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Mathematical problems associated with the numerical solution of equations for the predictive models of regional
atmospheric circulation are considered. A methodology is considered for ef fective regional solutions of bounda-
ry-value problems with a prehistory on the basis of the “one-way interaction” approach. Within this approach, a
method is proposed for filling the data given on the macroscale grid nodes in the mesoscale network based on the
spline interpolation and a precise (the fourth-order of accuracy) numerical method for the approximation of the
first- and second-order derivatives of differential equations. Thereby, solving problems for ordinary differential
equations can be carried out effectively by the interpolation.

Keywords: mesoscale weather forecasting, differential equations, interpolation

1. Introduction. Regular grids with even steps of the spatial coordinates in the whole computa-
tional domain are the most convenient for implementing numerical methods for the integration
of equations of weather forecasts. However, computing a local numerical weather forecast based
on the global general circulation models of the atmosphere will need an enormous increase in
computation time exceeding reasonable limits. Moreover, as some regional weather details are
well localized, it is reasonable to apply high-resolution grids locally.

Separate modeling of regional atmospheric processes, in which the boundary conditions are
considered unchanged for the time interval calculation, for years was only of scientific interest
(e.g., see [1, 2]), since stated lateral boundary conditions lead to large errors and even to false
numerical solutions. So, to reduce the forecast errors in the restricted area, one must add a buffer
zone to expand the boundaries of the area to such an extent that the generated disturbance at
the boundaries does not reach the computational domain. But increasing the area of solutions
entails increasing the computer performance requirements and may lead to difficulties in the prac-
tical realization of such models.
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In the recent years, the regional modeling of atmospheric processes is implemented in view
of the fact that the field of meteorological variables in a bounded domain is formed under the in-
fluence of a macroscale atmospheric circulation. Therefore, a bounded domain of solutions is
seen as a part of the whole, and the non-stationary boundary conditions at its lateral bounda-
ries are formulated on the basis of data obtained from a bordering region. Thus, in practice, when
solving the numerical weather prediction problem in a limited area, they make the grid more
condensed to achieve the desired accuracy for solving the problem in the field of large gra-
dients of dependent functions. Particularly, in [3, 4], the authors analyzed the problems arising
from the application of non-uniform grids to difference schemes of numerical integration of the
equations of hydrodynamics and heat and mass transfer within a regional weather prediction
model. So, the combined model consists of:

1) the global atmospheric general circulation model including simplified equations nu-
merically implemented on the coarse grid;

2) the regional model, which includes the complete equations of fluid flow, heat, and mass
transfer numerically implemented on a fine grid.

The boundary conditions necessary for the regional model are identified with the solution to
the global model that can be integrated together with the regional model, or in advance. This
method of forecasting for the nested grids method was called the method of “one-way interac-
tion” [5], because the numerical results of the internal model do not affect the integration of
the equations of the external model.

2. The Method of “One-Way Interaction”. In the analysis of the essence of the method of
“one-way interaction”, it may seem that, from a computational point of view, there is no upper
limit on the term of the regional forecast on embedded grids. Therefore, it was considered that
the regional model containing the complete equations of fluid flow and heat, and mass transfer
solved numerically on a fine grid will be the basis of operational weather prediction schemes in
the near future. But in practice, non-stationary boundary conditions are determined by the ex-
trapolation in the models of “one-way interaction”. This leads to the emergence of errors spread
into the area of solutions with the speed of external gravitational waves, which reduces signi-
ficantly possible terms of a weather forecast for a limited area. Consequently, in order to make
the regional weather forecasts real, it is necessary to continue the study of the interaction of
grids with different resolutions.

The issue of a correct formulation of boundary conditions in the case of the method of
“one-way interaction” is difficult enough. In the books devoted to the study of the effect of dif-
ferent types of boundary conditions on numerical simulation results for non-uniform grids
(see, e.g., [6]), it was shown that the optimal mathematical and computational boundary condi-
tions for the scheme with the “one-way interaction” should have the following properties:

boundary conditions must specify the main quasigeostrophic part of a solution, when the
movement is directed into the region; the outlet of the solutions region should contain no ref-
lection in the form of a computing mode or gravitational waves;

fast gravitational waves generated inside the area should, if possible, go across the border
or should not be reflected and reinforced by the boundary conditions.

