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We study the Poincaré boundary-value problem with measurable in terms of the logarithmic capacity boundary data

Jor semilinear Poisson equations defined either in the unit disk or in_Jordan domains with quasihyperbolic boundary
condition. The solvability theorems as well as their applications to some semilinear equations, modelling dif fusion
with absorption, plasma states and stationary burning, are given.

Keywords: Poincaré and Neumann boundary-value problems, measurable boundary data, logarithmic capacity,
semilinear equations of the Poisson type, nonlinear sources, angular limits, nontangent paths.

1. On completely continuous Poincaré operators. In Section 7 of [1], we considered the Poin-
caré boundary-value problem in terms of directional derivatives for the Poisson equations

AU (2)=G(2) (1)

and, as a partial case, the corresponding Neumann problem with arbitrary measurable boundary
data with respect to logarithmic capacity. Here G stands for the real-valued function defined in
Jordan domains D < C and it belongs to the spases L? (D) with p > 2. Recall that a continu-
ous solution U € Wli’cp (D) of (1) was called in [1] as a generalized harmonic function with the
source G . Such a solution, by the Sobolev embedding theorem, belongs to the class C!, see
Theorem 1.10.2 in [2].
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Poincaré problem with measurable data for semilinear Poisson equation in the plane

d o . . o
From now on, a—u(i) denotes the derivative of u at the point e D in the direction ve C,
|v |=1 ie., M

t—>0 t

Recall that the Neumann boundary value problem is a special case of the Poincaré problem on the
directional derivatives with the unit interior normal #n =n(w) to dD at the point w as v(), see
Corollary 1 below.

By Theorem 5 in [1], =1,in CBY(dD), and ¢:9D —> R , that is
measurable with respect to logarithmic capacity, and G :D — R in L” (D), p > 2, there is a gen-
eralized harmonic function U :ID — R with the source G in the unit disk D:={ze C:|z |<1} that
have the angular limits

lim W(Z )=0(0) quasi everywhere on 9D . 3)

Furthermore, the space of all such functions U has the infinite dimension.
By its proof, assuming that G have compact supports in I, one of such functions U can be
presented as the sum of the logarithmic (Newtonian) potential

NG(z)::iJlnk—w G (@)dm @) (4)
and the harmonic function
W2)=Re [{Hg 5 (&) ~T; 2 (B)}G (5)
0

with the known Pompeiu integral operator

dm(w)

T, (2) ——jg( W)= ()

and the Hilbert operator M, from Section 1 in [3], generating generalized analytic functions
/:D — C with the sources g and the angular limits

lim Re(M(Q)-f ()} =)  q.e.on dD, )

whose restriction to sources g with suppg =D, :={ze C |z |<p} is completely continuous over
D, :={ze C:|z |<r} for each p and 7€ (0,1).

Denoting by the given correspondence between G and the generalized harmonic func-
tions with the sources G and the Poincaré boundary condition (3), we see that F, is a completely
continuous operator over each disk D,, r€ (0,1), because the operators H; ,, and T ,, are so
and, in addition, the indefinite integral, as well as the operator of taking Re is bounded and linear.
Thus, by Lemma 1 and Remark 2 in [3], we come to the following statements.
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Lemma 1. Let v:0D — C,:|v({)|=1, be of countable bounded variation and ¢:0D — R be
measurable with respect to logarithmic capacity. Then there is a Poincaré operator F; over the sourc-
es G:D—-R in L (D), p > 2, with compact supports in I, which generates generalized harmonic
Jfunctions U : D — R with the sources G and the angular limits (3), whose restriction to sources G
with suppG c D, is completely continuous over D, for each p and r € (0,1).

Remark 1. Furthermore, we may assume that the restriction of the operator 7, to D, under
each re (0,1) is bounded at infinity in the sense that max |7 (2)|[<M-||G |, for some M >0 and
all G with large enough ||G ||, 20

2. On the Poincaré problem in the unit disk. In this section, we study the solvability of the
Poincaré boundary-value problem on directional derivatives in the unit circle for semilinear Pois-
son equations of the form AU (z)=H (z)-Q (U (z)) in the unit disk .

Theorem 1. Let v:9D — C,|v({)|=1, be of countable bounded variation and ¢:0D — R be
measurable with respect to logarithmic capacity. Suppose that H :1D — R is a function in the class
LP? (D) forp > 2 with compact supportin D and Q :R — R is a continuous function with

im 2 o, (8)

t—oe L

Then there is a function U : D — R in the class Wli’cp (DYNCL*(D) with o=(p—-2)/p such that

loc
AU (z)=H (2)-QU (2)) ae.in D )

and, in addition, U is a generalized harmonic function with a source G e LP (D) and the angular
limits

in%@)=0()  qeondD. (10)
z-(¢ aV

Moreover, U =R, , where R, is the Poincaré operator described in the last section, the support of G
is in the support of H, and the upper bound of || G ||, depends only on ||H ||, and on the function Q.

