MATEMATHUKA
MATHEMATICS

https://doi.org/10.15407 /dopovidi2021.03.011
UDC 512.552, 512.554

L.A. Kurdachenko®, https://orcid.org/0000-0002-6368-7319
A.A. Pypka 1, https://orcid.org/0000-0003-0837-5395
I.Ya. Subbotin?, https://orcid.org/0000-0002-6242-3995

! Oles Honchar Dnipro National University

2 National University, Los Angeles, USA

E-mail: Ikurdachenko@gmail.com, sasha.pypka@gmail.com, isubboti@nu.edu
On analogs of some classical

group-theoretic results in Poisson algebras

Presented by Corresponding Member of the NAS of Ukraine V.P. Motornyi

We investigate the Poisson algebras, in which the n-th hypercenter (center) has a finite codimension. It was established
that, in this case, the Poisson algebra P includes a finite-dimensional ideal K such that P/K is nilpotent (Abelian).
Moreover, if the n-th hypercenter of a Poisson algebra P over some field has a finite codimension, and if P does not
contain zero divisors, then P is Abelian.

Keyword: Poisson algebra, center, hypercenter, zero divisors, nilpotency.

A Poisson algebra is a vector space P over a field F equipped with two binary operations, the mul-
tiplication - and Lie bracket [,] having the following properties:

ab=ba, (ab)c=a(bc), a(b+c)=ab+ac, (ha)b=a(’b)=A(ab),
[a+b,c]=[a,c]+[b,c], [a,b+c]=[ab]+[ac], [rab]=[arb]=A[a,b],
la,a]=0, [[a,b],c]+[[b,c], al+[[c,a],b]=0,

[ab, c] = a[b, c]+bla, c]

forall a,b,ceP, heF .

If we will consider P as an associative and commutative algebra by the outer multiplication,
addition, and multiplication, then we will denote it by P(+,-). If we will consider P as a Lie alge-
bra by outer multiplication, addition, and Lie bracket, then we will denote it by P(+,[,]).
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Poisson algebras arose from the study of the Poisson geometry [1, 2]. It has appeared in an
extremely wide range of areas in mathematics and physics, such as classical and quantum mecha-
nics, quantum groups, quantization theory, Poisson manifolds, algebraic geometry, and operads.
Some of the first works, where specific Poisson algebras appeared, were [3—7], while one of the
first works, where the study of the properties of abstract Poisson algebras began, was work [8].
Poisson algebras have been and are being studied very intensively by many authors and from
various points of view. This paper is devoted to extending some results that became already clas-
sical in different algebraic structures to Poisson algebras. The issue that will be discussed here
has its sources in articles [9, 10]. They showed that if the center of a group G has a finite index,
then its derived subgroup [G,G] is finite. This result became the starting point for an interesting
and broad topic, involving not only groups, but also other algebraic structures, among which
were non-associative algebras (Lie algebras and Leibniz algebras) [11]. In particular, it was proved
in paper [12] that if the center of a Lie algebra L has finite codimension, then its derived ideal
[L,L] has finite dimension. A situation with the center and derived subalgebra in Poisson
algebras has significant differences. In the Poisson algebras, the center and derived subalgebra
are not ideals. Nevertheless, for Poisson algebras, we obtained a similar result.

We recall some necessary definitions.

Let P be a Poisson algebra over a field F. As usual, a subset B of P is called a subalgebra of P, if
Bis asubspace of P, and if xy, [x ,y ] € B for all x,y € B. A subset L of Pis called an ideal of P, if L is
a subspace of P, and if xb,[x,b]eL for all b e L, x e P. A Poisson algebra P is called simple, if it
has only two ideals <0 > and P. A Poisson algebra P is called Abelian, if[x,y]=0forall x,y eP .

Let P be a Poisson algebra over a field F. Define the lower central series of P,

P=yi(P)Z2v,(P) 2.7, (P)Z2Vu1(P) = ..v5(P),

by the following rule: y,(P)=P, y,(P) =[P, P], recursively, y,,(P)=[y,(P),P] for all ordinals
o, and

n®)= ) r.(P)

p<i

for all limit ordinals A. The last term ys(P) is called the lower hypocenter of P. We have
vs(P)=[vs(P),P].

We say that a Poisson algebra P is nilpotent, if there exists a positive integer & such that
v, (P)=(0). More precisely, P is said to be nilpotent of a nilpotency class c, it y.,,(P)=(0), but
7. (P)=(0).

