# in the complex form. Thus, (16) follows from (17), i.e. u is the
desired harmonic function, because its directional derivative g_u =ReVVu=RevVu= (v,Vu) is

the scalar product of v and the gradient Vu . v

Corollary 2. Let D be a_Jordan domain in C with the quasihyperbolic boundary condition and
let the unit interior normal n(§) to the boundary oD be in the class CBY . Suppose that ¢:0D — R
is measurable with respect to the logarithmic capacity. Then one can find a harmonic function
u:D — C suchthat g.e.on 0D there exist:

1) the finite limit along the normal n({)

u(@)=limu(z),
z5¢

2) the normal derivative

gy = lim HEHD L) gy,

t—0 t

3) the angular limit

. ou ou
1 — = —_—
21_>H<1; . (2) . ©
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I1PO 3AJIAUY TIJIBBEPTA JIJIA AHAJIITUYHUX OYHKITII
Y KBASITTIIEPBOJITYHUX OBJIACTAX

Hocaimkeno rpannuny 3azauy [iabbepra aas aHamiTHIHUX GYHKIINA B KOPAAHOBUX 00JACTSX, SIKi 3a0BOJIb-
HSAIOTH KBasirinmepbosiuny ymoBy lepinra—Maprio. 3 mnpunyinieHHsM, o KoedimieHTn 3azadi € QyHKIISIME
371iueHHo-06MeKeHO1 Bapiarlii i TpaHuYHi faHi € BUMIPHUMHU BiTHOCHO JorapudMiuyHOl €MHOCTI, TOBeIeHo ic-
HyBaHHs PO3B’sI3KiB 33/1a4i B TEPMiHAX KYyTOBUX TPAHUII. JIK HACTIIKU OTPUMAHO BiITIOBiIHI Pe3yJbTaTH JIJIs
kpaitoBux 3azay /lipixse, Hefimana i [lyankape 171 rapMOHIUHUX (DYHKITII.

Kmouosi cnosa: kpaiiosi 3adaui I'invbepma, [ipixne, Heiimana i Iyanxape, ananimuuii i zapmoniuni Qynxuii,
Keasizinepboniuna zpanuuna ymosa, 102apuGMiuia EMHICMy, KYmoea epanuis.
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O 3AJIAYE TUJIBBEPTA JIJIs1 AHAJTUTUYECKNX OYHKIINIA
B KBASUTUIIEPBOJIMYECKNX OBJIACTAX

Wccenenosana kpaesas 3agada [uiabbepra sl aHAIUTHYECKUX (DYHKIMHA B JKOPAAHOBBIX OOJIACTSX, yIOBJIE-
TBOPAIOIIUX KBasurumepbosndeckomy ycaosuio Tepuara—Mapruo. C npeanosiokeHneM, 4To KoahGUIneHThr
3a/1auu SIBJISIIOTCS (DYHKIIUSIMU CY€THO-OTPAHUYEHHOW BaPUAIIUHY, & TPAHUYHbIE JJAHHBIE M3MEPUMbI OTHOCUTEIb-
HO JJorapu(pMUIeCKO eMKOCTH, I0Ka3aHO CYIeCTBOBAHME PellleHU i 3a/1a4l B TEPMUHAX YTJIOBBIX ITPEIEJIOB.
B xauecTBe cieficTBUI MOJy4eHBI COOTBETCTBYIONINE Pe3YJIbTaThl JJisl KpaeBbix 3anau upuxie, Heiimana u
Ilyankape /111 rTapMOHUYECKUX (DYHKITUT.

Kantoueevie cnosa: xpaesvie sadauu Iunvbepma, [Jupuxne, Heimana u Ilyankape, anarumuueckue u 2apmMonu-
uecKue QYHKYUU, K8asuzunepOOIUUecKoe Kpaesoe yciosue, 102apudMuueckas eMKocmy, Yenool npedei.

30 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2019. Ne 2