Most of the boundary conditions applied in practice do not meet not only both require-
ments, but each of them separately.
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Since the traditional numerical solution of the problem of regional weather forecasting in
the formulation of classical initial-boundary-value problem is associated with a lot of difficulties
discussed above, we replace it with a similar problem satisfying the special requirements arising
from the concept of “one-way interaction”. This may be explained with a simple example.

Let we need to find a function R(¢) at the interval t (STt t]- satisfying the differen-
tial equation

dR
dr

and additional conditions from the prehistory

=F(t) (D

R())=R;, j=12,..,N, (2)

where R are the discrete values of the function R(¢) given at the nodes ¢ =¢;(j=12,...,N) of
the large-scale grid @, with the grid step pitch #; =¢; —¢; ;. In general, F is a nonlinear ope-
rator. It is algebraic for ordinary differential equations and is spatial differential for partial dif-
ferential equations.

At first, we restrict ourselves to problem (1) — (2) in the case of an ordinary differential
equation. The natural way to solve this problem is as follows. On the segment [¢;_,¢;], we intro-
duce a small-scale grid ®, of points {,(k=0,1,..., M) with the increment of T, =, —C,_,
provided that §, =¢; ;, §), =¢; and consider the differential equation not everywhere on ¢, but
only on the interval [¢;_,¢;]. Replacing the derivative dR(,)/dt by its approximate value, for

example, dR(C,) / dt = %(Ckn)—m@k)]/% = (R, —R,) /1, we move to the difference scheme
Ry =R +1,F (), k=0,1,..,M-1. 3)

The initial value of R(Ly)=R(¢;)=R;; is defined. Other successive values R(g,)=
=R(¢;4) =R, are found by solving the differential equation (3). That is, to solve the prob-
lem (1), (2), one can apply a difference scheme for the Cauchy problem.

It can be done also in a different way [4]. Taking a closer look at the statement of the problem
(1), (2), one can see that finding the value of R(¢) in the interval [¢;_,¢;] is a task of interpola-
tion. Indeed, at the points ¢ =¢; (j=1,2,...,N), we know the Values of the function R; =R(;)
and values of the right side of Eq (1) F (t ), i.e., its first derivative dR / dt| =F(t; ) Under
the terms of problem (1), (2), one must flnd R(¢) for the value of ¢ dlfferenf from the values
of the nodes t=¢; (j=1,2,...,N). Hence, we come to the method known as the interpolation
“with multiple nodes” or Hermite polynomial interpolation.

3. A numerical method based on a prehistory and interpolation with multiple nodes for
solving the non-stationary problem. The following will consider the general problem of interpo-
lation functions by a set of its several values (prehistory) and a derivative of the first order with
the help of an algebraic polynomial. An appropriate representation of the polynomial interpola-
tion will be obtained, its uniqueness proved, and interpolation error estimated.

Suppose that in addition to the values of the function R/, its first order derivatives R’; are
given at the nodes of the grid under consideration so that the total of known data is n+1=2N .
Suppose, furthermore, the values of ¢ does not coincide with the grid points t; (j=12,..,N),
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where the values 9?5-“) , oo=0,1 are given. It is required, using the source data, to find a value
R(t), i.e. to solve the problem of interpolation. To do this, one must specify a rule by which,
based on given values ¢; and SK(“)(tj), o=0,1, (j=12,...,N), we can calculate the approxi-
mate value of R(¢).

It is known that if the function R on the interval a <t <b of small length has derivatives
of a sufficiently high order, then their behavior on a small portion of it is not very different
from the geometric representation of an algebraic polynomial. This follows from the fact that
the function R in the considered interval can be represented by the Taylor formula with a
small error term. Therefore, the interpolation of the function by an algebraic polynomial should
give good accuracy by taking a sufficient number of sites close to the point of interpolation ¢ .

