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1. Introduction. The well-known monograph by Vekua [1] is devoted to the theory of generali-
zed analytic functions, i.e., continuous complex valued functions ( )h z  of the complex-variable 
z x iy= +  with generalized first partial derivatives by Sobolev in domains ⊆ D  satisfying a.e. 
equations of the form

1
, :

2z zh ah bh g i
x y

⎛ ⎞∂ ∂∂ + + = ∂ = +⎜ ⎟∂ ∂⎝ ⎠
,  (1)

where the complex-valued functions ,a b  and g  belong to a class pL  with 2p > . If a  and 
0b ≡ and g  is real-valued, then we call h  by a generalized analytic function with the source g .
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The study of the Dirichlet problem with arbitrary measurable boundary data for harmonic functions in the unit disk 
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The research of the Dirichlet problem for harmonic functions in the unit disk : { : 1}= ∈ <D z z  
with arbitrary measurable boundary data is due to the Luzin dissertation, see its original text 
[2] and its reprint [3]. Later on, a series of results on various boundary-value problems have 
been formulated and proved in terms of the logarithmic capacity, see its definition and pro per-
ties, e.g., in [4]. The base are the following analogs of the Luzin theorems in [5], see also [6], 
where q.e. means quasi-everywhere with respect to the logarithmic capacity.

Theorem A. Let : [ , ]a bϕ →  be measurable with respect to the logarithmic capacity. Then 
there is a continuous : [ , ]a bΦ →  with ( ) ( )x xΦ = ϕ′  q.e.

Theorem B. Let :ϕ ∂ →D  be measurable with respect to the logarithmic capacity and fi-
nite q.e. Then a space of harmonic functions u  in D  with the angular limits ( ) ( )u z →ϕ ζ  as z →ζ  
q.e. on D∂  has the infinite dimension.

On the basis of Theorem B, the following result on the Hilbert problem was obtained:
Theorem C. Let :λ ∂ →D , ( ) 1λ ζ ≡ , be of bounded variation and :ϕ ∂ →D  be measu-

rable with respect to the logarithmic capacity. Then there is a space of analytic functions :f →D  
of the infinite dimension with the angular limits

limRe{ ( ) ( )} ( ) . . .
z

f z q e on
→ζ

λ ζ ⋅ = ϕ ζ ∂D  (2)

Then this result was extended to arbitrary smooth ( 1C ) domains. Moreover, the following 
result was proved in [7] (see the next section for definitions):

Theorem D. Let D  be a Jordan domain with the quasihyperbolic boundary condition, D∂  
have a tangent q.e., :λ ∂ →D , ( ) 1λ ζ ≡ , be of countable bounded variation, and let :ϕ ∂ →D  
be measurable with respect to the logarithmic capacity. Then there is a space of analytic functions 

:f →D  of the infinite dimension with the angular limits

limRe{ ( ) ( )} ( ) . . .
z

f z q e on D
→ζ

λ ζ ⋅ = ϕ ζ ∂   (3)

2. Hilbert problem and angular limits. Recall that the classic boundary-value problem of 
Hilbert was formulated as follows: To find an analytic function f  in a domain D  bounded by a 
rectifiable Jordan contour C  that satisfies the boundary condition

limRe{ ( ) ( )} ( ) ,
z

f z C
→ζ

λ ζ ⋅ = ϕ ζ ∀ζ ∈   (4)

where the coefficient λ  and the boundary date ϕ  of the problem are continuously differentiable 
with respect to the natural parameter s  and 0λ ≠  everywhere on C . The latter allows one to 
consider that ( ) 1λ ζ ≡  on C . Note that the quantity Re{ }fλ ⋅  in (4) means a projection of f  
into the direction λ  interpreted as vectors in 2 , see history comments, e.g., in [5].

A straight line L  is said to be tangent to a curve Γ  in   at a point 0z ∈Γ , if

0 , 0

dist( , )
lim sup 0.
z z z

z L
z z→ ∈Γ

=
−

  (5)

Let D  be a Jordan domain in   with a tangent at a point Dζ∈∂ . A path in D  termina-
ting at ζ  is called nontangential, if its part in a neighborhood of ζ  lies inside of an angle with the 
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vertex at ζ that is less than a straight angle. The limit along all nontangential paths at ζ is 
called angular at the point. Following [7], we say that a Jordan curve Γ  in   is almost smooth, 
if Γ  has a tangent q.e. In particular, Γ  is almost smooth, if Γ  has a tangent at all its points except 
a countable collection.