Put {(P)={z eP|[z,x]=0forevery x e P}. The subset {(P) is called the center of P. Star-
ting from the center, we can construct the upper central series

(0)=Cp(P) <GPS C(P) <G (P) < Eo iy (P) <G (P) =G (P)

of a Poisson algebra P by the following rule: ;(P)=¢(P) is the center of P, recursively,
Cut(P)/C, (P)=C(P /E,(P)) forall ordinals a, and

G.(P)=J ¢.(®)

p<i
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for all limit ordinals A. We remark that each term of this series is a subalgebra of P, which is
an ideal of a Lie algebra P(+,[,]). The last term {_(P) of this series is called the upper hy-
percenter of P.

We start with some important and useful auxiliary results.

Proposition 1. Let A be an associative commutative algebra over a field F and be generated
by a subset S. Suppose that a bilinear operation |,] satisfying conditions [a,a]l=0 and [ab,c]=
=alb,c|+bla,c] is defined on A. Then A is a Poisson algebra, if and only if [[a,b],c]+[[b,c], a]
+[[c,al,b]=0 forall a,b,ceS .

Let A, U be Poisson algebras over a field F. Then a mapping f:A —-U is called a homo-
morphism, if

JQa)=2f(a), [(a+b)=f(a)+/(]),
J(ab)=f(@)f (), f(la,b]) =/ (a).f(b)]

forall abeA, LeF .

As usual, an injective homomorphism is called a monomorphism, a surjective homomorphism
is called an epimorphism, and a bijective homomorphism is called an isomorphism.

Proposition 2. Let A be an arbitrary Poisson algebra over a field F. Then there exists a Poisson
algebra S over a field F having a multiplicative identity element and a monomorphism f:A —S .
Moreover, Im(f) is an ideal of S.

This proposition allows us to consider further only Poisson algebras having the multiplica-
tive identity element 1, .

If B, C are the subspaces of a Poisson algebra P, then let

B+C={b+cl|forallbeB,ceC};

BC be the subspace of P generated by the subset {bc |forallb € B,c eC};
[B, C] be the subspace of P, generated by the subset {[b,c]|forallb eB,ceC}.
Clearly, BC is a subset of P consisting of elements of the type a0, +...+a,b,, where a,...,a, €B,
by,...b, €C. Similarly, [B, C]is a subset of P consisting of elements of the type [a;,b]+...+]a,, b, ]
where a,...,a, €B, b,,...b, €C .

Proposition 3. Let P be a Poisson algebra over a field F.

(i) If B is a subalgebra of P, and if C is an ideal of P, then B +C, BC are subalgebras of
P. Moreover, if B, C are ideals of P, then B +C , BC are ideals of P.

(i) C(P) is a subalgebra of P, which is an ideal of the Lie algebra P(+,[,]).

(iii) C(P) contains every idempotent of P, in particular, 1, € L(P).

(iv) If P is not a simple algebra, then P has a proper non-zero maximal ideal.

(v) Forevery x € P, a subset xP ={xy |y € P} is a subalgebra of P and an ideal of P(+,").

Proposition 4. Let P be a Poisson algebra over a field F. Suppose that A is a non-Abelian su-
balgebra of P. If A is nilpotent, then A contains zero divisors.

The Poisson algebra P is called locally nilpotent, if every finitely generated subalgebra of P
is nilpotent.

Corollary 1. Let P be a Poisson algebra over a field F. Suppose that A is a locally nilpotent
subalgebra of P. If A does not contain zero divisors, then A is Abelian.

ISSN 1025-6415. /lonos. Hay. axad. nayx Yxp. 2021. No 3 13



L.A. Kurdachenko, A.A. Pypka, I.Ya. Subbotin

Proposition 5. Let P be a Poisson algebra over a field F. Suppose that char(F) = p is a prime,
and F? =F. If S is a subalgebra of P, then the subset S? ={x” |x €S} is a subalgebra of P, mo-
reover, S” <L(P).

Corollary 2. Let P be a Poisson algebra over a field F. Suppose that char(F)= p is a prime,
and FP =F. Then the subset PP ={x? |x e P} is a subalgebra of P, moreover, P? <{(P).

Corollary 3. Let P be a Poisson algebra over a field F. Suppose that char(F)= p is a prime,
and FP =F. If S is a finite-dimensional subalgebra of P, and if S does not contain zero divisors,
then § <C(P).