Construct an algebraic polynomial P,(¢) of the degree n satisfying the conditions

PO@)=R)), =01, j=12..,N (4)

We prove that there is only one interpolation polynomial P,(¢) satistying conditions (4).
The interpolation conditions (4) represent a system of linear algebraic equations for the coef-
ficients ay, a, ..., a, of the polynomial

P(t)=apt"+at"" +...+a, . (5)

The number of equations of this system is equal to the number of unknowns and is equal
to 2N . Therefore, it suffices to show that the homogeneous system

(a) — _ P
PO(t)=0, a=01 j=12..,N, (6)

has only the trivial solution @, =a,=...=a, =0. The condition (6) for a fixed j and a=0,1
means that the number ¢; is a root of the multiplicity n of the polynomial P,(¢). Thus, the po-
lynomial P,(¢) given the multiplicity has just no less than n+1 roots at the [a, b]. Since the de-
gree of P, (¢) is equal to 7, this polynomial is identically zero, all its coefficients are equal to
zero, the homogeneous system of equations (6) has a unique solution ¢, =g, =...=a, =0, and
there is only one polynomial (5) satisfying the conditions (4).

Heterogeneous system (4) is uniquely solvable for any right-hand side. Since the values of
RO (¢ i), =01 j=12..,N includes only the right side of the system (4), then the coef-
ficients a; of the polynomial P, (¢) are expressed linearly through the value of RO (¢ i) le.

N
P,(1)=Y L(OHR(t)) . (7
j=t

We now find explicit representation of formula (7) with the help of the residual
(R, 0) =R - B, (0). (8)

It occurs, when replacing the function R(¢) with the interpolation polynomial P,(¢), and
is called the error of interpolation or residual member of the interpolation formula. Obviously,
this error is zero at the nodes of the interpolation. We now estimate the error at an arbitrary
point ¢ €a, b].
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Theorem 1. Let nodes t; (j=1,2,...,N) and a point t belong to the segment [a, D], and let
the function R(t) have a continuous derivative of order n+1 on |a, b]. Then there exists a point
& on the segment |a, b] such that the following equality holds for the interpolation error (R, t) :

¥, (@)

VD=

N

REDE), 0=t ©)
j=1

Proof. Consider the auxiliary function

0(8)=R(s)—P,(s)-K¥,(s), (10)

where se[a,b], K is a constant. Let us evaluate 7;,(R,¢) at a given point ¢ €[a, b], which is
not a node of interpolation. We choose the constant K from the condition o(s)=0. It is
enough to put

_RO-P©
¥, (0)

The function o(s) has at least n+ 2 zeros on [, b], namely, at the points ¢ and ¢; (j=1,2,..., N).
The derivative of the first order o’(s) by the theorem of Rolle has at least one zero within each
interval between adjacent points ¢, t,,...,ty, ¢t. The number of zeros will be N. Moreover,
0’(s) has n roots of the multiplicity one at each point ¢; (j=1,2,...,N). Thus, ¢’(s) has, given
the multiplicity, of at least n+1 zeros on [a, b]. Similarly, the second-order derivative o”(s)
has at least n roots, etc. The derivative oV (s) vanishes at least once on [a, b]. Thus, there
exists a point & e[a, b], where o™ (5)=0.

From (10), we have

Q(n+1) (S) — m(n+1) _Kn (S) .

Since W,,(s) is the polynomial of degree n+1 with leading coefficient 1, we have ¥,,(s) =
= (n+1)!. Therefore, in view of the condition o™ (s)=0 and the expression for K , we obtain
the following representation for the error of interpolation:

W, () qa(net)
R@)-P,(t))=—-=R :
(-5, =( BRI
From this, it follows that (9) holds .
Without loss of generality, assume that the function R(¢) is analytic in the closed end area of
$ bounded by g and containing [a, b] inside. Then the formula of Cauchy

_1 30
fm)—mi e (11)

allows as to reduce the construction of an interpolation polynomial P,(¢) to the problem of
finding a polynomial P,(1/(§—¢),¢) for a fairly simple linear fractional functions 1/(§-t),
where & is taken as a parameter over which the integration is carried out in (11).
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We investigate the dependence of the error of interpolation

1 1 1 N
r"(a—r’t)za—tp"(&—t J 2 H O 7 (1)

on &. Equation (12) is an expansion of a rational function into simple fractions. It is obvious
that the point £=¢ for the error is a first-order pole with thr residue equal to one. The common
denominator of all the terms in the expression for error (12) is equal to (§—¢)¥,(§) . Thus, the
error 7,(1/(§—¢),t) can be represented as

A ) 3
""(a—t’t) E—0¥,@E)’ (19

where Q(&, 1) is a polynomial in & of degree not higher than n—1.
The polynomial Q(&,¢) on the right side of (13) does not depend on & and is equal to
¥, (&) . Indeed, when |§| > |t| , the following equality holds:

& ¢ 2§I+1 :

It follows from (13) that the error is linearly dependent on the interpolated function. Con-
sequently, we have

1 = r !t
. (@yt)zza( ) (14)

I+1
I1=1 &+

Since the functions ¢ =¢*(£=0,1,...,n) are interpolated exactly, we have

Tn(tl,t)z()’ -[:O,l,...,?’l

Thus, the first n+1 terms in sum (14) disappear, and expansion (14) begins with a member
r. (s s) /€% Tt follows that the degree of the numerator Q(&,s) in (13) in & is by n+2
units less than that of the denominator. But the degree of the denominator is equal to n+2.
Thus, Q(&, s) is of zero degree and does not depend on &, i.e., Q(,1)=Q(t).

Finally, since the value & = ¢ for 7, (1 / (§ —t), t) is a simple pole, minus 1, then Q(¢) =¥, (¢) and

1 ¥ (1)
I I , 15
r"(&—t t] E—D¥, ) (15)

Taking (11) — (15) into account, we obtain a representation of error 7,(R,¢) in the form
of a contour integral

Y0 1 REQ) e

16
i) T eor,® (18)

(R, t)——f%(&)r (& ] £=
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The resulting integral expression is the basis for finding the required interpolation po-
lynomial

P,t)=R@t)-r,(R,1). (17)

The residue function ¥, (6)R(E)/[(E-1)¥, ()] at the point E=¢ is, obviously, R(¢).
Calculate the residue at the pole &= tj j= 1,2,...,N. For values of & close to the values of tj
the following expansions in power series hold:

SR LI
I=0" "

- 1 _w (-0 8
TG By (19
Y
¥ (i) fan)

Representing the function R(E) /[(§—¢)¥,(§)]in the form of:
RO _ 1 574 RE) (19)

E-DY,E) &—t; W, (&) &-1r’

find the rest of it by multiplying the power series (18).
Expression (17), (18) and (19) and the equality R'(¢;)=F(¢;) according to (1) leads to
the desired interpolation polynomial

N N2(t)
= L IR

R"(¢))
x{[1— N (t-t;)

where

N
N(t)zJ‘Pn(t)zl'[(t—tj).
j=t

Above, we assumed that the function R(¢) is analytic in the closed end area of $, bounded
by g and containing [a, b]. But (20) contains only the values ER(“)(L‘ ), j=1,2,...,N, aa=0,1.
Thus, formula (20) remains true for any function R(¢) with finite values of EK(“)(t ) j=12,...,N,
a=0,1.

The interpolation polynomial (20) for N=3 and Vze[¢;
mial of the fifth degree:

EK(tj)+(t—tj)F(tj)}, (20)

j-1t;] is simplified to a polyno-
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2 2
ti—t t—t. 31—t 1
Ps(t)=[t ’ . ] [t t] J [{“Zt t] ]mj—2+z(t_tj—2)Fj—2]+
i) G =t it

+ (R + @t )F ]+ (20a)

L=t ) (L=t
(3 ¢-t {
1-=—LL R, ——(t; - 0F, |.

Finally, when N =2 and V¢ e[t

2

t]_1 _t]_2

j-1-t;], we have the third-degree polynomial

it ot

(-t . t.—t
+ —L= 1 ||1+2- R, +(;-0F; |

One can make sure that the last formula gives correct results at R =1, ¢, ¢2, ¢>. At R=¢*, the
maximal error 7, in the range (0,1) is 7,,, =—0,0625. At the same time, by the Bessel formula,
Tnax = —0,5625 with the same number of given R(¢;) values.

2
Py(t)= (ttf ;t J an%]s@_l +(t—tj_1)Fj_1]+ (200)

max
We indicate the main advantages of these interpolation formulas built on the basis of prede-

termined values of the function and its derivative R (¢ i), J=12.,N,a=01:

they are more accurate than any of the formulas that use only the value of R(¢,);

when interpolating inside the interval (¢y_;, ¢y ) we do not need the data outside of the right
border of the segment of interpolation, so they can be used for the rightmost interval,

values of the function R(¢;) and its derivative R’(¢;) can be set on an irregular grid ¢;.