Recall also that the quasihyperbolic distance between points z  and 0z  in a domain D ⊂  
is the quantity

0( , ) : inf ,
( , )D

ds
k z z

d Dγ
γ

=
ζ ∂∫  (6)

where ( , )d Dζ ∂  denotes the Euclidean distance from the point Dζ∈  to D∂ , and the infimum 
is taken over rectifiable curves γ  joining the points z  and 0z  in D .

It is said by [8] that a domain D  satisfies the quasihyperbolic boundary condition, if there 
exist constants a  and b  and a point 0z D∈  such that

0
0

( , )
( , ) ln .

( , )D
d z D

k z z a b z D
d z D

∂
+ ∀ ∈

∂
�

Every smooth (or Lipschitz) domain satisfies the quasihyperbolic boundary condition, see 
e.g., [9] for its discussion.

Given a Jordan domain D  in  , we call : Dλ ∂ →  a function of bounded variation, write 
( )Dλ ∈ ∂ , if

1
1

( ) : sup ( ) ( )
k

j j
j

V Dλ +
=

∂ = λ ζ − λ ζ < ∞∑ ,  (7)

where the supremum is taken over all finite collections of points j Dζ ∈∂ , 1, ,j k= … , with the 
cyclic order meaning that jζ  lies between 1j+ζ  and 1j−ζ  for every 1, ,j k= … . Here, we assume 
that 1 1 0k+ζ = ζ = ζ . The quantity ( )V Dλ ∂  is called the variation of the function λ .

Now, we call : Dλ ∂ →  a function of countable bounded variation, write ( )Dλ ∈ ∂ , if 
there is a countable collection of mutually disjoint arcs nγ  of D∂ , 1, 2,n =   on each of which 
the restriction of λ  is of bounded variation and the set \ nD∂ ∪γ  has the zero logarithmic ca-
pacity. In particular, the latter holds true, if the set \ nD∂ ∪γ  is countable. It is clear that such 
functions can be singular enough.

Theorem 1. Let D  be a Jordan domain with the quasihyperbolic boundary condition, D∂  ha-
ve a tangent q.e., :λ ∂ →D , ( ) 1λ ζ ≡ , be in ( )D∂ , and let :ϕ ∂ →D  be measurable with 
respect to the logarithmic capacity.

Suppose that :g D→  is in ( ), 2pL D p > . Then there exist generalized analytic functions 
:h D→  with the source g  that have the angular limits

limRe{ ( ) ( )} ( ) . . .
z

h z q e on D
→ζ

λ ζ ⋅ = ϕ ζ ∂   (8)

Furthermore, the space of such functions h  has the infinite dimension.
Later on, we often apply the logarithmic (Newtonian) potential G  of sources ( ), 2pG L p∈ > , 

with compact supports given by the formula:
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1
( ) : ln ( ) ( ).

2G z z w G w dm w= −
π ∫

   (9)

By Lemma 3 in [4], 2, 1,
loc loc( ) ( ), : ( 2) / ,p

G GW C p p Gα∈ ∩ α = − Δ =    a.e.
Proof. Extending the function g  by zero outside of D  and setting GP =   with 2G g= , 

xU P=  and yV P= − , we have that x yU V G− =  and 0y xU V+ = . Thus, elementary calculations 
show that :H U iV= +  is just a generalized analytic function with the source g. Moreover, the 
function

*( ) : limRe{ ( ) ( )} Re{ ( ) ( )}, ,
z

H z H D
→ζ

ϕ ζ = λ ζ ⋅ = λ ζ ⋅ ζ ∀ζ ∈∂   (10)

is measurable with respect to the logarithmic capacity, because the function H  is continuous 
in the whole plane  .

By Theorem 2 in [7], see also Theorems 5.1 and 6.1 in [10], there exist analytic functions  
in D  with the angular limits

limRe{ ( ) ( )} ( ) q.e. on
z

A z D
→ζ

λ ζ ⋅ = Φ ζ ∂  (11)

for the function *( ) : ( ) ( ), DΦ ζ = ϕ ζ −ϕ ζ ζ∈∂ . The space of such analytic functions  has the in-
finite dimension, see, e.g., Corollary 8.1 in [10].

