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The spaces indicated in the title play a fundamental role in the modern theory of elliptic boun-
dary-value problems. Thus, these problems generate Fredholm bounded operators on approp-
riate pairs of the indicated spaces provided that their order of regularity is large enough (see, e.g., 
[1, Section 5.5.2; 2, Section 4.3.3]). The case where these spaces are of low (specifically, negative) 
regularity is more intricate and less studied. But it is natural to use the distribution spaces of 
low regularity, if we investigate elliptic problems whose right-hand sides contain functions with 
power singularities, delta-functions and their derivatives, distributions induced by some sto-
chastic processes (e.g., the Lévy white noise), and other irregular distributions. The main question 
arising in this case concerns the interpretation of traces of low-regularity distributions. Imposing 
some conditions on the right-hand side of an arbitrary elliptic differential equation, we may de-
fine the traces of its solutions with the help of the passage to the limit on a class of smooth func-
tions. Such an approach was elaborated by J.-L. Lions and E. Magenes [3, 4] for Sobolev spaces 
and some Besov spaces and recently was developed in [5; 6, Sections 4.4 and 4.5; 7] for Sobolev 
spaces and some of their generalizations in the class of Hilbert spaces. This approach gives the-
orems on the Fredholm property of regular elliptic problems in distribution spaces of arbitra-
rily low order. Another approach is due to Ya. A. Roitberg [8] and works with normed spaces 
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which are not formed by distributions given in the domain of the elliptic equation. A relation 
between these two approaches was considered in [5; 9, p. 85].

In the present article, we extend the Lions—Magenes approach to general Besov and Trie-
bel—Lizorkin reflexive normed spaces of low regularity. In contrast to the above-cited works, 
we investigate elliptic problems with additional unknown distributions in boundary conditions. 
The class of such problems is closed with respect to the transition to the formally adjoint prob-
lem, which allows us to describe explicitly the ranges of operators induced by the problems under 
investigation. Note that the classical elliptic problems (both regular and nonregular) belong to 
this class. Our main results are four theorems on the Fredholm property of the induced operators 
on appropriate pairs of Besov and Triebel—Lizorkin spaces of low regularity, specifically of an 
arbitrary negative order. We impose weak enough conditions on the right-hand sides of elliptic 
differential equations in terms of some nonweighted or weighted spaces. These theorems al-
lows us to derive the maximal regularity of solutions to the elliptic problems from the given 
regularity of the data. The results are also new for general Sobolev spaces.

1. Statement of the problem. Let   be a bounded domain in the Euclidean space nR , with 
2n , and let   denote the boundary of . Suppose that   is an infinitely smooth closed mani-

fold of dimension 1n   and that the C  -structure on  is induced by nR .
Let integers 1l  , 0 , and 1, , 2 1lm m l   . If 1 , let 1, ,r r  be arbitrary integers. 

We consider the following boundary-value problem: 

inAu f . (1)

,
1

     on     ,   1, ,j j k k j
k

B u C v g j l



      .   (2)

Here, : ( , )A A x D  is a linear partial differential operator (PDO) on :   of the even order 
2l . In addition, each : ( , )j jB B x D  is a linear boundary PDO on , and each , ,: ( , )j k j kC C x D  
is a linear tangent PDO on . These orders satisfy the conditions ord j jB m  and ,ord j k j kC m r . 
(As usual, PDOs of negative order are defined to be zero operators.) We suppose that all coef-
ficients of the above PDOs are infinitely smooth functions on   or  , respectively. The distri-
bution u  on   and the distributions 1, ,v v   on   are unknown in this problem. Of course, if 

0  , the problem does not contain any kv . In this case, the boundary conditions (2) become 

j jB u g  on  , with 1, ...,j l . All functions and distributions are supposed to be complex-va-
lued; therefore, we use complex distribution/function spaces. We interpret distributions as anti-
linear functionals on a relevant space of test functions.

