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Koshland’s four-point location model is applied to consider some enzymatic reactions of deracemization. The sequen-
tial model is a theory describing the cooperativity of protein subunits. It postulates that the conformation of the
protein changes with each binding of a ligand, thus sequentially changing its affinity to ligands at adjacent binding
sites. When the substrate binds to the active site of one subunit of the enzyme, the remaining subunits are activated.
The possibility of the alternative binding of both substrates and products of the enzymatic reaction can be assessed
on the basis of the known data on the structure of all four substituents at the chiral atom and their correspondence
to the ligand specificity of the corresponding subsets of the enzyme. The made theoretical conclusions were tested by
the example of the enzymatic deracemization of some hydroxyphosphonic acids. The replacement of ethoxyl groups
at the phosphorus atom by isopropoxy groups and an increase in the volume of the substituent led to a significant
increase in the enantiomeric excess of the hydrolysis product of hydroxyphosphonate. Hence, the conclusion is drawn
that the key criterion for the efficient or inefficient passage of the reaction is the ratio of the sizes and the degree of
hydrophobicity of the corresponding substituents at the asymmetric reaction center.
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The production of chirally pure substances occupies a special place among the priority areas of
modern biotechnology, since the enantiomers of the same substance are qualitatively different in
biological effects. The classical approach to ensuring this kind of purity is to use enzymes whose
stereoselectivity provides a reaction with only one of the enantiomers [1]. Achieving the ma-
ximum yield of a target product is an essential condition for the optimization of any technolo-
gical process. In this case, however, complications are possible due to the possibility of the alter-
native binding of a reaction product, which becomes, in this case, a competitive inhibitor of the
active center of the enzyme. An increase in the concentration of such a product inevitably leads
to a decrease in the reaction rate and, as a consequence, to a blockage of the process. In this work,
we consider the case of this kind of blocking by the example of enzymatic acylation of optically
active alcohols. Consideration of this case is of interest not so much to explain the low efficien-
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cy of the enzymatic synthesis, but to prevent failures by choosing an appropriate strategy for
stereospecific synthesis.

Enzymatic cleavage of neutral fats to monoacylglyceride and fatty acids occurs in two stages
and is catalyzed by lipases. When the first fatty acid residue is cleaved off, an optically active dia-
cylglyceride is formed (hereinafter — an optically active compound):
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The cleavage of the second residue leads to the disappearance chirality:
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Like all enzymes, lipases are capable of catalyzing both direct and reverse reactions, i.e., under
certain conditions, facilitating the transfer of the acyl group to the alcohol group of a compound
suitable for stereospecificity. This ability has found application in the stereoselective acylation
of optically active alcohols. The process takes place in two steps — the formation of the acyl en-
zyme and the transfer of the acyl group to one of the enantiomers of the optically active alcohol:

CH,~C—OR + E—=E—0—C—CH, + R—OH
o) o)
E—0—C—CH, + Rj—OH—=CH,~C —OR} + E

In other words, a sequential two-substrate reaction occurs, by leading to the stereoselec-
tive acylation of one of the enantiomers introduced into the reaction:

Si SQ
E—= E—O—C—CH,—~E+P

In our case, the enzymatic component of the process is a preparation of lipase immobilized
on an insoluble carrier. The use of acyl-propenyl as the first substrate makes the first step prac-
tically irreversible, since the propenol released during the reaction is immediately isomerized to
acetone. The acyl enzyme formed during the first step transfers the acyl group to only one of
the enantiomers of the optically active alcohol, thereby forming a chiral pure acylated deriva-
tive. In the case of phenyl-methyl-carbinol (Fig. 1, @), the reaction was almost quantitative, en-
suring the complete acylation of one enantiomer without affecting the other. In the case of phe-
nyl-isopropyl-carbinol (see Fig. 1, b), only 12 % of the enantiomer is acylated, after which the
accumulation of the product and, hence, the course of the reaction cease.

This difference can be explained on the basis of the Koshland four-point location model [2].
When the substrate binds to the active site of one subunit of the enzyme, the remaining subunits
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Fig. 1. Phenyl-methyl-carbinol (a) and phenyl-isopropyl-carbinol (b)
Fig. 2. Placement of methyl ester of N-benzoyl-L-tyrosine in the active center of a-chymotrypsin [3, 4].