Finally, it is clear that the functions :h = + H are desired generalized analytic functions with 
the source g  satisfying the Hilbert condition (8). Thus, the space of such functions h  has really 
the infinite dimension.

Remark 1. As follows from the proof of Theorems 1, the generalized analytic functions h  
with a source , 2pg L p∈ > , satisfying the Hilbert boundary condition (8) q.e. in the sense of 
the angular limits can be represented in the form of the sums + H with analytic functions  
satisfying the corresponding Hilbert boundary condition (11) and a generalized analytic func-
tion H U iV= +  with the same source g , xU P=  and yV P= − , where P is the logarithmic (Newto-
nian) potential G with 2G g=  in the class 2, 1,

loc loc( ) ( )pW C α∩  , ( 2) /p pα = − , that satisfies 
the equation P GΔ = .

In particular, in the case 1λ ≡ , we obtain the corresponding consequence of Theorem 1 on 
the Dirichlet problem for the generalized analytic functions.

3. Hilbert problem and Bagemihl—Seidel systems. Let D  be a domain in  , whose boun-
dary consists of a finite collection of mutually disjoint Jordan curves. A family of mutually di-
sjoint Jordan arcs : [0,1] ,J D Dζ → ζ∈∂ , with ([0,1))J Dζ ⊂  and (1)Jζ = ζ  that is continuous in 
the parameter ζ  is called a Bagemihl—Seidel system or, in short, of class , see [11].

Lemma 1. Let D  be a bounded domain in   whose boundary consists of a finite number of 
mutually disjoint Jordan curves, :λ ∂ →D , ( ) 1λ ζ ≡ , :ϕ ∂ →D  and :ψ ∂ →D  be measurable 
with respect to the logarithmic capacity.

Suppose that { } Dζ ζ∈∂γ  is a family of Jordan arcs of class  in D  and that a function 
:g D→  is of the class )(DLp  for some 2p > . Then there is a generalized analytic function 
:f D→  with the source g  such that
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limRe{ ( ) ( )} ( )
z

h z
→ζ

λ ζ ⋅ = ϕ ζ ,  (12)

limIm{ ( ) ( )} ( )
z

h z
→ζ

λ ζ ⋅ = ψ ζ    (13)

along ζγ  q.e. on D∂ .
Proof. As in the proof of Theorem 1, the function H U iV= +  with xU P=  and yV P= − , 

where GP N=  with 2G g= , is a generalized analytic function with the source g . Moreover, the 
functions

*( ) : limRe{ ( ) ( )} Re{ ( ) ( )},
z

H z H D
→ζ

ϕ ζ = λ ζ ⋅ = λ ζ ⋅ ζ ∀ζ ∈∂ ,  (14)

*( ) : limIm{ ( ) ( )} Im{ ( ) ( )},
z

H z H D
→ζ

ψ ζ = λ ζ ⋅ = λ ζ ⋅ ζ ∀ζ ∈∂ ,  (15)

are measurable with respect to the logarithmic capacity, because the function H  is continuous 
in the whole plane  .

Next, by Theorem 3 in [12], there is an analytic function A  in D  that has the limits along 

ζγ  q.e. on D∂ :

limRe{ ( ) ( )} ( )
z

A z
→ζ

λ ζ ⋅ = Φ ζ ,  (16)

limIm{ ( ) ( )} ( )
z

A z
→ζ

λ ζ ⋅ = Ψ ζ    (17)

for the functions *( ) : ( ) ( ), DΦ ζ = ϕ ζ −ϕ ζ ζ∈∂ , and *( ) : ( ) ( ), DΨ ζ = ψ ζ −ψ ζ ζ∈∂ . Thus, the func-
tion :h H= +  is a desired generalized analytic function with the source g .

Remark 2. As follows from the proof of Lemma 1, the generalized analytic functions h  with 
a source , 2pg L p∈ > , satisfying the Hilbert boundary condition (12) q.e. in the sense of the li-
mits along ζγ  can be represented in the form of the sums  + H with analytic functions  satis-
fying the corresponding Hilbert boundary condition (16) and a generalized analytic function 
H U iV= +  with the same source g , xU P=  and yV P= − , where P  is the logarithmic (Newto-
nian) potential GN  with 2G g=  in the class 2, 1,

loc loc( ) ( )pW C α∩  , ( 2) /p pα = − , that satisfies 
the equation P GΔ = .