Let 1: max { , , } .lm m m   We assume that km r  whenever 1  .k    Our assumption is 
natural; indeed, if 0km r   for some k, then 1, , 0k l kC C    , i.e. the unknown kv  will be 
absent in the boundary conditions (2).

We assume that the boundary-value problem (1), (2) is elliptic in   as a problem with ad-
ditional unknown distributions 1, ,v v   on   (see, e.g., [10, Definition 3.1.2]). This means 
that the PDO A is properly elliptic on   and that the system of boundary conditions (2) covers 
A  on  . Certainly, if 0  , our assumption becomes the usual ellipticity condition for the prob-
lem with respect to the single unknown u .
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Problem (1), (2) induces the linear mapping 

1 1 1: ( , , , ) ( , , , ),    where    ( )    and    , , ( ) .lu v v f g g u C v v C 
           (3)

Here, of course, the functions f  and 1, , lg g   are defined by formulas (1) and (2). We study 
extensions of this mapping on appropriate pairs of normed distribution spaces.

Let N  denote the linear space of all solutions 1( , , , ) ( ) ( ( )) u v v C C  
      to prob-

lem (1), (2) in which 0f   on  , and all 0jg   on  . Analogously, let N   stand for the linear 
space of all solutions 1( , , ,  ) ( ) ( ( )) l

lw h h C C  
      to the formally adjoint problem 

in which all right-hand sides are zeros. The last problem is explicitly written, contains l   
additional unknown distributions 1, , lh h   on  , and is also elliptic [10, Theorem 3.1.2]. The 
spaces N  and N   are finite-dimensional [10, Lemma 3.4.2].

2. Relevant distribution spaces. We now recall the definitions of the normed Besov and 
Tribel—Lizorkin spaces over nR , mainly following [2, Section 2.3]. As usual, ( )nS  R  stands for 
the linear topological space of all tempered distributions in nR , whereas F  and 1F   denote 
the direct and inverse Fourier transforms on ( )nS  R . If Q  is a normed linear space, then ,|| ||Q  
designates the norm in Q .

We arbitrarily choose a function 0 ( )nC   R  such that 0( ) 1y   whenever 1| |y   and 
that 0( ) 0y  , whenever 2| |y  , with ny R . Given k N , we define a function ( ) :k y 

– 1–
0 0: (2 ) (2 )k ky y    of ny R . The functions k , where 0 k Z , form an infinitely smooth 

resolution of unity on nR .
Let sR  and , (1, )p q  . By definition, the Besov space , ( )s n

p qB R  consists of all distri-
butions ( )nw S  R  such that 

–1 /
,

0

, ( ) : 2  ( [ ] ( ) ) .|| ||
n

ps n q skq q p
p q k

k

w B F Fw x dx



    

R

R

By definition, the Triebel—Lizorkin space , ( )s n
p qF R  consists of all distributions ( )nw S  R  

such that 





 
    

 


/
–1

,
0

, ( ) : 2  [ ] ( )|| ||
q

n

p q
s n p skq
p q k

k

w F F Fw x dx
R

R .

These spaces are complete (i.e. Banach) and separable (with respect to the norms 
 ,, ( )|| ||s n

p qB R  and  ,, ( )|| ||s n
p qF R , of course). They do not depend, up to equivalence of norms, 

on the choice of 0 . The space , 2( )s n
pF R  coincides (up to equivalence of norms) with the Sobolev 

space ( )s n
pH R  of regularity order .s  Note that , ,( ) ( )s n s n

p p p pB FR R  with the equality of norms.
Being based on the above spaces, we introduce their versions for   in a way common to 

Besov and Triebel—Lizorkin spaces. We follow the approach used, e.g., in [4, Chapter 1] for 
Sobolev spaces. Let E  denote either B  or F  in our designations of distribution spaces. Thus, e.g., 

, ( )s n
p qE R , means either , ( )s n

p qB R  or , ( )s n
p qF R  in the considerations given below.