Corollary 4. Let P be a Poisson algebra over a field F. Suppose that char(F)= p is a prime,
and F? =F . If Pis finite-dimensional, and if P does not contain zero divisors, then P is Abelian.

We note that every finite field F of characteristic p satisfies F? =F. It implies that every lo-
cally finite field F of characteristic p satisfies F? = F. Thus, we obtain

Corollary 5. Let P be a Poisson algebra over a finite field F. If P is finite-dimensional, and if P
does not contain zero divisors, then P is Abelian.

Corollary 6. Let P be a Poisson algebra over a locally finite field F. If P is finite-dimensional,
and if P does not contain zero divisors, then P is Abelian.

Corollary 7. Let P be a Poisson algebra over a field F. Suppose that char(F )= p is a prime, and
F? =F. If Sis a locally (finite-dimensional) subalgebra of P, and if S does not contain zero divisors,
then S <{(P).

Corollary 8. Let P be a Poisson algebra over a field F. Suppose that char(F)=p is a prime, and
FP? =F.If Pis locally (finite-dimensional), and if P does not contain zero divisors, then P is Abelian.

Corollary 9. Let P be a Poisson algebra over a finite field F. If P is locally (finite-dimensional),
and if P does not contain zero divisors, then P is Abelian.

Corollary 10. Let P be a Poisson algebra over a locally finite field F. If Pis locally (finite-dimen-
sional), and if P does not contain zero divisors, then P is Abelian.

The first main result is the following

Theorem 1. Let P be a Poisson algebra over a field F. Suppose that the center of P has a finite
codimension d. Then P includes an ideal K of a finite dimension of at most %d (d* -1) and such that
P/K is Abelian.

Corollary 11. Let P be a Poisson algebra over a field F. Suppose that char(F)=p is a prime,
and FP =F. If Pis finite-dimensional over the center, and if P does not contain zero divisors, then P
is Abelian.

Corollary 12. Let P be a Poisson algebra over a finite field F. If Pis finite-dimensional over the
center, and if P does not contain zero divisors, then P is Abelian.

Corollary 13. Let P be a Poisson algebra over a locally finite field F. If P is finite-dimensional
over the center, and if P does not contain zero divisors, then P is Abelian.

In [10], it was proved that if the hypercenter C,(G) of a group G has a finite index, then its
(n+1) -th hypocenter v, ,,(G) is finite. This result was also extended to other algebraic structures,
in particular, onto Lie [13] and Leibniz algebras [ 14, 15]. For the Poisson algebras, we obtain the
following

Theorem 2. Let P be a Poisson algebra over a field F. Suppose that C,(P) has a finite codimen-
sion d. Then P includes an ideal K having a finite dimension of at most d""'(1+d) and such that
P /K is nilpotent of a nilpotency class of at most n.
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Corollary 14. Let P be a Poisson algebra over a field F. Suppose that char(F )= p is a prime and

FP =F.If €, (P) has finite codimension, and if P does not contain zero divisors, then P is Abelian.

Corollary 15. Let P be a Poisson algebra over a finite field F. If C,(P) has finite codimension,

and if P does not contain zero divisors, then P is Abelian.

Corollary 16. Let P be a Poisson algebra over a locally finite field F. If C,(P) has finite codi-

mension, and if P does not contain zero divisors, then P is Abelian.

Now, we present our last result.
Theorem 3. Let P be a finitely generated Poisson algebra over a field F, and let K be an ideal

of P.If K has a finite codimension, then K is finitely generated as an ideal.
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IMTPO AHAJIOTU JEAKUX KITACTYHUNX
TEOPETUKO-TPYIIOBUX PE3VYJIBTATIB
B AJITEBPAX ITYACCOHA

Hocaimkeno anrebpu [lyaccona, B skux n-ii rinepiieHTp (IIEHTP) M€ CKiHYEHHY KOBUMIipHicTh. Beranosie-
HO, 1[0 B I[bOMY BHUIaAKy aare6pa [Tyaccona P MicTuTh Takuil ckiHueHHOBUMIpHMIL igean K, mo P/K HijbHooTeH-
THa (abGenesa). Binbiie Toro, sKmo n-il rineprentp aarebpu Ilyaccona P Haj JessKUM MOJIEM Ma€ CKiHYEHHY
KOBUMIDHICTB i P He MiCTUTD AiJIbHUKIB HyJIs, TO P abeseBa.

Kantouosi crosa: anzebpa Ilyaccona, yenmp, zinepuenmp, OioHuK Hyas, HibNOMEHMHICMb.
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