The space of all solutions h  of the Hilbert problem (12) in the given sense has the infinite di-
mension for any such prescribed ϕ , λ  and { } Dζ ζ∈∂γ , because the space of all functions : Dψ ∂ →  
which are  measurable with respect to the logarithmic capacity has the infinite dimension.

The latter is valid even for its subspace of continuous functions : Dψ ∂ → . Indeed, by the 
Fourier theory, the space of all continuous functions : Dψ ∂ →  , equivalently, the space of all 
continuous 2π -periodic functions * :ψ →  , has the infinite dimension.

Theorem 2. Let D  be a bounded domain in   whose boundary consists of a finite number of 
mutually disjoint Jordan curves, and :λ ∂ →D , ( ) 1λ ζ ≡ , and :ϕ ∂ →D  be measurable func-
tions with respect to the logarithmic capacity.

Suppose that { } Dζ ζ∈∂γ  is a family of Jordan arcs of class  in D and that a function :g D→ 
is of the class ( ), 2pL D p > .
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Then there exist generalized analytic functions :h D→  with the source g that have the limits 
(12) along ζγ  q.e. on D∂ . Furthermore, the space of such functions h  has the infinite dimension.

In particular, in the case 1λ ≡ , we obtain the corresponding consequence on the Dirichlet 
problem for the generalized analytic functions with the source g  along any prescribed Bage-
mihl—Seidel system.

4. Riemann problem and Bagemihl—Seidel systems. The classical setting of the Riemann 
problem in a smooth Jordan domain D  of the complex plane   was to find analytic func-
tions :f D+ →  and : \f D− →   that admit continuous extensions to D∂  and satisfy the 
condition

( ) ( ) ( ) ( )f A f B D+ −ζ = ζ ⋅ ζ + ζ ∀ζ ∈∂   (18)

with prescribed Hölder continuous functions :A D∂ →  and :B D∂ → .
Recall also that the Riemann problem with shift in D∂  is to find analytic functions :f D+ → 

and : \f D− →   satisfying the condition

( ( )) ( ) ( ) ( )f A f B D+ −α ζ = ζ ⋅ ζ + ζ ∀ζ ∈∂   (19)

where : D Dα ∂ → ∂  was a one-to-one sense preserving correspondence having the non-vani-
shing Hölder continuous derivative with respect to the natural parameter on D∂ . The function 
α  is called a shift function. The special case 1A ≡  gives the so-called jump problem, and 0B ≡  
gives the problem on gluing of analytic functions.

Arguing similarly to the proof of Theorem 1, we obtain by Theorem 8 in [12] on the Riemann 
problem for analytic functions the following statement.

Theorem 3. Let D  be a domain in   whose boundary consists of a finite number of mutually 
disjoint Jordan curves, :A D∂ →  and :B D∂ →  be functions that are measurable with respect 
to the logarithmic capacity, and let { } D

+
ζ ζ∈∂γ  and { } D

−
ζ ζ∈∂γ  be families of Jordan arcs of class  in 

D  and \ D , correspondingly.
Suppose that :g →  is a function with compact support in the class ( )pL   with some 2p > . 

Then there exist generalized analytic functions :f D+ →  and : \f D− →   with the source g  
that satisfy (18) q.e. on Dζ∈∂ , where ( )f + ζ  and ( )f − ζ  are limits of ( )f z+  and ( )f z−  as z →ζ  
along +

ζγ  and −
ζγ , correspondingly.

Furthermore, the space of all such couples ( , )f f+ −  has the infinite dimension for every 
couple ( , )A B  and any collections +

ζγ  and −
ζγ , Dζ∈∂ .

Theorem 3 is a special case of the following lemma based on Lemma 3 in [12] on the Rie mann 
problem with shift that may be of independent interest.

Lemma 2. Under the hypotheses of Theorem 3, let, in addition, : D Dα ∂ → ∂  be a homeomor-
phism keeping components of D∂  such that α  and 1−α  have the N-property by Luzin with respect 
to the logarithmic capacity.