(Hereinafter, the a-carbon bonds protruding from the plane are painted over, and those extending into the in-
terior are light, which corresponds to the L-enantiomer of the amino acid)

are activated. Ligands can have non-cooperative, positive, or negative cooperative effects. An ex-
ample of positive cooperativity is the binding of oxygen by hemoglobin. Negative cooperativity
means the opposite: at the time moment of the binding of a ligand to the protein, the affinity of
the protein to other ligands decreases. An example is the interaction between glyceraldehyde-
3-phosphate and the enzyme glyceraldehyde-3-phosphate dehydrogenase. Thus, the strength of
the interaction of atoms or molecules increases as changes in the system increase, making them
collectively consistent. According to this model, in the process of “cooperative transitions”, the
optically active substrate interacts with the active center of the enzyme through all four sub-
stituents of the chiral atom. Examples of the interaction of chymotrypsin-trypsin-like proteinases
with a number of low-molecular-weight substrates are most indicative in this respect. The ori-
entation of the hydrolyzable bond in the zone of action of the catalytic center is set by the place-
ment of all four substituents of the chiral atom in the corresponding loci of the enzyme (Fig. 2).
In this case, the specificity of the action of the enzyme is determined by the properties of
the ar-site, the binding site, and the hydrophobic pocket of the enzyme. In the case of chymot-
rypsin, it is complementary to hydrophobic amino acid residues. The am-site interacting with
the acylamide group has little effect on the binding strength of the substrate, but contributes
to the correct orientation of the cleavable bond into the zone of action of the hydrolytic center.
The a-h zone is small, and the placement of any residue larger than a hydrogen atom in it sharply
decreases the reactivity of the substrate or inhibitor [5]. On the contrary, placing a bulky hy-
drophobic substituent in the binding zone of the “leaving group” n is very advantageous, since
it provides the correct orientation of the substrate with the direction of the hydrolyzable bond
in the zone of action of the catalytic center. Due to this four-point interaction, proteolytic en-
zymes cleave amide and ester bonds formed by carboxyl groups of only L-amino acids. In Fig. 2,
we show the active site occupied by a -chymotrypsin of a popular low-molecular-weight sub-
strate — methyl ester of N-benzoyl-L-tyrosine. The hydrophobic tyrosine radical is located in
the ar-site, the acylamide group — in the am-site, the a-hydrogen atom — in the o-A-site, while
the cleavable bond is oriented toward the zone of action of the hydrolytic center. The bulky
N-benzoyl group better ensures the proper orientation of the hydrolyzable bond and, hence,
the rate of hydrolysis, than the N-acetyl group, which can be seen from a comparison of the ki-
netic parameters of the chymotrytic hydrolysis of N-benzoyl and N-acetyl-L-tyrosyl ethers [3] ...
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Fig. 3. Variants of the N-benzoyl-L-tyrosyl-amide placement in the active center of
a-chymotrypsin: @ — productive, b — unproductive

On the other hand, for the same reasons, when these enzymes interact with a number of
low molecular weight compounds, the so-called unproductive binding is observed, namely, the
formation of an enzyme-substrate adduct that does not lead to the formation of a reaction pro-
duct. The unproductive binding of a substrate by an enzyme is similar to the competitive inhibi-
tion, with the only difference in that the substrate itself acts as a competitive inhibitor:

Ks k2
E+S=—=ES—E+P
|
ES’

The equation for the rate of formation of the reaction product in this case is described by the

equation [6, p. 150-152]:

_ ky[ETo[S 1o
K, +(1+K, /K)[S],

The degree of influence of the formation of the unproductive complexation on the reaction
rate is determined by the ratio of the constants K_and K!. A typical manifestation of the un-
productive binding may be invulnerability against the chymotryptic hydrolysis of N-benzoyl-L-
tyrosyl-amide [7], while N-acetyl-L-tyrosyl-amide is hydrolyzed quite efficiently [8]. N-ben-
zoyl-L-tyrosyl-glycine is also not hydrolyzed by chymotrypsin [7]. This can be explained by the
efficiency of the non-productive binding of the substrate by the enzyme (Fig. 3).

