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We present a new approach to the study of semilinear equations of the form div[A(z)Vu]= f(u), the diffusion

term of which is the divergence uniform elliptic operator with measurable matrix functions A(z), whereas its reac-

tion term f(u) is a continuous non-linear function. We establish a theorem on the existence of weak C(D) W, 2(D)

solutions of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains D without de-
generate boundary components and give applications to equations of mathematical physics in anisotropic media.

Keywords: Dirichlet problem, semilinear elliptic equations, quasilinear Poisson equations, anisotropic and inhomo-
geneous media, quasiconformal maps.

1. Introduction. The paper is devoted to semilinear partial differential equations of the form

div[A(2)Vu(2)]= f (u(2)) ey

in domains D of C, where functions f:R — R are continuous and such that

m@:o, )

t—oo

Ae MZ*(D), 1<K <eo, ie, symmetric matrix functions A(z)= {a;(2)}, detA(z)=1 with
measurable entries satisfying the uniform ellipticity condition
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The Dirichlet problem for the Poisson type equations in the plane

Following paper [1], under a weak solution of Eq. (1), we understand a function
ue C(D)NW,-2(D) such that, for all pe Co(D)NW" (D),

[(A@Vu(2), Vo(2)ydm(2)+[ [(u(2))0(2)dm(2)=0. (4)
D D

History comments and other definitions can be found in our previous paper [2].

The paper is organized as follows. In Sections 2, one can find existence theorems for the sem-
ilinear equation (1) without boundary conditions. We study the solvability of the Dirichlet prob-
lem with arbitrary continuous boundary data for the quasilinear Poisson equations in Section 3.
Section 4 is devoted to the solvability of the Dirichlet problem with continuous boundary data for
the semilinear equation (1). Finally, Section 5 contains some physical applications.

2. On a weak solvability of semilinear equations. We start from the study of the solvability
of the semilinear equations (1) without any boundary conditions.

Theorem 1. Let D be a domain with a finite area that is not dense in C, Ae M2*(D), and let a
continuous function f:R —R satisfy condition (2). Then there is a weak solutzon u:D—->R of
Eq. (1) which is locally Holder-continuous in D .

Proof. Let us extend A(z) by the identity matrix I outside of D . By Theorem 4.1 in [1], if
u is a weak solution of (1), then u=Uow, where 0:=Q|, and Q is a quasiconformal mapping
of C onto itself, Q(eo) =00, agreed with the extended A, and U is a weak solution of the quasi-
linear Poisson equation

AU(2)=h(2)- [(U(2)) ()

with = J, where J is the Jacobian of the mapping @' : D. - D, D.|:==o(D).

Note that C\ D contains a nondegenerate (connected) component C, because D is not
dense in C, see, e.g., Corollary IV.2 and the point 11.4.D in [3], see also Lemma 5.1 in [4]. Hence,
C\ D, contains a component C.:=Q(C) whose boundary is a nondegenerate continuum,
see again Lemma 5.1 in [4], and, by the Riemann theorem, there is a conformal mapping H of
E\C* onto D).

Setting H. = H |, , we see that H. maps D, into . Moreover, the quasiconformal mapping
o :=H.o0:D —D.:=H.(D.) is also agreed with A in D . Thus, again by Theorem 4.1 in [1],
u=U.ow., where U, is a weak solution of (5) with 2= _J, in D. cD. Here, J, is the Jacobian
of the mapping w:':D. — D.

By Remark 4.1 in [1], inversely, if U, is a weak solution of (5) with A=/, in D,, then
u=U.om. is a weak solution of (1) in D . The latter implication allows us to reduce the proof
of Theorem 1 to Corollary 3 in [2] with the special A= J,.

Indeed, J.e L1(]D)*), because its integral is equal to the area of the domain D, see, e.g.,
Theorem 3.2 in [5] and Theorem I1.B.3 in [6]. Moreover, J.e L{ (ID.) for some p>1, because,
by the BOJaI‘Skl result in [5], the first partial derivatives of the quasiconformal mapping
o =o.':D. = D are locally integrable with a power ¢>2, and J.=|w, [* —|o [*, see, e.g,,
LA (9) in [6].

3. Dirichlet problem for a quasilinear Poisson equation. Let D be a bounded domain in C
without degenerate boundary components, i.e., any connected component of the boundary of D is
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not degenerated to a single point. Given a continuous boundary function @:9D — R, let us de-
note by D, , the harmonic function in D that has the continuous extension to D with ¢ as its
boundary data. Such a function exists and is unique, see, e.g., Corollary 4.1.8 and Theorem 4.2.2
in [7]. Thus, the Dirichlet operator D,, is well defined in the given domains. We need not its ex-
plicit description for our goals.

