OIIOBI/I

HAIIIOHAJIbHOT IHOOPMATHUKA TA KIBEPHETHUKA
AKAJIEMIT HAVK
VKPATHU

https://doi.org/10.15407 /dopovidi2020.06.015
UDC 004.4°24

A.Yu. Doroshenko, O.A. Yatsenko

Institute of Software Systems of the NAS of Ukraine, Kyiv
E-mail: doroshenkoanatoliy2@gmail.com, oayat@ukr.net

Formal methods of parallel software design automation
Presented by Academician of the NAS of Ukraine P.I. Andon

Formal methods and software tools of automated design and synthesis of parallel programs are proposed. The
developed facilities use the language based on the Glushkov system of algorithmic algebras intended for a high-
level and natural linguistic representation of algorithms and apply rewriting rules technique to transform programs.
The tools also use the method of syntactically correct algorithm scheme design which eliminates syntax errors during
the construction of algorithms and programs. The approach is illustrated on developing the parallel N-body simu-
lation program for the executing on a graphics processing unit.

Keywords: algebra of algorithms, automated design, formal methods, graphics processing unit, parallel computa-
tion, term rewriting.

Current and emerging scientific and industrial applications require a significant computing
power provided by parallel platforms such as multicore, clusters, cloud computing, and GPGPU
(General-Purpose Computing on Graphics Processing Units). Modern software development
tools for such platforms are quite complex and require the use of new programming models, as
well as knowledge of software and hardware details. One of the promising areas in the modern
parallel programming is the development of abstract models and formal methods of design, ana-
lysis, and implementation of algorithms and programs. Such models and methods are construc-
ted, particularly, in the framework of the algebraic programming and algorithmics. Algebraic pro-
gramming is based on the term rewriting theory [1] and describes the processes of program design,
algebraic transformations, proving mathematical theorems and the development of intelligent
agents. The algorithmics is the direction of computer science being developed within the Ukrai-
nian algebraic-cybernetic school [2, 3]. It is based on the Glushkov system of algorithmic algebras
(SAA) focused on solving the problems of formalization and design of sequential and parallel
algorithms. The objects of research in algorithmics are models of algorithms and programs rep-
resented in the form of high-level specifications — schemes. This paper proposes formal methods
and software tools for designing parallel programs based on the algebra of algorithms. The ap-

[MuryBannsa: Doroshenko A.Yu., Yatsenko O.A. Formal methods of parallel software design automation.
Jlonos. Hay. axad. nayx Yp. 2020. Ne 6. C. 15—20. https://doi.org/10.15407 /dopovidi2020.06.15

ISSN 1025-6415. /lonos. Hay,. axad. nayx Yxp. 2020. Ne 6: 15—20 15



A.Yu. Doroshenko, O.A. Yatsenko

plication of the tools is illustrated with an example of the development of the parallel N-body
simulation program intended for the executing on a graphics processing unit (GPU). The pro-
posed approach is related to works on formal methods [4] and synthesis of programs from spe-
cifications [5, 6]. The main distinctive feature of our approach consists in using algebraic
specifications based on SAA and represented in a natural linguistic form simplifying the under-
standing of algorithms and facilitating the achievement of demanded software quality. Another
advantage of our tools is the method of automated design of syntactically correct algorithm spe-
cifications [2], which eliminates syntax errors during the construction of schemes.

Formal algorithm design in the Glushkov algebra. Like algebraic specifications in general,
SAA is focused on the analytical form of representation of algorithms and a formal transformation
of these representations, in particular, with the purpose of optimization of algorithms by given
criteria. SAA is the two-sorted algebra GA=<{Pr, Op}; Q.4 >, where sorts Pr and Op are sets
of logic conditions and operators defined on some information set IS ; Q4 is the signature of
operations. Logic conditions are predicates defined on the set IS and taking values of the three-
valued logic E5 ={0,1,u}, where 0 is for false, 1 is for true, and p is for unknown; the operators
represent mappings (probably, partial) of IS to itself. The signature Qg, consists of logic
operations (disjunction, conjunction, negation) and operator constructs, which can be repre-
sented in analytic, natural linguistic, and flowgraph forms. In this paper, we use the natural lin-
guistic form based on the algorithmic language SAA /1 [2] intended for the multilevel structured
designing and documenting of sequential and parallel algorithms and programs in the form of
SAA schemes. The main operator constructs of SAA/1 include the following:

e serial execution of operators: “operator 1”; “operator 27 ;

e branching: IF ‘condition’ THEN “operator 1” ELSE “operator 2” END IF ;

e for loop: FOR (counter FROM start TO fin) “operator” END OF LOOP;

e asynchronous execution of n operators: PARALLEL(i=0,...,n—1) (“operator i");

e synchronizer, which delays the computation until the value of the specified condition is
true: WAIT ‘condition’ .