The possibility of binding the benzoylamide group by the ar-site of chymotrypsin is con-
firmed by the efficient hydrolysis of hippuric acid derivatives (N-benzoyl-glycine) [9, p. 198-200].
On the other hand, trypsin, which differs from chymotrypsin in the specificity of the ar-site,
quite effectively hydrolyzes N-benzoyl-L-lysyl-amide and N-benzoyl-L-arginyl-amide [10].
N-benzoyl-L-tyrosyl is no less indicative -glycyl-amide, which is efficiently hydrolyzed by a-chy-
motrypsin, while its D-isomer not only does not hydrolyze itself, but also completely inhibits
the hydrolysis of the L-isomer [7]. On the one hand, the “leaving group” of N-benzoyl-L-tyro-
syl-glycyl-amide, which is more bulky compared to N-benzoyl-L-tyrosyl-amide (see Fig. 3, a),
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Fig. 4. Productive placement of N-benzoyl-L-tyrosyl-glycyl-amide () in the active site of a-chymotrypsin
and the unproductive placement of N-benzoyl-D-tyrosyl glycyl-amide (b)

promotes the productive placement of the substrate in the active center of the enzyme (Fig. 4, a).
The alternative placement of the D-enantiomer is efficient for the same reasons (see Fig. 4, b).

Placing a small amide residue (the case of N-benzoyl-L-tyrosyl-amide) or a free carboxyl
group of glycine (the case of N-benzoyl-L-tyrosyl-glycine) in the binding zones of the “lea-
ving group” destabilizes the system, by making the alternative unproductive binding beneficial.
In all the cases considered, only the states corresponding to the steric specificity of the enzyme
of all four enzyme subsets are realized. Placing only the a-hydrogen atom in the a-A zone
turns out to be a critical condition.

The presented materials make it possible to explain the limitation of the transfer of acyl to
the corresponding enantiomer of phenyl-isopropyl-carbinol and the complete acylation of the
enantiomer of phenyl-methyl-carbinol. The resulting end products differ from each other only
in the level of hydrophobicity of one of the substituents of the chiral atom, which, however, turns
out to be a sufficient circumstance for an efficient alternative binding of the enzyme by the end
product of the reaction. The resulting product becomes an efficient competitive inhibitor that,
when a certain concentration is reached, completely blocks the reaction. In this case, two points
deserve attention. First, the end product of the second reaction step inhibits the first step. In
this case, the kinetic parameters of the second step have no particular effect on the dynamics
of the process. The simplified reaction scheme takes the form, where S, and S, are substrates of
the first and second reactions, and P* is the final reaction product, which has the ability to al-
ternatively be bound by the active center of the enzyme:

S, S,
E 1w AcCOE—2»~E + P*

>

EP*

The possibility of blocking the formed acyl-enzyme by the product seems unlikely due to
steric hindrances created by the acyl group bound to the enzyme. Second, during the reaction,
the concentration of the final product increases, which is equivalent to an increase in the con-
centration of a competitive inhibitor. In our case, as P* — 0.12 S,, v — 0.

It is obvious that increasing the concentration of S, will hardly be efficient for increasing
the yield of the target product. The key criterion for the efficient or inefficient reaction is the ratio
of the sizes and the degree of hydrophobicity of the corresponding substituents of the chiral
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atom. Thus, in our case, the Hanlon hydrophobicity parameter (the logarithm of the distribu-
tion of the substance content in the n-octanol / water system) for benzene is 2.22, for propane,
2.35, and only 1.09 for methane. Therefore, the isopropyl and phenyl substituents are signifi-
cantly superior to the methyl one both in terms of bulk and hydrophobicity. The same trend
persists in the case of amides of benzoic, isobutyric, and acetic acids (0.74, —0.36, and —1.23, re-
spectively). It is also worth noting that Koshland’s requirement to consider the nature of all
four substituents of a chiral atom with the exclusion of replacement of a hydrogen atom by a
more bulky group is obligatory not only for the “retaining group,” but also for the “leaving” one.

We used our theoretical conclusions for practical experimental separations of hydroxy-
phosphonic acids

OC(O)R” OH R
l CALB, pH 7 HQQR X @CH OC(O)R
H—C—CHf@*R' Hu.,, 2z

Biphasic system (R) c ) H
P(O)(OR), P(0)(OR), P(O)(OR),
(+/-)-1a-d (R)-2a-d (8)-1a-d
R - Et, R’ = H (a); R = i-Pr, R’ = H (b); R” = CH,CI R’ l
R = Et, R = MeO (c); R = i-Pr, R’ = MeO (d) @\ OH
CH,
(R)
P(O)(OR),
(S)-2a-d

Deracemization of hydroxyphosphonic acid acetates was carried out by the biocatalytic
hydrolysis in a two-phase system MTBE-buffer solution with constant pH 7 in the presence of
CAL-B lipase applied to the polymer.

