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The paper investigates spectral properties of multi-interoal Sturm—Liouville operators with distributional coeffi-
cients. Constructive descriptions of all self-adjoint and maximal dissipative/accumulative extensions in terms of
boundary conditions are given. Sufficient conditions for the resolvents of these operators to be operators of the
trace class and for the systems of root functions to be complete are found. The results are new for one-interoal
boundary-value problems as well.
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1. Introduction. Differential operators, generated by the Sturm—Liouville expression

I(y)=—(py’Y +qy,

arise in numerous problems of analysis and its applications. The classical assumptions on its coef-
ficients are the following:

geC(la,b];R), 0<peC'([a,b];R).

Principal statements of the theory of such operators remain true under more general assump-
tions

9.1/ pe Li([a,b],C).

However, many problems of mathematical physics require the study of differential operators with
complex coefficients which are Radon measures or even more singular distributions. In papers
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[1—4], a new approach to the investigation of such operators was proposed based on the defini-
tion of these operators as quasi-differential, which also allows one to consider differential ope-
rators of higher order [3, 5].

The purpose of this paper is to develop a spectral theory of not self-adjoint Sturm—Liou-
ville operators given on a finite system of bounded intervals under minimal conditions for the
regularity of the coefficients.

Multi-interval differential and quasi-differential operators were investigated, particularly,
in papers [7—9].

2. Preliminary results. Let [a, b] be a compact interval, me N, and let a=a, <a, <...<a,, =b
be a partition of the interval [a,b] into m parts. Let us consider the space L,([a,b],C) as a

direct sum @;_ L,([a;_4,a,],C) which consists of vector functions f=@&j_ f, such that

JreLly(ay,4,],C).
Let, on each interval (a,_,a;,), ke{l,...,m}, the formal Sturm-Liouville differential ex-
pression

L) == Y'Y + @ (Oy +i(( (DY) +1,(DY), (1

be given with coefficients p,, g, and 7, which satisfy the conditions:

% e L,(Jay, 4], C), (2)

:Q',
= ﬂm\ﬂm\ﬂm

where the derivatives Q, are understood in the sense of distributions.
Similarly to [3] (see also [1, 4]), we introduce the quasi-derivatives by the coefficients of
expression (1) on each interval [a,_4, a,] in the following way:

DPly=y;
DMy = py'—(Q, +in)y ;

9. 9
DYy = (DY +Q —i, Dty + Qi +7; y
Py Pr

We also denote, for all € [a;_;,a,]: §,(6)= (D y (), Dy (1)) e C?.

Under assumptions (2), these expressions are Shin—Zettl quasi-derivatives (see [11, 10]).
One can easily verify that, for the smooth coefficients p,, g,, and 7, the equality [,(y)=
my holds.
Therefore, one may correctly define expressions (1) under assumptions (2) as Shin—Zettl
quasi-differential expressions:

Llyl=-Dly .

The corresponding Shin—Zettl matrices (see [10, 11]) have the form
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Q+ir 1
p p 2%2
A, = c L ([a, b]; C“).
k Q%+ Qeir 1([a, 0] ) (3)
b b

Then, on the Hilbert spaces L,((a;_,a;), C), the minimal and maximal differential opera-
tors are defined, which are generated by the quasi-differential expressions /,[y] (see [10, 11]):

Ly = lyl, Dom(Ly ) ={ye L]y, D}'ye AC(la1,a,],C), D'y e Ly},

Ly o:y—1lyl, Dom(L,,):={yeDom(L, )

()= (a,)=0}.

Results of [10, 11] for general Shin—Zettl quasi-differential operators together with for-
mula (3) imply that the operators L, ,, L, are closed and densely defined on the space
Ly(lay4,a,],C).

In the case where p,, g, and 7, are real-valued, the operator L, , is symmetric with the
deficiency index (2,2), L, g =L, ;, and L, =L, ;.

3. Dissipative boundary-value problems. We consider the space L,([a, b],C) as a direct sum
@, Ly(la;_y, a, ], C) which consists of vector functions f =@, f; such that ;e L,([a;,_;, a;], C).
In this space Ly(|a, b],C), we consider the maximal and minimal operators L, =@/ L, ; and
Lmin = @:ii Li,O :

It is easy to see that the operators L
L,([a,b],C).

