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The analytic technique and numerical experiments are employed to show that the orbital elliptic translational ex ci-
tations of a square-base container can, depending on the ratio of the semiaxes of the elliptic orbit, lead, when the 
forcing frequency is close to the lowest natural sloshing frequency, to both the counter- and co-directed (relative 
to the orbital forcing direction) stable swirling-type steady-state resonant waves. For a non-zero damping in the 
hydrodynamic wavy system, the passage to circular orbits makes the stable counter-directed swirling impossible. 
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МЕХАНІКА
MECHANICS

In the recent paper [1], the authors have finalized a series of systematic theoretical studies on the 
steady-state resonant sloshing in a square-base tank, which performs a periodic (cyclic) motion 
with five degrees of freedom (sway, pitch, surge, roll, and yaw, when no vertical excitations are 
allowed) with the forcing frequency close to the lowest natural sloshing frequency. The Nari-
manov--Moiseev-type nonlinear modal system [2, Chapter 9] is employed. These studies estab-
lished an asymptotic equivalence between periodic solutions of the nonlinear modal system (these 
solutions are associated with steady-state resonant surface waves) for an arbitrary cyclic non-
parametric sway-pitch-surge-roll-and-yaw excitation and those ones coming from the modal sys-
tem, when the tank performs an elliptic horizontal orbital motion. The equivalence implies that, 
for any periodic non-parametric (non-heave) tank excitation, one can match a horizontal elliptic 
tank orbit, which causes, to within the highest-order asymptotic quantities in the corresponding 
periodic solutions of the modal system, the same steady-state surface waves. Furthermore, the 
authors were concentrating on effective frequency domains of the almost standing and swirling 
steady-state wave modes for translational, diagonal, and oblique positions of the matched elliptic 
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orbits. These steady-state wave results were compared with those for an upright circular cylindri-
cal tank [3—6] for which the longitudinal horizontal forcing [3] leads to standing, swirling and 
irregular wave modes, circular horizontal tank orbit [4, 5] yields the co-directed (to the orbit di-
rection) swirling, and the elliptic tank excitation may cause both counter- and co-directed swirl-
ing-type waves [6]. The square-base cross-section makes the mentioned `classification’ of the 
steady-state resonant wave modes much more complicated, so that, e.g., stable nearly-standing 
waves become possible even for circular orbits, while, as we remember, this excitation type of 
circular-base tank only yields the co-directed swirling. A very special question appears on wheth-
er the counter-directed stable swirling wave mode exists, when the excitation orbit of a square-
base tank approaches the circular shape. The present paper addresses the question after conduct-
ing a parametric analytic-and-numerical analysis following the paper [1].

A square-base container moves translatorily along a horizontal elliptic orbit, as it is sche-
matically shown in Fig. 1. For the prescribed elliptic semiaxes values xe  and ye  and the angle 
 between the major semiaxis and the horizontal coordinate axis, the two non-dimensional ge-
neralized coordinates describing the horizontal translational orbital tank motion can be defined 
to within the time-lag substitution t  t + const as follows:

         
         

1

2

( ) ( ) [ cos ]cos [ sin ]sin ;

( ) ( ) [ sin ]cos +[ cos ]sin .
x x y

y x y

t t e t e t

t t e t e t
  (1)

Because of the symmetry planes Oxz  and Oyz  for the square base, one can, without loss of ge-
nerality, assume 0 / 4    and associate the major semiaxis with xe . Mathematically, the 
two generalized coordinates (1) determine either counterclockwise or clockwise orbit or imply 
a reciprocating tank excitation. For 0 / 4   , the sign of  x ye e  discriminates the counter-
clockwise  ( > 0)x ye e  or clockwise  ( < 0)x ye e  forcing, or the reciprocation 

Fig. 1. A top view on a schematic elliptic orbital 
trajectory, which is characterized by the non-di men-
sional sizes of semiaxes xe  and ye , as well as the 
angle  between the major semi- and horizontal-
coordinate axes. Because of the symmetry of two co-
ordinate-planes, one can, without loss of generality, 
assume 0 / 4   . The cyclic tank motions along 
the elliptic orbit occur either counterclockwise or 
clockwise so that, when the two translational gene-
ralized coordinates in (1) determine an elliptic or bit 
with a non-zero  0xe  ,    0 y xe e  , the forcing di-
rection is defined from (2). The resonant swirling 
wave may be counter- or co-directed with respect to 
the orbital forcing direction. 
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  ( 0)x ye e . (2)

The forcing amplitude should be an asymptotically small value, which means that 
( ) ~ ( ) 1 1,2i t O , i   . 