The hydrolysis reaction was carried out to approximately 50 % conversion of aetate to hy-
droxyphosphonate. The reaction was stopped by the filtration of the biocatalyst. The progress of
the reaction was monitored by *'P NMR. The reaction products, acetate and hydroxyphospho-
nate, were separated by column chromatography on silica gel. The enantiomeric purity of the
products was determined by the derivatization with Mosher’s acid. The Kazlauskas rule was
used to determine the absolute stereochemistry of enantiomerically pure products. The Kazlaus-
kas rule is an empirical model based on the postulate that the enantioselectivity is proportional
to the difference in size between large (L) and middle (M) substituents in the substrate. Ac-
cording to the Kazlauskas rule, these substitutes are located in two different pockets of the ac-
tive site of an enzyme, according to their size, which determines the absolute configuration of

Enzymatic deracemization of hydroxyphosphonates

Entry R R/ Yield 2, % ee2, % Yield 3, % eed3, %
1 Et H 40 90 30 65
2 i-Pr H 45 95 50 70
3 Et MeO 40 20 40 20
4 i-Pr MeO 45 80 35 80
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the products in the enzymatic reaction. Using this empirical rule, it was found that the bioca-
talytic acylation produces (R)-esters, and (5)-halogenindanol remains unreacted.

The results shown in Table indicate that the replacement of ethyl R groups by isopropyl
groups and an increase in the volume of the substituent led to a significant increase in the enan-
tiomeric excess of the hydroxyphosphonate hydrolysis product, although the reaction time in-
creased significantly (from 20 h to 65 h). In accordance with the conclusions presented above,
the key criterion for the efficient or inefficient passage of the reaction is the ratio between the
sizes and the degree of hydrophobicity of the corresponding substituents of the chiral atom.

From the material presented, it follows that the possibility of the alternative binding of both
the substrate and the product of the enzymatic reaction can be estimated on the basis of the
known data on the structure of all four substituents of the chiral atom and their correspondence
to the ligand specificity of the corresponding enzyme subsets. Such an assessment is necessary in
the planning of biotechnological processes and allows one to avoid the unproductive loss of ex-
pensive reagents and working time.

Experiment. 'HNMR and >C NMR spectra were recorded in a CDCl, solvent on a 500 MHz
spectrometer at ambient temperature. Chemical shifts (§) are shown in ppm in relation to TMS
as an internal standard. Signal multiplicity is shown as s — singlet; d — doublet; dd — doublet
of a doublet; etc., dt — triplet of doublets; t — triplet; m — multiplet; br. s — wide singlet. The spin-
spin coupling constants_J are indicated in Hz. All reagents and solvents were used without spe-
cial purification, unless otherwise indicated. Column chromatography was performed on silica
gel 60 (70-230 mesh) using the indicated eluents. Optical rotations were measured on a Perkin-
Elmer 241 polarimeter (D sodium line at 20 °C). Melting points were not corrected. All reac-
tions were carried out in glassware dried on a fire or dried in a drying chamber with stirring on a
magnetic stirrer. Lipase from Antarctica Candida lipase B (Novozim 435) was purchased from
Sigma-Aldrich. The progress of the reactions was monitored by NMR. The purity of all com-
pounds was checked, by using thin-layer chromatography and NMR measurements.

Enzymatic hydrolysis of dialkyl I- (acyloxyalkyl) phosphonates 1a-d.

Phosphonate 1 (1 mmol) was placed in a 25-ml flask, followed by the addition of organic
solvents and sterile 0.05 M phosphate buffer (15 ml; prepared by dissolving 25 mmol KH,PO, in
300 ml of distilled water with the addition of 1 N NaOH to bring pH to 7, followed by adding
water to a final volume of 500 ml and then by autoclaving at 121 °C for 20 min). The mixture
was vigorously stirred in a water bath at a constant temperature, and 0.5N hydrochloric acid
was added, by using an autotitrator, to NaOH to adjust the pH to 7.0. When the enzyme was
added, the pH was brought back to 7.0 and maintained by the automatic addition of base.
When the appropriate amount of base was added, 1N HCI was added to bring the pH to 4.0.
The mixture was filtered through celite, and the filtrate was extracted with ethyl acetate. The or-
ganic layers were combined, dried (NaSO,), and concentrated. Unreacted ester 1 and hydro-
xyphosphonate 2 were separated by flash chromatography (see Table).