Throughout the rest of the paper, we assume that (the) functions p,, g;, and 7, are real-valued
for all &, and, therefore, the operators L, , are symmetric with the deficiency indices (2, 2). Then
the operator L_.  is symmetric with the deficiency index (2m, 2m)and L . =L, L =L . .

Then the problem of describing all its self-adjoint, maximal dissipative and maximal accu-
mulative extensions in terms of homogeneous boundary conditions of the canonical form na-
turally arises. For this purpose, it is convenient to apply the approach based on the concept of
boundary triplets. It was developed in the papers by Kochubei [12], see also book [13] and re-
ferences therein.

Note that the minimal operator L_;, may be not semi-bounded even in the case of a single-
interval boundary-value problem since the function p may reverse sign.

Recall that a boundary triplet of a closed densely defined symmetric operator T with equal
(finite or infinite) deficiency indices is called a triplet (H,T,T'y), where H is an auxiliary Hil-
bert space, and T'y, T, are the linear maps from Dom(7") into H such that:

1.forany f,ge Dom(T"), there holds

T [0~ T ) =T [ To)y —(To /. T8y

2. forany g, g, € H ,thereisa vector e Dom(T") such that T,/ =g, and T',f =g, .

The definition of the boundary triplet implies that fe Dom(T), iff T';f =T, f =0. A boun-
dary triplet (H,T{,Ty) with dim H =n exists for any symmetric operator 7" with equal non-zero
deficiency indices (n,n) (n <o), but it is not unique.

L . are closed and densely defined on the space

max ’ min
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For the minimal quasi-differential operators L, o, the boundary triplet is explicitly given
by the following theorem which follows from the results of [2].
Theorem 1. For every k=1,...,m , the triplet (<C2, Uy 1Ty ), where Ty, Ty are linear maps

T, = (DWy(a, ), - Dy(a,-)), Ty pyi=(a+), y(a-)),

from Dom(L,, ) onto C? is a boundary triplet for the operator L.

For the minimal operator L ; in the space L,([a, b],C), the boundary triplet is explicitly
given by the following theorem.

Theorem 2. The triplet (C*™,T,T,), where T, Ty are linear maps

Ty =@y Toy, o T ny)y Toyi=Tg 14,0y 0y, Ty ) (4)

from Dom(L,,. ) onto C*™ is a boundary triplet for the operator L
Denote, by Ly, the restriction of operator L,
satisfying the homogeneous boundary condition

min *

onto the set of functions ye Dom(L,,,)

(K-DTyy+i(K+Dlhy =0, ()

where K is an arbitrary bounded operator on the space C*".
Similarly, denote by I, the restriction of L . onto the set of functions ye Dom(L
satisfying the homogeneous boundary condition

ax max )

(K-DTyy—i(K+Dy =0, (6)

where K is an arbitrary bounded operator on the space C*™.

Theorem 1 and [13, Th. 1.6] lead to the following description of all self-adjoint, maximal
dissipative and maximal accumulative extensions of operator L,

Theorem 3. Every Ly with K being a contracting operator in the space C*™, is a maximal
dissipative extension of the operator L. . Similarly, every IX with K being a contracting operator
in C*™ is a maximal accumulative extension of the operator Ly, . Conversely, for any maximal
dissipative (respectively, maximal accumulatwe) extension L of the operator L there exists
the unique contracting operator K such that L = Ly (respectively, L=IK).

The extensions Ly and LX are self-adjoint, sz K is a unitary operator on C*™

The mappings K — Ly and K — IX are injective.

All functions from Dom(L,,, ) together with their first quasi-derivatives belong to
®;_1AC(la;_y, 4, ], C). This implies that the following definition is correct.

Denote, by f(t-), the left germ and, by f(t+), the right germ of the continuous function f at
a point ¢. Similarly to paper [2], we say that the boundary conditions which define the operator
LcL,,, are called local, if, for any functions ye Dom(L) and for any y,,..., y,, € Dom(L

max maX) )
the equalities y;(a;-)=y(a;-), y;(a;+)=y(a;+) and y;(a,-)=y;(a,+)=0, k=j imply
that y; e Dom(L). For j=0 and j=m,we con51der only the right and left germs, respectively.
The following statement gives a description of the extensions Ly and ILX which are given by
local boundary conditions.
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Theorem 4. The boundary conditions (5) and (6) defining the extensions Ly and IX | res-
pectively, are local, iff the matrix K has the block form

K, 0 .. 0
K={ 0 K, .. 0 | (7)
0 0 ..K

ap

where K, and K, € C and other K, e C*?.