The Narimanov--Moiseev asymptotic approximation of the free-surface resonant waves 
suggests the following ansatz:
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where (1) (2)[ ( ) ( )]i jf x f y  are the natural sloshing modes in the non-dimensional tank (scaled by 
the tank width), the term [lin.] implies the linear wave component, and 

 (1)( ) cos( ( +1/2))if x i x ;   (2)( ) cos( ( +1/2)) 0.if y i y , i  (4)

Based on t he modal approximation (3), (4), the Narimanov--Moiseev-type modal system of 
nonlinear differential equations was derived [2, Chapter 9], which couples the sloshing-related 
generalized coordinates, 1 1 2 2 1 3 3 21 12( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )a t , b t , a t , b t , c t , a t , b t , c t , c t . This system is 
studied in [1] for the arbitrary orbital tank forcing (1). The steady-state asymptotic (periodic) 
solution of the modal system contains the dominant asymptotic component 

        1/3
1 1( ) cos + sin + ( ); ( ) cos + sin + ( ) ~ ~ ~ ~ ( )a t a t a t O b t b t b t O , a b a b O ,  (5)

where   is the forcing frequency, and the non-dimensional amplitude parameters a, a, b, b  are 
real solutions of the following system of nonlinear algebraic (secular) equations:
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 (6)

in which the so-called Moiseev detuning parameter 

2 2 2/3
11 / ( )O        (7)

depends on the forcing frequency (the smallness of   on the ( )O  -scale reflects the resonance 
condition, i.e. it says that the forcing frequency   should be close to the lowest natural sloshing 
frequency 1 ), the relatively small damping coefficient 2/3

0,1 1,02 2 ( )O        is associated 
with the logarithmic decrement of the lowest natural sloshing modes (1)

1[ ( )]f x  and (2)
1[ ( )]f y , 

but 1 2m , m  and 3m , as well as 1P , are functions of the non-dimensional liquid depth h . Explicit 
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formulas for 1P , 1 2 3,m , m m  and   can be found in [1], but [2, Fig. 9.7] graphically illustrates 
the values of 1 2m , m  and 3m  as functions of h , specifically, 

2 1 3 1 30 0 0m < m < , < m , m +m >     as    0.3368h > ….  (8)

In the most general case, computing the non-dimensional amplitude parameters a, a, b, b  
from the secularity equations (6) for each given frequency   [solution of (6) may not be unique] 
and substituting the result into (5) and (3) determine the lowest-order approximation of reso-
nant steady-state surface-wave patterns (modes), which can be either stable or unstable. An ana-
lytic stability criterion is derived and proven in [7, Eq. (4.10)]. 

The stable steady-state wave solutions of the Narimanov-Moiseev-type modal equations 
describe swirling (rotary), standing, or/and nearly-standing waves. When all steady-state so-
lutions for the fixed forcing frequency   are unstable, irregular (chaotic) surface wave patterns 
are theoretically expected. In the lowest-order approximation (using only the 1/3( )O  -order 
terms in (3)), one can discriminate the following stable wave types as functions of the ampli-
tude parameter   +ab ab : 

   2/3( ) 0O -counterclockwise swirling;   2/3( ) 0O < - clockwise swirling

  ( )O - nearly standing wave;   ( )o - standing wave.  (9)

When taking  1P , 1 2 3,m , m m  and   from [1] and/or [2] for a fixed non-dimensional liquid 
depth h , as well as the elliptic forcing parameters, which include xe , ye , and , and varying   
by (7) in (6), the solution of the secular system (6) with respect to the non-dimensional amp-
litude parameters a, a, b, b  makes it possible to draw the wave-amplitude response curves in 
the  1( / ), A, B -space, where the resulting 1/3( )O  -order non-dimensional amplitudes in the 
horizontal directions (along Ox  and Oy ) are 

 
22 2 2+ +A a a , B b b . (10)

Implementing the stability criterion [7, Eq. (4.10)] identifies for every point on the response 
curves whether it corresponds to stable or unstable solution (steady-state wave). 

The limiting (longitudinal and diagonal) forcing cases with 0   and / 4    are in-
ves tigated in [2, Chapter 9] in an analytic way. For these cases, it was proved in [1] that both 
coun ter- and co-directed stable swirlings exist, when     1/ 0y xe e  (the reciprocating tank mo-
tion), but counter-directed resonant steady-state swirling disappears as 1 1   (the circular 
tank orbit). Specifically, the developed analytic technique is not applicable to oblique positions 
of the elliptic tank orbit, i.e., when 0 / 4< <  . That is why, the oblique elliptic forcing is only 
exemplified in [1] with / 6    and /12   , and other input parameters associated with ex-
periments in [8]. 

Utilizing a modified semianalytic algorithm from [1], we conducted an exhaustive nume rical 
analysis of response curves in the 1( / ), A, B  -space for 0 / 4< <  , 0.4 0.8h   (the res-
pon se curves practically do not change with larger liquid depths),  10.001 0.01 0 <1xe , <  , 
and 0.001 0.01  . The input values belong/cover the most realistic and physically admissible 
domains. Even though the response curves may significantly change with the chosen input values, 
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globally, all of them confirm that the counter-directed swirling mode becomes impossible (di-
sappears), as 1 1  . 