The unreacted ester 1 was dissolved in dry methanol (5 ml) and triethylamine (1 ml) and stir-
red at room temperature till the completion (TLC, about 24 h). The solution was concentrated,
and the crude product was purified by flash chromatography to give a-hydroxyphosphonate 2.

As a result, hydroxyphosphonates 1a-d of (5)- and (R)-absolute configuration are obtained
and are described below.

90 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2021. Ne 1



Koshland’s model as a method for the analysis of enzymatic deracemization reactions

Diethyl 1-hydroxy-2-phenylethylphosphonate [(S)-2a]. m.p. 60 °C, [oc]éo = +20.5 (C=1,
CHCI,) [11].

'HNMR (CDCL,): 8 1.31,1.33dt (6H,/ = 6.9, CH,),3.03 m (2H, PhCH,), 3.25 br (I, OH),
4.10 (1H, m, CHP), 4.16 (4H, m, OCH,), 7.20 (5H, m, C;H).

BCNMR (CDCL,) d, 16.8 (d, Jp = 3.5 Hz); 16.9 (d, J. = 4 Hz), 37.9, 62.8 (d, Jp = 7 Hz),
62.9 (d, Jpo =7 Hz), 69.6 (d, /- = 160 Hz), 126.8, 128.9, 130.3, 138.2.

*'PNMR (CDCL,): 24.1.

Diethyl 1-hydroxy-2-phenylethylphosphonate [(R)-2a]. [oc]éo =-20.1 (C=1, CHCl,).

'H NMR (CDCl,): 3 1.31,1.33 d t (6H, J = 69, CH,), 3.03 m (2H, PhCH,), 3.25 br (1H,
OH), 4.10 (1H, m, CHP), 4.16 (4H, m, OCH,), 7.20 (5H, m, CgH.) [11].

*'PNMR (CDCl,): 24.1

Diisopropyl 1-hydroxy-2-phenylethylphosphonate [(S)-2b]. The solvent was removed in
vacuo, and the residue was diluted with water (20 ml). The product was extracted with methy-
lene chloride (3 x 20 ml). The extracts were dried (Na,SO,) and concentrated. The residue was
resolved by flash chromatography (R,=0.33; methylene chloride/ ethyl acetate = 5 : 3) to afford
the o -hydroxyphosphonate (R)-2b as colorless oil.

[a]2)=+21.1 (C=1, CHCl,).

'HNMR: d 1.31, 1.33, dd (6H, = 6.4, CH,), 2.65 br (1H, OH), 3.00 m (2H, PhCH,), 4.02 dt
(IH, CHP), 477 m (2H, OCH), 7.26 m (5H, C4H.).

*'PNMR (CDCl,): 26.5.

Diisopropyl 1-hydroxy-2-phenylethylphosphonate [ (R)-2b]. [oc]é0 =-21.5(C=1, CHCl,).

'HNMR: d 1.31, 1.33, dd (6H, ] = 6.4, CH,), 2.65 br (1H, OH), 3.00 m (2H, PhCH,), 4.02
dt (1H, CHP), 477 m (2H, OCH), 7.26 m (5H, C,H.).

*'PNMR (CDCl,): 26.5.

Diethyl 1-hydroxy-2- (4-methoxyphenyl) ethylphosphonate [ (S) -2c]. Purification by flash
chromatography (methylene chloride/ ethyl acetate = 5 : 3) afforded the a-hydroxyphospho-
nate (R)-2d (49 %).

[a]2’ = +18.0 (C=1, CHCL,).

'HNMR: § 1.33, 1.34 dt (6H, ] = 7.4, CH,), 2.75 br.s (1H, OH), 2.99 m (2H, PhCH,),3.79 s
(3H, OCH,), 4.05 m (1H, CHP), 417 m (4H, OCH,); 7.02 m (4H, C,H,).

BCNMR (CDC1,) d, 16.4 (d, Jpe=3.5 Hz), 16.6 (d, Jp. = 4 Hz), 38.2,62.5 (d, Jp. = 7 Hz),
62.2 (d, Jp =7 Hz),68.3 (d, J,=160.0 Hz), 126.1, 128.0, 129.9, 138.2.

*'P NMR (CDCl,): 23.90.

Diethyl 1-hydroxy-2- (4-methoxyphenyl) ethylphosphonate [ (R) -2c]. [oc]]go =-17.2(C=1,CHCL,).