By Theorem 1 in [2], we come to the following result on the existence, regularity, and repre-
sentation of solutions of the Dirichlet problem for the Poisson equation in arbitrary bounded
domains D in C, where we assume that the charge density g is extended by zero outside of D .

Theorem 2. Let D be a bounded domain in C without degenerate boundary components,
©:9D - R be a continuous function, and g: D — R belong to the class L (D) for p>1. Then the
Junction U:=N,~D . +D,, N; =N, yp, is continuous in D with U |,,= @, belongs to the class
Wli;f’ (D), and satisﬁye% the Poisson equation AU =g a.e.in D . Moreover, U e Wli)’cq(D) Jfor some
q>2,and U is locally Hélder-continuous in D . Furthermore, U € Cf(’)f‘ (D) with oo.=(p-2)/p, if
ge L’(D) for p>2.

The case of quasilinear Poisson equations is reduced to the case of the linear Poisson equa-
tions again by the Leray—Schauder approach as in the last section.

Theorem 3. Let D be a bounded domain in C without degenerate boundary components,
©:90D > R be a continuous function, and h:D — R be a function in the class [P (D) for p>1.
Suppose that a function f:R — R is continuous and satisfies (2). Then there is a continuous func-
tion U:D — R with Ul,,=¢ and U |pe W,2P(D) such that

AU(z)=h(z)- f(U(z)) forae zeD. (6)

Moreover, U e Wli)’cq(D) Jfor some q >2 and U is locally Holder-continuous. Furthermore, U € Cli(;:‘ (D)
withoo=(p-2)/p,if p>2.

Proof. If || 2]|,=0 or || f |,=0, then the Dirichlet operator D, gives the desired solution
of the Dirichlet problem for Eq. (6), see, e.g., I.D.2 in [8]. Hence, we may assume further that
IAll,#0 and || flo#0. Set fi(s)=max|/(t)|, se R". Then the function f.:R" —R" is con-

[tl< s
tinuous and nondecreasing. Moreover, f.(s)/s—0 as s —>oo by (2).

By Theorem 1 in [9] and the maximum principle for harmonic functions, we obtain the family
of operators F(g;t):L”(D)— L(D), te[01]:

F(gi1)=th f(N;=D . +Dy), Ny =N, lp, Vte[01]. (7
g

It satisfies all hypotheses H1-H3 of Theorem 1 in [10]. Indeed:
H1). First of all, F(g;t)e [P (D) forall 1€ [0,1] and ge L” (D), because, by Theorem 1 in [9],
J(Ng - DN* +D,) is a continuous function. Moreover,

IF(g DN, <l All, LCMIgl, +olc)<e Vre[01].

Thus, by Theorem 1 in [9] and the Arzela—Ascoli theorem, see, e.g., Theorem IV.6.7 in [11], the
operators F(g;t) are completely continuous for each t€[0,1] and even uniformly continuous
with respect to the parameter 1€ [0,1].

H2). The index of the operator F(g;0) is obviously equal to 1.
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H3). By Theorem 1 in [9] and the maximum principle for harmonic functions, we have the
estimate for solutions ge L’ of the equations g = F(g; 1) :

Igll, <l All, Mg, +llel) <X, L@Mlgll,)
whenever || g, >l @llc /M ,i.e. then it should be

fBMigl,)
3Mligll, ~ 3M|hll,’

(8)

and, hence, || gl|, should be bounded in view of condition (2).

Thus, by Theorem 1 in [10], there is a function ge L”(D) such that g=F(g;1) and, conse-
quently, by Theorem 1 in [2], the function U:=N, —DN* +D, gives the desired solution of the
Dirichlet problem for Eq. (6). 8

4. Dirichlet problem with continuous data for semilinear equations. By the factorization
theorem from [1], the study of the semilinear equations (1) in bounded domains without dege-
nerate boundary components D is reduced, by means of a suitable quasiconformal change of va-
riables, to the study of the corresponding quasilinear Poisson equations (6).

Theorem 4. Let D be a bounded domain in C without degenerate boundary components,
Ae M2%(D), ¢:0D =R be an arbitrary continuous function, and f:R —R be a continuous
Jfunction satisfying condition (2).

Then there is a weak solution u:D — R from the class C(D)r\Wl:)’CZ(D) of Eq. (1) which is
locally Holder-continuous in D and continuous in D with u|,p=¢.