If 0s  , we put

   , ,( ) : : ( ) ,|s s n
p q p qE w w E R

 
(4)
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    , , ,, ( ) : inf , ( ) : ( ) ,  || || || || |s s n s n
p q p q p qu E w E w E u wR R . (5)

(Of course, |w  stands for the restriction of a distribution ( )nw S  R  to .) The space , ( )s
p qE   is 

a Banach one. Let , 0
, ( )s

p qE   denote the completion of the linear space { ( ) : supp  }u C u    
with respect to the norm in , ( )s

p qE  . Here, as usual, supp  u   is the largest closed subset of nR  
outside which u  0.

If < 0s , then , ( )s
p qE   is defined to be the antidual Banach space to , 0

, ( )s
p qE 
   . Here, the 

numbers , (1, )p q    satisfy the conditions 1/ 1/ 1p p   and 1/ 1/ 1q q  . In this case, we 
have the following description: 

    , ,( ) : : ( ),  supp  ,|s s n
p q p qE w w E wR

    , , ,, ( ) ~ inf , ( ) : ( ),  supp   , ,|| || || ||  |s s n s n
p q p q p qu E w E w E w u wR R

with ~ meaning equivalence of norms. In addition, if negative { 1/ : }s k p k   N , then we 
may omit the condition supp  w   in this description, which gives us the equivalent defini-
tion (4), (5) of , ( )s

p qE   for such s.
Whatever sR , the Banach space , ( )s

p qE   is separable and continuously embedded in the 
topological space ( )D    of all distributions in . Moreover, the set ( )C   is dense in , ( )s

p qE  . 
We have the dense continuous embeddings , ,( ) ( )s s

p q p qE E
     and , ,( ) ( )s s

p q p qE E    , 
whenever 0 , 0 , and 0  . The first embedding is compact, when > 0 . If the numbers 

,s t R  and , (1, )p r    satisfy the condition  (1/ 1/ ) 0s t n p r    , then the dense continu-
ous embedding , ,( ) ( )s t

p q r qE E    holds true.
Given a positive function ( )C   , we put 

, , ( ) : { : ( )}s s
p q p qE u u E      ,

–1
, ,,  ( ) :  , ( )  || || || ||s s

p q p qf E f E     ,

where , ( ) s
p qf E  . The space , ( )s

p qE   is a Banach one, separable, and continuously embed-
ded in ( )D   .

Thus, we have introduced the spaces , ( )s n
p qB R  and , ( )s n

p qF R  and their weighted analogs 

, ( )s
p qB   and , ( )s

p qF  . Note that 

,  min{ , } , , max{ , }( ) ( ) ( ) s s s
p p q p q p p qB F B     ,

the embeddings being continuous and dense.
We also need Besov spaces over the boundary   of  . Briefly saying, the space , ( )s

p qB  , 
where sR, consists of all distributions ( )h D    that yield elements of –1

, ( )s n
p qB R  in local 

charts on . The detailed definition of   is given, e.g., in [2, Section 3.2.2]. The set ( )C    is 
dense in this space. The above embeddings are also true for the Besov spaces over  , with 1n   
being taken instead of n  in the condition for s, t , p, and r .
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If >1/s p, then –1/
, ( )s p

p qB   is the space of traces of distributions from , ( )s
p qB  . This means 

that the mapping |u u  , where ( )u C   , extends uniquely (by continuity) to a bounded 
linear operator from , ( )s

p qB   onto –1/
, ( )s p

p qB   [2, Theorem 3.3.3]. In addition, if >1/s p, then 
–1/
, ( )s p

p pB   is the space of traces of distributions from , ( )s
p qF  , whenever (1, )q  . This ex-

plains why we do not need Triebel—Lizorkin spaces over   in the next section.
All the normed spaces just considered are reflexive.
3. Results. We arbitrarily choose , (1, )p q   in this section. We investigate the elliptic 

problem (1), (2) in the case where solutions of the elliptic equation (1) belong to one of the 
spaces , ( )s

p qB 
 
and , ( )s

p qF   of regularity order 2 1 1/s l p  . If s  satisfies the inverse ine-
quality, the following result is known:

Mapping (3) extends uniquely (by continuity) to a bounded linear operator 

– –1/1/ 2
, , , ,

1 1
:  ( ) ( )  ( ) ( )jk

l
s m ps r ps s l

p q p q p q p q
k j

B B B B
 

  

 
         , 

 
(6)

whenever > 2 1 1/s l p  . This operator is a Fredholm one. Its kernel is N , and its range con-
sists of all vectors 1( , ) : ( , , , )lf g f g g    that belong to the target space in (6) and satisfy the 
condition 

1
1

( , ) ( , ) 0     for all    ( , , , )
l

j j l
j

f w h g w h h N



  


    .

 
(7)

Thus, the index of the operator (6) is equal to : dim dim N N     and does not depend on s, 
p, and q. This statement remains true, if we replace , ( )t

p qB   with , ( )t
p qF   and , ( )t

p qB   with 

, ( )t
p pB   for all mentioned values of t. 

This result is contained in [11, Theorem 5.2] (see also [12, Corollary 5.5] in the case of So-
bolev spaces , 2( ) ( )t t

p pH F   ), condition (7) following from [10, Theorem 4.1.4]. If 0  , and 
if the elliptic problem is regular, this result is proved in [2, Theorem 4.3.3] (under the assum-
ption that {0}N   and {0}N   ) and in [13, Theorem 15] (without this assumption).

Recall that a bounded linear operator 1 2:  T Q Q , where 1Q  and 2Q  are Banach spaces, 
is said to be a Fredholm one, if its kernel 1ker : { : 0}T x Q Tx    and co-kernel 2 1/ ( )Q T Q  
are finite-dimensional. In this case, the range 1( )T Q  is closed in 2Q , and the operator has the 
finite index, which is equal by definition to 2 1dim ker dim / ( ) .T Q T Q  

Generally, the bounded linear operator (6) is not well defined in the case of 2 1 1/s l p  , 
which follows from [2, Section 2.7.2, Remark 4]. The same is true for the above-mentioned analog 
of (6) for Triebel—Lizorkin spaces. Considering this case, we have to take a narrower space than 

, ( )s
p qE   as a domain of solutions u  to the elliptic equation (1). (Recall that E  means either B  

or F .) This space is defined with the help of some conditions imposed on Au. We separately 
consider two approaches. The first of them demands that Au  belong to the space –1 1/

, ( )p
p qE   , 

whose regularity order is limiting in (6), where 2 > 1 1/s l p   . The second uses some weighted 
spaces –2

, ( )s l
p qE   for Au.

Dealing with the first approach, we put 

–1 1/
, , ,( , ) : { ( ) : ( )}s s p

p q p q p qE A u E Au E       ,
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–1 1/
, , ,, ( , ) :   , ( )  , ( ) .|| || || || || ||s s p

p q p q p qu E A u E Au E     

Here and below, we understand Au  in the theory of distributions on  . The normed linear 
space , ( , )s

p qE A   is complete. The set ( )C    is dense in this space.
Theorem 1.  Let 2 1 1/s l p  . Then mapping (3) extends uniquely (by continuity) to a 

bounded linear operator 

– –1/–1/ –1 1/
, , , ,

1 1
:  ( , ) ( )  ( ) ( )jk

l
s m ps r ps p

p q p q p q p q
k j

B A B B B
 

 

 
         .

 
(8)

This operator is a Fredholm one with kernel N  and index . Its range consists of all vectors ( , )f g  
that belong to the target space in (8) and satisfy (7). 

A version of this theorem for Triebel—Lizorkin spaces is formulated as follows:
Theorem 2. Let 2 1 1/s l p  . Then mapping (3) extends uniquely (by continuity) to a 

bounded linear operator 

1/1/ 1 1/
, , , ,

1 1
:  ( , ) ( )  ( ) ( ) jk

l
s m ps r ps p

p q p p p q p p
k j

F A B F B
 

    

 
         .