"HNMR: 51.33, 1.34 dt (6H, ] =7.4, CH,), 2.75 brs (1H, OH), 2.99 m (2H, PhCH,). 3.79 s
(3H, OCH,), 4.05 m (1H, CHP), 4.17 m (4H, OCH,)); 7.02 m (4H, C,H,).

*'P NMR (CDCl,): 23.90.

Diisopropyl 1-hydroxy-2-(4-methoxyphenyl) ethylphosphonate [(S)-2d]. Purification
by flash chromatography (methylene chloride/ethyl acetate = 5 : 3) afforded the a-hydro-
xyphosphonate (R)-2d (49 %).[a];) = +20.1 (C=1, CHCL,).

'"HNMR: §1.31,1.33, dd (6H, /= 6.4, CH,), 2.73 br (1H, OH), 296 m (2H, PhCH,),3.79 s
(3H, OMe), 3.96 m (1H, CHP), 477 m (2H, OCH), 7.02 m (4H, C¢H,,).

*'PNMR (CDCL,): 26,8.
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Diisopropyl 1-hydroxy-2-(4-methoxyphenyl) ethylphosphonate [(R)-2d]. [oc]éo =-20.5
(C=1, CHCI,).

'HNMR: 51.31,1.33, dd (6H, ] = 6.4, CH,), 2.73 br (1H, OH), 2.96 m (2H, PhCH,), 3.79 s
(3H, OMe), 3.96 m (1H, CHP), 4.77 m (2H, OCH), 7.02 m (4H, C;H,).

*'P NMR (CDCL,): 26.8.
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MO/IEJIb KOIIJIAHJIA AK METO/l AHAJII3Y
OEPMEHTATUBHOT PEAKILIT JIEPAITEMI3AILIT

YorupuToukosa JiokalliiiHa Moziestb Komrania 3acTocoBaHa JIIsl PO3IJISIY AesIKUX (hepMEeHTATHBHUX PeaKIfii
nepartemisartii. [TocsrigoBHa Moesb — Iie Teopist, SIKa OIMUCY€E KOOTIepaTUBHICTh O1IKOBUX cyOoanuilh. Boma mo-
CTYJIIOE, IO KoH(opMallist 6iJIKa 3MIHIOETbCST 3 KOKHUM 3B’sI3yBaHHSIM JIiraH/Ly, TAKAM YHHOM TIOCITIIOBHO 3Mi-
HIOIOUM HOTO CTIOPIHEHICTD /10 JITaHIy B CYCIAHIX cafitax 3B’s3yBanus. Komn cybeTpar 3B’13y€ThCS 3 aKTHB-
HUM [EHTPOM OiHi€i cyboauHuili dhepMeHTy, iHII cyboANHIIN aKTUBYIOTHCS. MOJKIMBICTD albrepHaTUBHOTO
3B’SI3yBaHH SIK CyOCTpaTy, Tak i MPOAYKTY (hepMEHTATHBHOI peakilii Mojke OyTH OTliHeHa Ha OCHOBI BiTOMHUX /a-
HUX [IPO CTPYKTYPY BCiX YOTUPHOX 3aMiCHUKIB XipaJbHOIO aTOMA Ta iX Bi[IIOBITHOCTI JIiraH/IHiii crienudiuHoCTi
BIIMOBIZHIX CeKTOPIB (hepMeHTY. 3pobIeH] TEOPETHTHI BUCHOBKH TepPeBipeHi Ha MpuKJIai (hepMeHTaTHBHOI e-
pariemisartii esskux TizipokcnocOHOBUX KUCJIOT. Y Pe3yJbTaTi 3aMiHU eTOKCHJIBHUX TPYH B atoMi dochopy Ha
i30TPOITOKCUJIBHI 1 301L/IBIIEHHST 00CATY 3aMiCHUKA iCTOTHO 301IbIIMBCS €HAHTIOMEPHIIT HAUTHIIOK MPOLYKTY
rizipotisy riapokcudocdoHary. 3Biacu 3pobIeHUH BUCHOBOK, 10 KJIOUYOBUM KpUTepieM eeKTUBHOTO abo Hee-
(heKTHBHOTO TTPOXO/KEHHST PEaKIlil € CIiBBIHONIEHHST PO3MIpIB 1 CTyTeHs TipohoOHOCTI BiMOBIAHNX 3aMic-
HUKIB y aCUMETPUYHOMY PEaKIifHOMY IIeHTPi.

Kmouogi crosa: modenv Kownanoa, ninasu, pepmenmu, xinemuune posdirenns, Candida Antarctica lipase.
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