Proof. Let us extend, by definition, A=1 outside of D . By Theorem 4.1 in [1], if u is a weak
solution of the equation, then u=U -, where ®:=Q|;,, and Q is a quasiconformal mapping of
C onto itself agreed with the extended A,and U isa weak solution of Eq. (6) with h = J , where
J is the restriction of the Jacobian of the mapping Q™' :C — C to the domain D. :=Q(D).

Inversely, by Remark 4.1 in [1], we see that if U is a weak solution of (6) with h=J | then
u=U o is a weak solution of our equation. The latter allows us to reduce Theorem 4 to Theorem
3. Indeed, D. :=Q(D) is compact. By the Bojarski result in [5], the generalized derivatives of the
quasiconformal mapping Q :=Q™':C — C are locally integrable with some power ¢ >2. Note
also that the Jacobian J of its restriction ® =Q’ |, isequal to |o, [* —| oy [*, see, e.g, LA(9) in
[6]. Consequently, Je I[P(D.) forsome p>1.

5. On some applications to physical problems. Theorems 3 and 4 can be applied to some
physical problems. The first circle of such applications is relevant to reaction-diffusion problems.
Problems of this type are discussed in [12], p. 4, and, in detail, in [13]. A nonlinear system is ob-
tained for the density u# and the temperature T of the reactant. By eliminating T , the system can
be reduced to the equation

Au=\-f(u) 9)

with A(z)=A>0 and, for isothermal reactions, f(u)=u?, where g >0 is called the order of the
reaction. It turns out that the density of the reactant # may be zero in a subdomain called a dead
core. A particularization of results in Chapter 1 of [12] shows that a dead core may exist just if and
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only if 0<g<1 and A is large enough, see also the corresponding examples in [1]. In this con-
nection, the following statements may be of independent interest.

Corollary 1. Let D be a bounded domain in C without degenerate boundary components,
©:9D — R be a continuous function, and h: D — R be a function in the class [V (D), p>1. Then
there exists a continuous function u: D — R with uly,=¢ such that ue ng’cp (D) and

Au(z)=h(z)-u?(z), 0<g<1 (10)

a.e. in D . Moreover, ue W]:)’CB (D) for some B>2, and U is locally HOlder-continuous in D .
Furthermore, ue Cﬁ;g(D) with o=(p-2)/p,if p>2.

Corollary 2. Let D be a bounded domain in C without degenerate boundary components, and
¢ :9D — R be a continuous function. Then there is a continuous function u:D —R with u|y,=@

such that U e Cf(;o‘(D) forall a.e (0,1), ue ng’cp (D) forall pe[l,) and

C

Au(z)=u?(z), 0<qg<1, ae in D. (11)

Note also that certain mathematical models of a thermal evolution of a heated plasma lead to
nonlinear equations of the type (9). Indeed, it is known that some of them have the form
Ay(u) = f(u) with W(0)=e and y'(u)>0, if u=0 as, for instance, y(u)=/u|"" u under
0<g<1,seee.g. [12]. With the replacement of the function U =y(u)=|u|? - sign u, we have that
u=|UR -signU, Q=1/¢q, and, with the choice f(u)=|u |q2 -sign u, we come to the equation
AU =|U |7 -sign U = y(U).

Corollary 3. Let D be a bounded domain in C without degenerate boundary components, and
©:0D — R be a continuous function. Then there is a continuous function U : D — R with U |;p=¢
such that U e Cf(’)g (D) forall ae (0,1), Ue ng‘cp (D) forall pe|[l,») and

AU()=|U) | U(z), 0<g<1, ae. inD. (12)

Moreover, recall that, in the combustion theory, see, e.g., [14], [15] and the references the-
rein, the following model equation

M:1~Au+eu, t>0, zeD, (13)

ot )

takes a special place. Here, # >0 is the temperature of the medium, and & is a certain positive
parameter. We restrict ourselves here by the stationary case, although our approach makes it
possible to study the parabolic equation (13), see [1]. Namely, Eq. (6) appears here with 2=8>0
and the function f(u)=e™* that is bounded.