 
(9)

This operator is a Fredholm one with kernel N  and index . Its range consists of all vectors ( , )f g  
that belong to the target space in (9) and satisfy (7). 

Realizing the second approach, we put 

–2
, , ,( , , ) : { ( ) :  ( )}s s s l

p q p q p qE A u E Au E       ,

–2
, , ,, ( , , ) :   , ( )  ,  ( )|| || || || || ||s s s l

p q p q p qu E A u E Au E       ,

with 0 ( ) .C     The normed linear space , ( , , )s
p qE A  

 
is complete. Let   denote the dif-

ferentiation operator along the inner normal to the boundary of  . As above, 1/p + 1/p  1 
and  1/q + 1/q  1.

Theorem 3.  Let < 2 1 1/s l p  . Suppose that a positive function ( )C    is a multiplier 
on the space 2 –

, ( )l s
p qB     and satisfies the condition 

0    on         whenever          and      0 2 1 1/j j j l s p        Z  . 
 

(10)

Then mapping (3), where –2
, ( )s l

p qAu B   in addition, extends uniquely (by continuity) to a boun-
ded linear operator 

– –1/–1/ –2
, , , ,

1 1
:  ( , , ) ( )   ( ) ( )jk

l
s m ps r ps s l

p q p q p q p q
k j

B A B B B
 



 
           . (11)

This operator is a Fredholm one with kernel N  and index .
 
Its range consists of all vec tors 

( , )f g  that pertain to the target space in (11) and satisfy (7). 
As for Triebel—Lizorkin spaces, our result is formulated as follows:
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Theorem 4.  Let < 2 –1 1/s l p . Suppose that a positive function ( )C    is a multiplier 

on the space 2 –
, ( )l s

p qF     and satisfies condition (10). Then mapping (3), where –2
, ( )s l

p qAu F   in 

addition, extends uniquely (by continuity) to a bounded linear operator 

– –1/–1/ –2
, , , ,

1 1
:  ( , , ) ( )   ( ) ( ) .jk

l
s m ps r ps s l

p q p p p q p p
k j

F A B F B
 



 
          

 
(12)

This operator is a Fredholm one with kernel N and index . Its range consists of all vectors 
( , )f g  that pertain to the target space in (12) and satisfy (7). 

Recall that a function ( )C    is called a multiplier on a normed linear space ( )Q D   , 
if the operator of multiplication by   is bounded on Q .

Remark 1. Condition (10) makes sense in Theorems 3 and 4. Indeed, if a function ( )C    
is a multiplier on one of the spaces 2 –

, ( )l s
p qB     and 2 –

, ( )l s
p qF    , where < 2 1 1/s l p  , then  belongs 

to the same space. Hence, the trace j
   on   is well defined by [2, Theorem 3.3.3], whenever 

2 > 1/l s j p  . The latter inequality is equivalent to the condition < 2 1 1/j l s p    used in (10).
Remark 2. Under the hypothesis of Theorem 3 or Theorem 4, we have the continuous embed-

ding –2 –2
, , ( ) ( )s l s l

p q p qE E    , where E  B in the case of Theorem 3 or E  F in the case of Theo-
rem 4. Moreover, the set –2

,( )  ( )s l
p qC E     is dense in –2

, ( )s l
p qE  . 

The following result gives an important example of the above weight function  .
Theorem 5. Let < 2 1 1/s l p  , and let a positive function 1 ( )C     equal the distance to 

  in a neighbourhood of . Assume that 2 1 1/l s p    Z  or that > 2 1 1/l s p    Z . 
Then the function 1:     satisfies the hypotheses of Theorems 3 and 4. 

In the case where p  q  2 and   0, these theorems were established in [5, Section 2] 
for regular elliptic problems (see also monograph [6, Theorems 4.27, 4.29, and 4.30]). Putting 

2 –
1: l s    in Theorem 4 in this case and assuming that 2 1/ 2l s  Z, we arrive at the classical 

Lions—Magenes theorems [4, Theorems 6.7 and 7.4]. They concern regular elliptic problems 
in inner product Sobolev spaces.