In [2], additional constructs to design parallel programs for GPUs using Nvidia CUDA [7]
were added. In particular, they included the operation calling the kernel function executed by
parallel threads:

CALL GPU KERNEL(blocksPerGrid, threadsPerBlock) (“operator”),

where blocksPerGrid is the number of blocks in the CUDA grid; threadsPerBlock is the num-
ber of threads in each block; “operator” is executed by a separate thread.

Software tools for automated design and synthesis of algorithms and programs. The al-
gebra-algorithmic approach is supported by tools developed within the framework of Kyiv al-
gebraic-cybernetic school. Particularly, they include the Integrated toolkit for Design and
Synthesis of programs (IDS) [2, 3] and the term rewriting system TermWare [1]. The main com-
ponents of IDS are the constructor intended for the dialogue design of syntactically correct
schemes of algorithms represented in SAA and the synthesis of programs in C, C++, Java lan-
guages and the database containing the description of SAA constructs, basic predicates and
operators, and their program implementations. The basic idea of the constructor consists in
the level-by-level top-down designing of schemes by detailing language constructs of SAA. On

16 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2020. Ne 6



Formal methods of parallel software design automation

New Transformed Generator
program tree
Program Term Ware Optimized
tree program
Existing Rewriting
program rules

Fig. 1. The workflow of software development with IDS and TermWare

each step of the design, the system allows the user to select only those constructs, the substitu-
tion of which into a scheme does not break its syntactic correctness. The constructor uses the
list of SAA constructs from the database and an algorithm design tree. During the design of an
algorithm, the SAA operations chosen by the user are displayed in the tree with the further de-
tailing of their variables. Depending on a type of the chosen variable (logic or operator), the sys-
tem offers the corresponding list of SAA operations. Based on the algorithm tree, IDS generates
the text of an SAA scheme and a program in a target language.

To automate the transformation (e.g., parallelization) of programs, IDS is applied together
with the term rewriting system TermWare [1] (see Fig. 1).

TermWare provides a language for describing the rewriting rules that operate on data struc-
tures which are called terms, and a rule engine that interprets rules to transform terms. Infor-
mally, terms are tree-like structures of the form f(¢,¢,,...,t,), where subterms ¢,¢,,...,t, are
either tree nodes themselves or leaf nodes corresponding to constants or variables. The general
form of a TermWare rule is source [condition]| — destination [action] where source is the input
sample, destination is a target sample, condition is a term defining the applicability of the rule,
action is the operation executed when the rule is applied. The conditions and the actions are
optional components of the rule, which can call imperative code. For this purpose, the developer
should implement the “fact base” — a class providing the methods that can be called from rewrit-
ing rules. In this way, the connection between declarative rules in TermWare language and im-
perative code in traditional object-oriented languages (such as C, C#, Java) is established.

IDS and TermWare were applied for the automated design and generation of parallel pro-
grams for multicore CPUs and GPUs, particularly, in the subject domain of weather forecas-
ting [2, 3, 8].

Application of the algebra-algorithmic tools for developing an example of a parallel
program. We applied IDS and TermWare for designing a parallel program intended for solving
the N-body simulation problem on a GPU. The problem consists in a simulation of a dynamical
system of N particles with known masses m; that interact in pairs according to the Newtonian
law of gravitation [9]. The positions and velocities of the particles at the initial time moment
t =0 are known and are 7;|,_,=7, and v; ‘t:(): v, , respectively. It is necessary to approximately
find positions and velocities at next time moments. The system of 2N first-order ordinary dif-

ISSN 1025-6415. [lonos. Hay,. axad. nayx Yxp. 2020. Ne 6 17



A.Yu. Doroshenko, O.A. Yatsenko

@<—>0 0

1 O
2 2
i=1,N . . .
a

N

i=

1,N

Fast GPU memory

My T Vi

%
NE bééééé

Fig. 2. The general computation scheme in sequential (a) and parallelized (b) N-body simulation algorithms

ferential equations is integrated numerically with discretization by ¢ using Hermite interpolating
polynomials [10]. The general scheme for the sequential N-body simulation algorithm is shown
in Fig. 2, a. The basic idea of parallelizing the algorithm consists in executing operations associ-
ated with each particle i=1, N in a separate GPU thread (see Fig. 2, b); the operations with
GPU memory are also added. The sequential algorithm was designed using IDS and then trans-
formed to parallel with the help of TermWare.