Normally, the counter-directed swirling exists, as 1 <0.2 . This fact is illustrated in Fig. 2 
for    0.6, 0.00727, 0.0256xh e , and 2 9   / , which correspond to the experimental in-
put data in [8]. Case (a) implies the reciprocating oblique tank motion ( 1( 0.0)   but panel (b) 
depicts the response curves for the counterclockwise elliptic oblique forcing with 1 0.2  . In 
these both cases, the oblique forcing is nearly diagonal. The solid lines correspond to stable solu-
tions (sloshing), whereas the dashed lines imply the instability. One can see the two continuous 
branches,  0 1 0( )l rP TD U U U D VS WP  and 1 0 0V S P  (loop-type) on which the stable swirling is pre-

Fig. 2. The wave amplitude response curves in the 1( / ), A, B  -space computed and drawn for  0.6h ,
   0.00727, 0.0256xe , and 2 / 9   . Panel (a) corresponds to the case 1 0.0  , but (b) is drawn with 

1 0.2   (the counterclockwise elliptic orbital forcing with the nearly diagonal position of the elliptic orbit). 
The solid lines mark the stable solutions, but the dashed lines imply the instability. There are two branches, 

 0 1 0( )l rP TD U U U D VS WP  and 1 0 0V S P  (loop-type), for the panels. The two subbranches 0V S  and 1 0V S  are asso-
ciated with the co- and counter-directed (counterclockwise and clockwise swirling waves), respectively. The 
subbranches lP T  and rW P  change from the standing (nearly diagonal, `D’) to the nearly-standing (`S’) and, 
further, to the counterclockwise swirling (`R’) as 1  increases. When the forcing frequencies belong to the 
range TV , there is no stable steady-state sloshing, and, therefore, irregular (chaotic) wave motions are expected.  

Fig. 3. The same as in Fig. 2 but with the ratio of semiaxes of the elliptic orbit 1 0.6   [panel (a)] and 1 1   
(the circular counter-directed forcing [panel (b)]. For these ratios, the loop-type branch V1S0P0 on which the 
stable counter-directed swirling was detected in Fig. 2, disappears. Specifically, the stable co-directed swirling 
is associated with points of the subbranches lP T , 0V S , and rW P . The subbranch 0D U  continues implying 
the stable nearly standing wave mode.
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sented by the subbranches 0V S  (the co-directed resonance swirling for the counterclockwise 
forcing) and 1 0V S  (the counter-directed [clockwise] swirling). The both subbranches appear in a 
neighborhood of the primary resonance, i.e., around 1/ 1   . The subbranches lP T  and rW P  
change from the standing (nearly diagonal, `D’) to the nearly-standing (S) and, further, to 
the counterclockwise swirling (R), as 1  increases. Comparing (a) and (b) demonstrates that 
the zone of the counter-directed (clockwise) swirling increases with 1 . 

For all the tested input parameters, the counter-directed (clockwise for the studied case) 
swirling wave mode normally disappears, as 10.6  . This fact is illustrated in Fig. 3, which is 
drawn with the same input parameters as in Fig. 2, but for 1 0.6   [panel (a)] and  1 1   (the 
circular counterclockwise forcing [panel (b)]. The branching in panel (a) is characterized by the 
unique continuous curve 0 1 0l rP TD U D V S W P  where the stable co-directed (counterclockwise) 
swirling is associated with lP T , 0V S , and rW P . The subbranch 0D U  keeps implying the stable 
nearly standing wave mode. When the ratio of semiaxes approaches 1, the subbranch 0D U  splits 
into the two loop-type branches. Fig. 3 (b) illustrates them for the given input parameters.     

Conclusions. The exhaustive numerical analysis of response curves, which correspond to 
the steady-state waves due to the elliptic orbital oblique forcing, shows for the finite non-di me-
n sional liquid depth 0.4h  that the horizontal orbital elliptic forcing may cause both the co- and 
c ounter-directed stable steady-state swirling wave regimes for smaller ratios of semiaxes of the 
ellipse, but only the stable co-directed swirling exists, when the elliptic shape tends to the circle.
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ПРОТИ- ТА СПІВНАПРАВЛЕНІ КРУГОВІ ХВИЛІ 
ЗА ОРБІТАЛЬНИХ ЗБУРЕННЯХ БАКУ КВАДРАТНОГО ПЕРЕРІЗУ

Застосовується аналітична техніка та чисельні експерименти для того, аби показати, що орбітальні еліп-
тичні поступальні збурення баку квадратного перерізу можуть призвести в залежності від співвідно-
шен ня напіввісей еліптичної орбіти до як проти- так і співнаправленої (відносно напрямку збурення баку) 
стійкої усталеної кругової хвилі. Частоти збурення близькі до першої власної частоти коливання рідини. 
Для ненульового демпфування в гідродинамічній системі перехід до кругових орбіт робить неможливими 
протинаправлені кругові хвилі. 

Ключові слова: хлюпання рідини, кругова хвиля, стійкість, орбітальне збурення.