Corollary 4. Let D be a bounded domain in C without degenerate boundary components, and
©:0D — R be a continuous function. Then there is a continuous function U : D — R with U |yp=¢
such that U e Cf(’)g (D) forall a.e (0,1), Ue Wlif (D) forall pe|[l,) and

AU(2)=8-¢"® | ae. in D. (14)

Specifying the reaction term f (u) of the semilinear equation (1), we also arrive, by Theo-
rem 4, at the following statements concerning some specific problems of mathematical physics in
inhomogeneous and anisotropic media.
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Corollary 5. Let D be a bounded domain in C without degenerate boundary components,
Ae MZ*(D), and ¢:0D —R be a continuous function. Then there is a continuous function
u:D—R with uly,=¢ which is locally Holder-continuous in D , and it is a weak solution in D
Jfor the equation

div[A(2)Vu(2)]=u?(z), 0<g<1. (15)

Corollary 6. Let D be a bounded domain in C without degenerate boundary components,
Ae M2%(D), and ¢:0D —R be a continuous function. Then there is a continuous function
u:D—R with uly,=¢ which is locally Ho\der-continuous in D , and it is a weak solution in D
Jfor the equation

div [A(2)Vu(2)]|=|u() " u(z), 0<g<1. (16)

Corollary 7. Let D be a bounded domain in C without degenerate boundary components,
Ae M2%(D), and ¢:0D - R be a continuous function. Then there is a continuous function
u:D—R with uly,=¢ which is locally Holder continuous in D , and it is a weak solution in D
Jfor the equation

div [A(2)Vu(z)]|=e*?, aeR. (17)

Finally, we note that the statements given above remain to hold, if the reaction terms in
Egs. (15)-(17) are multiplied by arbitrary functions Ce L”(D).

This work was partially supported by grants of the Ministry of Education and Science of Ukraine,
project number is 0119U100421.
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SAJTAYA JIPIXJIE U1 PIBHAHD TUITY ITYACCOHA HA IIJIOIITMHI

3alpoloHOBaHO HOBUI IIAXi/ 10 BUBYEHHS HaMiBIIHIHHNX piBuanb Buny div[A(z)Vu]= f(u), mudysnuii uien
SIKUX € IMBEPreHTHUM PiBHOMIPHO eJIIITUYHUM OIIePaTOPOM 3 BUMipHUMHU MaTpudHumu Gyukiismu A(z), Toxi
AK Horo peakIiiinuii uieH f(u) € HenepepBHOIO HeqiHiiiHOI (yHKIieo. [loBegeHo TeopeMy 1Po iCHYBaHHS
crabkux C(D)NWh2(D) posw’siskis sazaui Jlipixiie 3 JOBIIBHUMI HENEPEPBHIUMI IPAHIYHIMI JAHUMH B
JOBLIBHUX 00MexkeHuX obsactsax D 6e3 BUPOKeHUX IPAHUYHIX KOMIIOHEHT i JAHO 3aCTOCYBAHHSI 10 PIBHSHD
MaTeMaTHIHOI (Di3UKH B aHI30TPOITHUX Cepe/OBUIIAX.

Kmouoesi caosa: sadaua /Jlipixie, nanieninitini exinmuuni pieuanis, xeasininitine pisusmuns Ilyaccona, anisomponmui
i neodnopioni cepedosuwia, k6azixondopmui 6idodpacens..
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SAJIAYA TUPUXJIE JIJII YPABHEHUM TUIIA ITYACCOHA HA TIJTIOCKOCTH

[Ipenyosxen HOBBIT MOAXOJ K M3Y4eHHIO MOy IHHEHHbIX ypasuenuil suna div[A(z)Vu]= f(u), muddysnon-
HBII YJieH KOTOPBIX SIBJISIETCS] AMBEPreHTHbIM PAaBHOMEPHO 3JITMITUYECKUM OIepaTOPOM € M3MEPUMBIMM Mat-
puyHbIMU QYHKIMAMU A(Z), TOI/la KaK €ro PeaklMOHHbIA uieH f(u) ABjseTcs HelpepblBHON HeJnHelHoil
dynxkiueii. /lokasana TeopeMa 0 CYIIECTBOBAHUMU CJIAOBIX C(B)le:;CZ(D) perienuii 3azaun Jupuxie ¢ mpo-
U3BOJIbHBIMU HEIIPEPbIBHBIMU IPAHUYHBIMU JIAHHBIMU B JIIOObIX OrPAHUYEHHBIX 00s1acTsIX D (e3 BbIPOKICHHBIX
TPAHWYHBIX KOMIIOHEHT U IAHBI TIPUJIOKEHUS K YPAaBHEHUSIM MaTeMaTIUeCKOH (DU3MKN B aHU30TPOITHBIX CPE/Iax.

Kntoueevie cnosa: sadaua Jfupuxne, nonyaunetiivle sS1unmudeckue ypasenus, keasuiunelimte ypasnenus Hyac-
COHA, AHU30MPONHBLE U HEOOHOPOOHBLE CPedbl, KBASUKOHPOPMHBIE OMOOPANCCHUS.

16 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2020. Ne 5