As an example, consider the fragment of the sequential SAA scheme:

FOR (i from 0 to N)

“Calculate the acceleration of the particle (i) and its derivative”

END OF LOOP

The transformation of the loop to the parallel version consists in adding the GPU kernel call

operation and the synchronizer:

FOR (i from 0 to N/512)

CALL GPU KERNEL (blocksPerGrid, threadsPerBlock) (
“Calculate the acceleration of the particle (i) and its derivative”);

WAIT ‘All threads completed work’
END OF LOOP,

2.5 ]
—o— Sequential
Parallel
2.0
<
215}
=
N
g 1.0 -
b
0.5
0 05 10 15 20 25 30
Number of particles, N - 104
18

where N is divided by 512 for a more
stable GPU work; threadsPerBlock =
= 256, blocksPerGrid = N / threadsPer-
Block.

The sequential and the parallel
programs were executed on a compu-
ter with i5-3570 CPU (4 cores) and
GeForce GTX 650 Ti GPU (768 CUDA
cores). Fig. 3 shows the dependence of
the execution time of the programs on N.

Fig. 3. The dependence of the execution time
of sequential and parallel N-body simulation
programs on the number of particles N

ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2020. Ne 6



Formal methods of parallel software design automation

The maximum multiprocessor speedup Tipy / Tpy (Where Tipy , Tppy are the execution times
of the sequential and parallel program, respectively) was 502.64 obtained at N = 65536. The ef-
ficiency of GPU cores usage was 66 %.

Conclusions. The formal methods and tools for automated design and synthesis of pa-
rallel programs are proposed. The approach uses the algorithmic language based on the Glush-
kov system of algorithmic algebras focused on the natural linguistic representation of algorithms.
The advantage of the developed toolkit consists in using the method of syntactically correct al-
gorithm schemes design, which eliminates syntax errors during the construction of algorithms.
The approach is illustrated on developing the parallel N-body simulation program. The experi-
ment consisting in executing the program on a graphics processing unit was conducted, which
showed a good level of computation parallelization.

REFERENCES

1. Doroshenko, A., & Shevchenko, R. (2006). A rewriting framework for rule-based programming dynamic
applications. Fundamenta Informaticae, 72(1-3), pp. 95-108.

2. Andon, P. I, Doroshenko, A. Yu., Zhereb, K. A., & Yatsenko, O. A. (2018). Algebra-algorithmic models and
methods of parallel programming. Kyiv: Akademperiodyka. https://doi.org/10.15407 /akademperiodyka.
367.192

3. Doroshenko, A. Yu., & Yatsenko, O. A. (2020). Formal and adaptive methods for automation of parallel
programs construction. (unpublished manuscript)

4. Butler, R. W. (2001). What is formal methods? Retrieved from http://shemesh.larc.nasa.gov/fm/
fm-what.html

5. Flener, P. (2002). Achievements and prospects of program synthesis. In A. C. Kakas & F Sadri (Eds.).
Computational Logic: Logic Programming and Beyond. LNCS (Vol. 2407, pp. 310-346). Berlin: Springer.
https://doi.org/10.1007 /3-540-45628-7 13

6. Gulwani, S. (2010). Dimensions in program synthesis. Proc. of the 12th Int. ACM SIGPLAN Symposium

on Principles and Practice of Declarative Programming (pp. 13-24). New York: ACM. https://doi.org/
10.1145/1836089.1836091

. Nvidia CUDA technology (n.d.). Retrieved from http://www.nvidia.com/cuda

8. Prusov, V. & Doroshenko, A. (2018). Computational techniques for modeling atmospheric processes. Hershey,
PA: IGI Global. https://doi.org/10.4018/978-1-5225-2636-0
9. Aarseth, S. J. (2003). Gravitational N-body simulations: Tools and algorithms. Cambridge: Cambridge
University Press.
10. Makino, J., & Aarseth, S. J. (1992). On a Hermite integrator with Ahmad-Cohen. Publications of the
Astronomical Society of Japan, 44, pp. 141-151.