4. Generallzed resolvents. Let us recall that a generalized resolvent of a closed symmet-
ric operator L in a Hilbert space H is an operator-valued function A+ R, defined on C\ R
which can be represented as

R f=P (L' -\ f, feH,

where L™ is a self-adjoint extension of the operator L which acts in a certain Hilbert space
H" > H, I is the identity operator on H*, and P* is the orthogonal projection operator from
H" onto H.Itis known that an operator-valued function R, is a generalized resolvent of a sym-
metric operator L, iff it can be represented as

+wd(F,/,8)
R — 27 fgeH,
(RoJ, &)y = J LA /.8
where F, is a generalized spectral function of the operator L. This implies that the operator-
valued function F, has the following properties:
1. For w, >y, the difference £, —F, isabounded non-negative operator.
2. F,, =F, foranyreal u.
3. For any xe H, the following equalities hold:
lim | Fx =0, lim [|Fx-x[,=0.
U—>—c0 HU—>eo

The following theorem provides a parametric description of all generalized resolvents of
the symmetric operator L. (see also [14]).

Theorem 5. 1) Every generalized resolvent R, of the operator L, in the half-plane ImA <0
acts by the rule Ryh=y , where Y is a solution of the boundary-value problem

Iy)=hy-+h,
(KW =D, f +i(KQ\)+ )T, f =0.

Here, h(x)e Ly(|a,b],C) and K(\) is a 2mx2m matrix-valued function which is holo-
morphic in the lower half-plane and such that | K(\) | <1.

2) In the half-plane ImA >0, every generalized resolvent of operator L,
where y is a solution of the boundary-value problem

I(y)=hy+h,

14 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2020. Ne 7

o acts by Rh=y,



Multi-interoal dissipative Sturm—Liouville boundary-value problems with distributional coefficients

(KM =Dy f =i(K(M)+ DTy [ =0.

Here, h(x)e Ly([a,b],C), and K(L) is a 2mx2m matrix-valued function which is holomor-
phic in the upper half-plane and satisfies | K(X)||< 1. This parametrization of the generalized resol-
vents by the matrix-valued functions K(\) is bijective.

5. Completeness of the system of root vectors. Results of paper [15] imply that, in the sin-
gle-interval case under the assumptions made and additionally for 7, =r=0, the resolvents of
the operators L, and IX are Hilbert—Schmidt operators. This result is amplified and refined
by the following theorem.

Theorem 6. 1) The resolvents of the maximal dissipative (maximal accumulative) operators Ly
and IX are Hilbert—Schmidt operators.

2) Let 8> 0 exist such that, for any ke {1,2,...,m},

1 + 17
{—, b} c W5 ([ay_1, a,],C).
Pr DPp

Then the resolvent of the maximal dissipative (maximal accumulative) operator Ly (LX) is an
operator from the trace class, and its system of root functions is complete in the Hilbert space

L,(]a,b],C).
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BATATOIHTEPBAJIBHI JVUCUITATNBHI
KPAVOBI 3AJTAUI IITYPMA—JITYBIJLJIS
3 KOEDOIINIEHTAMU-POIIIOAITAMU

JocikeHo CrekTpasibHi BJaacTUBOCTI GararointepBaibHux onepatopis Itypma—JliyBijuis 3 y3araibHeHUMU
dyukiisiMu B kKoedirieHTax. [[aHo KOHCTPYKTUBHII OITUC YCiX CAMOCTIPSIKEHITX, MAKCUMAThHITX IUCUTATHBHUX /
AKyMYJIITUBHHUX PO3UINPEHDb MiHIMATIBHOTO OMepaTopa B TepMiHaX KpalloBHUX YMOB. 3HAH/IEHO TOCTaTHI YMOBI
SIIEPHOCTI PE30JIbBEHT IIUX OIIEPATOPIB Ta IOBHOTU CUCTEM iX KopeHeBuX dyHKIil. Pe3ysbratu po6oTH € HOBU-
MU i 77T OTHOIHTEPBAJILHIX KPAHOBUX 3a/1a4.

Kmouoesi crosa: onepamop HImypma—Jliysiins, 6azamoinmepeaivia Kpaiosa sadaud, CUH2yIapHi Koegiuicnma,
Maxcumanvie OUCUNAMUBHE POSUUPEHHSL, NOGHOMA KPALOBUX QYHKIILL.
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