Then there exist generalized analytic functions :f D+ →  and : \f D− →   with the source 
g  that satisfy (19) for a.e. Dζ∈∂  with respect to the logarithmic capacity, where ( )f + ζ  and ( )f − ζ  
are the limits of ( )f z+  and ( )f z−  az z →ζ  along +

ζγ  and −
ζγ , correspondingly.

Furthermore, the space of all such couples ( , )f f+ −  has the infinite dimension for every couple 
( , )A B  and any collections +

ζγ  and −
ζγ , Dζ∈∂ .
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Remark 3. Some investigations were devoted also to the nonlinear Riemann problems with 
boundary conditions of the form 

( , ( ), ( )) 0f f D+ −Φ ζ ζ ζ = ∀ζ∈∂ .   (20)

It is natural, as above, to weaken such conditions to the following one:

( , ( ), ( )) 0 q.e.f f D+ −Φ ζ ζ ζ = ζ∈∂ .  (21)

It is easy to see that the proposed approach makes it possible to reduce such problems to the alge-
braic measurable solvability of the relations

( , , ) 0v wΦ ζ = .  (22)

with respect to complex-valued functions ( )v ζ  and ( )w ζ .
Further, we say “C-measurable” in short instead of the expression “measurable with respect to 

the logarithmic capacity”.
Example 1. For instance, correspondingly to the scheme given above, special nonlinear prob-

lems of the form

( ) ( , ( )) q.e.f f on D+ −ζ = ϕ ζ ζ ζ ∈∂   (23)

are always solved, if the function : Dϕ ∂ × →   satisfies the Carathéodory conditions with 
respect to the logarithmic capacity, that is, if ( , )wϕ ζ  is continuous in the variable w∈  for 
a.e. Dζ∈∂  with respect to the logarithmic capacity, and it is C-measurable in the variable 

Dζ∈∂  for all w∈ .
The spaces of solutions of such problems always have the infinite dimension. Indeed, by the 

Egorov theorem, see, e.g., Theorem 2.3.7 in [13], see also Section 17.1 in [14], the function 
( , ( ))ϕ ζ ψ ζ  is C-measurable in Dζ∈∂  for every C-measurable function : Dψ ∂ → , if the func-

tion ϕ  satisfies the Carathéodory conditions, and the space of all C-measurable functions 
: Dψ ∂ →  has the infinite dimension, see, e.g., arguments in Remark 2 above.

Furthermore, applying Lemma 2 with 0A ≡  in (19), we able to solve nonlinear boun dary-
value problems with shifts of the type (even with arbitrary measurable ( )f − ζ  with respect to the 
logarithmic capacity)

( ( )) ( , ( )) q.e. onf f D+ −α ζ = ϕ ζ ζ ζ ∈∂ .   (24)

This work was partially supported by grants of the Ministry of Education and Science of Ukraine, 
project number 0119U100421.
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ЛОГАРИФМІЧНА ЄМНІСТЬ І ЗАДАЧІ РІМАНА ТА ГІЛЬБЕРТА 
ДЛЯ УЗАГАЛЬНЕНИХ АНАЛІТИЧНИХ ФУНКЦІЙ

Вивчення задачі Діріхле з довільними вимірюваними граничними даними для гармонічних функцій в 
одиничному крузі має витоки з відомої дисертації Лузіна. Пізніше Векуа дослідив узагальнені аналітичні 
функції, але тільки для граничних даних, неперервних за Гельдером. Ця робота містить теореми існування 
некласичних розв’язків задач Рімана і Гільберта для узагальнених аналітичних функцій з джерелом, 
граничні дані яких є вимірюваними відносно логарифмічної ємності. Наш підхід заснований на 
геометричній інтерпретації граничних значень на відміну від класичного операторного підходу в теорії 
рівнянь з частинними похідними. На цій основі можна отримати відповідні теореми існування задачі 
Пуанкаре для похідної за напрямком для рівняння Пуассона і, зокрема, для задачі Неймана з довільними 
граничними даними, вимірюваними відносно логарифмічної ємності. Ці результати можуть бути 
застосовані до напівлінійних рівнянь математичної фізики в анізотропних і неоднорідних середовищах.
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