~

Received 28.03.2020

A.IO. /lopowenxo, O.A. Auenro
IncTuryT nmporpamuux cucreM HAH Ykpaiuu, Kuis
E-mail: doroshenkoanatoliy2@gmail.com, oayat@ukr.net

OOPMAJIbHI METOJI1 ABTOMATU3AILIT
[MPOEKTYBAHHAA ITAPAJIEJIbHUX [TPOT'PAM

3anponoHoBaHi GopMasbHi METOAM Ta IHCTPYMEHTA/IbHI 3ac00U aBTOMATH30BAHOTO IIPOEKTYBAHHSI Ta CUHTE3Y
HapajenbHuX mporpam. Po3pobiieni 3aco01 BUKOPUCTOBYIOTh MOBY, SIKa TPYHTYETBCSI Ha CUCTEMAX aJTOPUTMId-
Hux anre6p [ymmkoBa i opieHToBaHa Ha BUCOKOPIBHEBE Ta TMPUPOAHO-TIHTBICTHYHE TIOJAHHS AJITOPUTMIB, a Ta-
KOJK 32CTOCOBYIOTH TEXHIKY MEPEIMCYBAIBHIX TIPABUII /I TpaHcdopmartii mporpam. OcobiusicTio po3pobire-
HOTO IHCTPYMEHTapilo € TaKOX BUKOPUCTAHHSA METOAY IPOEKTYBAHHS CHHTAKCHYHO NPABUIBHUX CXEM aJro-
PUTMIB, SKUI BUKJIIOYAE MOKJIMBICTH BUHUKHEHHS IIOMUJIOK Y TIpoLieci o0y 108U crelidikaliiii aaroputMis ta

ISSN 1025-6415. [lonos. Hay,. axad. nayx Yxp. 2020. Ne 6 19



A.Yu. Doroshenko, O.A. Yatsenko

mporpam. ITizxix mpoimocTpoBaHo Ha po3poOIli TapaIeTbHOI MTPOTPaMU YHCETHLHOTO IHTerpyBanHs 3amadi N Tif,
[IPU3HAYEHOI /IJIsI BUKOHAHHS HA TPAiuHOMY IIPUCKOPIOBAYI.

Kniouosi cnosa: asmomamusosane npoexmysanisi, aizedpa aizopummis, epagiunuil npuckopioead, napaieioii
0OUUCTCHISL, NEPENUCYBANHSL MEPMIB, (POPMATVIHL MEMOOU.

A.E. /lopowenxo, E.A. Auenxo

Wuctutyt nporpammubix cucreM HAH Ykpaunsl, Kues
E-mail: doroshenkoanatoliy2@gmail.com, oayat@ukr.net

OOPMAJIbHBIE METO/IbI ABTOMATU3AIIMU
[MTPOEKTUPOBAHUMA [TAPAJIJIEJIBHBIX ITPOTPAMM

Hpe[[JIOH(eHbI CI)OpMa]IbHI)Ie METO/Ibl 1 THCTPYMEHTAJ/JIbHbIE CPE/ICTBA aABTOMATU3NPOBAHHOTO IMTPOEKTUPOBAHUA 1
CHHTE3a MAPAJUIEJBHBIX IIPorpaMM. PazpaboTaHHble CPEICTBA UCIOIB3YIOT S3bIK, 6a3UPYIONUNCS Ha CHCTEMAX
AJITOPUTMHUYECKIX ajreOp [UIyIiKoBa M OPUEHTUPOBAHHBIA Ha BBHICOKOYPOBHEBOE U €CTECTBEHHO-JMHTBUCTHU-
YecKoe TPeJICTABIEHIE AJITOPUTMOB, & TAKIKE TPUMEHSIIOT [IePETUChIBAIONINE TIPABUJIA JIJIs TPAHC(HOPMAIMHY [TPO-
rpamMM. OcoOeHHOCTD Pa3paboTaHHOTO MHCTPYMEHTAPHST TAKAKE COCTOUT B UCIIOJIb30BAHUH METO/IA TPOEKTHPO-
BaHMs CHHTAKCUYECKH ITPABUJIBHBIX CXEM AJTOPUTMOB, KOTOPBI HCKJIIOYAET BO3MOMKHOCTH BO3HUKHOBEHMS
on6OK B MPOTIECCe TOCTPOEHHST CTIeMUKAIITN aTOPUTMOB 1 ITporpaMM. [1oixo 1 TponILTIoCTpUpPOBaH Ha pas-
paboTKe MapasiebHOI IIPOrPAMMBbI YUCJIEHHOTO MHTErpUpoBanus 3aga4u N TeJl, IpeHa3HaYeHHON JIJIsI BBITIOJI-
HeHUS Ha TpadUIecKOM yCKOPHUTEJIe.

Knouesvte cnosa: asmomamusuposanioe npoekmuposanue, aieedpa arzopummos, 2paQuueckuii YcKkopumenn,
NAPATACIDHBLE BLIUUCLEHUS, NEPENUCIBAHUE TNEPMOB, POPMATLLHDIC METOObL.

20 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2020. Ne 6