Conclusion. The results obtained in this paper indicate that solving problems of the type (1),
(2) for ordinary differential equations can be carried out effectively by the interpolation (the
methodology is developed in [7]). Here, we give an outlook of numerical methods developed by
the authors for effective regional solutions of boundary-value problems with a prehistory on the
basis of the “one-way interaction” approach. Within this approach, we construct our own method
for filling the data, given on the macroscale grid nodes, in the mesoscale network based on the
spline interpolation and a precise (the fourth order of accuracy) numerical method for the ap-
proximation of the first- and second-order derivatives at differential equations. The method is
implemented within the paradigm of the formalized design of parallel programs [8].
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EQ®EKTUBHUIM OBYUNCJIIOBAJIBHUI METO/]
JUIA MESOMACIHITABHOTO ITPOTHO3YBAHHSA ITOTO/I

PosrsignyTo MareMaTnyHi 3a71a4i, OB’'g43aHi 3 YMCEJIbHUM PO3B’sI3yBaHHSIM PiBHSHbB [IJIsI IPOTHO3HUX Mojesei
perionambpHOI MUPKYJIATi atMochepn. Omricano MeTo010TiT0 e(DeKTHBHOTO PEriOHATBLHOTO BUPIMEHHS Kpatio-
BUX 33714 3 IEPE/iCTOPIEr0 Ha OCHOBI MiAX0y “0AHOGIUHOT B3aeMo1ii”. Y paMKax IbOTO X0y 3aIIPOITOHOBAHO
METOJT 3aMOBHEHHST TAaHUX 3 BY3J1iB MaKpOMAacIITabHOI CITKM y Me30MacITabHy CITKY Ha OCHOBI iHTEPIOJIAIIi
CIIAWHOM i TOYHOTO YHCETBHOTO METOAY (UE€TBEPTOTO TOPSIAKY TOYHOCTI) JiJIst HAGIMKEHHS TOXIZIHUX TIEPIIOro
Ta JIPYTOTO TMOPSAKY AMepeHITiaTbHIX PiBHIHB. TUM caMUM PO3B’SI3yBaHHS 3314 [T 3BUMANHUX [u(epeHtri-
AJIbHUX PiBHSIHB MOXKe e(PeKTUBHO 3/[iCHIOBATHCS MIJISTXOM 1HTEPITOJISIIII.
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DODOEKTUBHBIN BbIYMCJIUTEJIBHBIN METO/T
JIJISI MESOMACIITABHOTO ITIPOTHO3UPOBAHUMS IOTO/IbI

PaccmoTpensl MaTeMaTHueCKHe 33[a4H, CBSA3aHHbIE C YMCJIECHHBIM pellieHreM YPaBHEHUH /1 TPOTHO3HBIX MO-
Ziesiell pernoHaIbHON IUpPKyJuK armMochepsl. Omnmcana MeTo/1070THst 3h(HEKTUBHOTO PETrMOHAIBHOTO pe-
MIeHNsT KPAeBbIX 3a/1a4 ¢ MIPEABICTOPHEN Ha OCHOBE TTO/IX0/1a “OAHOCTOPOHHETO B3anMoielicTBIA . B paMkax ato-
O TIOJXOIa TPEIJIOKEH METO/] 3aMOJHEHUs] JAHHBIX C y3JI0B MaKPOMaclITabHOIl CETKH B Me30MacIiTabHY10
CEeTKY Ha OCHOBE MHTEPIIOJIAINN CIIJIAHOM 1 TOYHOTO YUCJIEHHOTO MeTo/[a (4eTBEPTOTO MOPSIIKA TOUHOCTH ) JIS
PUOJIVIKEH ST TTPOU3BOJIHBIX TIEPBOTO M BTOPOTO MOPsiika AnddepeHnnanbibix ypaBaenuil. Tem cambiM pe-
eHue 3a1a4 i 00bIKHOBEHHbIX UM dEPEHIUANBHbIX YPABHEHUN MOKET d(DHEKTUBHO OCYIIECTBAATHCS Iy TEM
MHTEPIIOJISIINN.

Kmouesvie cnosa: mesomacumathoe npozHosuposanue nozoobl, Oupgepenuuaiviovie ypasHsiHenusl, Unmepnoisyusl.

18 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2020. Ne 3