It is worthwhile to compare Theorems 1—4 with the newest result by F. Hummel [14, 
Theo rem 6.3] concerning some constant-coefficient parameter-elliptic problems in the half-
space. He has found sufficient conditions under which the unique solution to such a problem be-
longs to certain anisotropic distribution spaces built on the base of Sobolev, Besov, and Triebel—
Lizorkin spaces of an arbitrary real order. Specifically, the right-hand side of the elliptic equation 
should have a nonnegative integer-valued Sobolev regularity in the normal direction with re-
spect to the boundary of the half-space. This result does not allow us to derive the maximal re-
gularity of solutions from these conditions, as is noted in [14, p. 1949]. Theorems 1—4 provide 
the maximal regularity in terms of isotropic spaces.

4. Applications. In Theorems 2 and 4, the spaces over   are independent of the parameter q  
in contrast to the spaces over  . This suggests that the set of all , ( ) s

p qu F   such that Au  sa-
tisfies a relevant condition does not depend on q . The following two theorems give such con-
ditions. Let , , (1, )p q r   .

Theorem 6. Let 2 1 1/s l p  . Assume that a Banach space Q  is continuously embedded in 
–1 1/
,  min{ , }( )p

p q rF   .
 
Then 
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, ,{ ( ) : } { ( ) : },s s
p q p ru F Au Q u F Au Q          (13)

, ,, ( ) ,  ~   , ( ) ,|| || || || || || || ||s s
p q p ru F Au Q u F Au Q    .

 
(14)

Recall that the symbol ~ means the equivalence of norms.
Theorem 7.  Let < 2 1 1/s l p  . Suppose that a positive function ( )C    is a multiplier on 

the space 2 –
, ( ) l s

p qF     and satisfies condition (10). Suppose also that a positive function ( )C    
is a multiplier on the space 2 –

, ( ) l s
p qF     and satisfies condition (10) in which   is replaced with  . 

Let a Banach space Q be continuously embedded in both of the spaces –2
, ( )s l

p qF 
 
and –2

, ( ) s l
p rF  . 

Then relations (13) and (14) hold true. 
Theorems 6 and 7 complement the following property of Triebel—Lizorkin spaces of high 

enough regularity: if > 2 1 1/s l p  , and if a Banach space Q  is continuously embedded in 
–2
,  min{ , }( )s l

p q rF  , then (13) and (14) are valid. This property follows from the result stated at the 
beginning of Section 3. Specifically, the space 

 , ( ) :   0   in   s
p qu F Au     (15)

does not depend on q , whatever sR . Such a property is proved in [15, Theorem 1.6] under the 
additional assumption that A  is a constant-coefficient homogeneous PDO, but in the more gen-
eral case where the bounded domain   is a Lipschitz one and when , (0, )p q  . Note that space 
(15) will not change, if we replace , ( )s

p qF   with space (4) used in [15]. The latter space is broad-
er than , ( )s

p qF 
 
if and only if { 1/ : }s k p k   N .
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ЕЛІПТИЧНІ ЗАДАЧІ У ПРОСТОРАХ БЄСОВА 
І СОБОЛЄВА–ТРІБЕЛЯ–ЛІЗОРКІНА НИЗЬКОЇ РЕГУЛЯРНОСТІ

Еліптичні задачі з додатковими невідомими узагальненими функціями у крайових умовах досліджено в 
просторах Бєсова і Соболєва–Трібеля–Лізоркіна низької регулярності, зокрема, довільного від’ємного 
порядку. Встановлено, що такі задачі породжують нетерові обмежені оператори на відповідних парах цих 
просторів.

Ключові слова: еліптична задача, простір Бєсова, простір Соболєва, простір Трібеля–Лізоркіна, нетерів 
оператор.