Proof. If || [|,=0 or [|Q |l;=0, then any harmonic function from Theorem 7.2 in [4] gives a
desired solution of (9). Thus, we may assume that || H ||,#0 and [|Q [|c#0. Set Q. (¢) = max |Q (1),

[d<¢
t e R" :=[0, ). Then the function Q, : R* — R™ is continuous, nondecreasing, and, by (8),
L (C
lim &0 — o, (11)
t—oo L

By Lemma 1 and Remark 1, we obtain the family of operators F (G;7t):L%, (D) — L%, (D),
where L%, (D) consists of functions G € L” (D) with supports in the support of H,

F(G;1)=tH-Q(R,) V1e0,1] (12)

which satisfies all groups of hypothesis H1—H3 of Theorem 1 in [5]. Indeed:
H1) First of all, by Lemma 1, the function F (G;t)e L%, (D) for all 1€ 0,1] and G € L%, (C)
because the function Q(%;) is continuous and, furthermore, the operators F (1) are com-
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pletely continuous for each 1€ 0,1] and even uniformly continuous with respect to the param-
eter t€ 0,1].

H2) The index of the operator F (- 0) is obviously equal to 1.

H3) Assume that the solutions of the equations G =F (G; 1) are not bounded in L%, (D), i. e.,
there is a sequence of functions G, € L}, (D) with ||G,, ||,— e as n — o such that G, =F (G ; 1,,)
for some 1, € 0,1],7n=1, 2, ... However, then, by Remark 1, we have that for some constant M > 0,

1G, [, <I[H [, Q. (MG, |l,)

and, consequently,
QMG ) 1
MG, |, M| H ||,

(13)

for all large enough n. The latter is impossible by condition (11). The obtained contradiction dis-
proves the above assumption.

Thus, by Theorem 1 in [5], there is a function G € L}, (D) with F (G;1)=G, and by Lemma 1,
the function U :=F, gives a desired solution of (9).

Remark 2. By the construction in the above proof, the source G : D — R is a fixed point of the
nonlinear operator Q. =H -Q (F;):L}, (D) — LY, (D), where () consists of functions G in
L? (D) with supports in the support of H.

3. On the Poincaré problem in Jordan domains. Now we extend the above results to Jordan
domains with the so-called quasihyperbolic boundary condition, see the definition e. g. in [4].
Recall here only that such domains include, for instance, domains with quasiconformal boundar-
ies and, in particular, domains with smooth and Lipschitz boundaries. However, the mentioned
quasiconformal curves can be even nowhere locally rectifiable.

Theorem 2. Let D be a_Jordan domain with a quasihyperbolic boundary condition, 0D have a
tangent q. e., v:0D — C,:|v|=1, be in CBV(dD), and ¢:9D — R be measurable with respect to
logarithmic capacity. Suppose that H : D — R is a function in the class L? (D) for p > 2 with com-
pact support in D, and Q : R — R is a continuous function with

im 2O (14)

t—oe L

Then there is a function U : D — R in the class W, >? (D)NCL (D) with o.=(p—2)/ p such that

loc

AU @) =H(©)QUE) aeinD (15)

and, in addition, U is a generalized harmonic function with a source G € L? (D) and with the an-
gular limits

hm—(&) o(m) g.e.on 0D . (16)

Y

Moreover, U (§) =T (c(§)) , where ¢ zs a conformal mapping of D onto D, T is the Poincaré ope-
rator described in Sectzon 1, G =G oc ™Y, the support of G is in the support of H and the upper bound
of |G ||, depends only on || H |, , the functzon Q and the domain D.
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Proof Arguing similarly to the first item in the proof of Theorem 2 in [3], we see that
Vi=voc, e CBY(OD) and §:=@oc,! is measurable with respect to logarithmic capacity, where
¢, =Clyp:9dD — 9D is the restriction to the boundary of the homeomorphic extension of ¢ to
l_) onto D.

Now, set H =|C’]-H oC, where C is the inverse conformal mapping C:=c ':D—D .
Then it is clear by the hypotheses of Theorem 2 that H has compact support in D and belongs
to the class L? (D). Consequently, by Theorem 1, there is a function U :D—R in the class
P(DYNCE* (D) with a=(p—2)/p such that

loc loc

AU (z2)=H (2)-QU (z)) a.e.in D (17)

and U isa generalized analytic function with a source G e L? (D) and the angular limits

hm—(z) o(0) q.e.on JD. (18)

25 OV

Moreover, U = P, where T is the Poincaré operator described in Section 1, the support of G isin
the support of H and the upper bound of || G |, depends only on || H |, and the function Q.

Next, setting U =U oc and by simple calculatlons seee. g. Sectlon 1.Cin [6] we obtain that
AU =|c’[> -AU oc and, consequently, the function U : D — C isin the class W,>” (D)NC L& (D)
with a=(p—-2)/p that satisfies equation (15), U is a generalized harmonic function with a
source G e L (D) In addition, U (§) = F; (¢ (§)), where T is the Poincaré operator from Sec-
tion 1, G =G oc !, the support of G is in the support of H, and the upper bound of ||G ||, depends
onlyon ||H |,, the function Q, and the domain D.

Finally, arguing similarly to the last item in the proof of Theorem 2 in [3], we show that (18)
implies (16).

Remark 3. By the construction in the above proof, the source G =G oc, where ¢ is a
conformal mapping of D onto D and G:D—R is a fixed point of the nonlinear opera-
tor Q. =H Q(R;,): L (D) > L% (D). Here L% (D) consists of functions G. in L” (D)
with supports in the support of H :=|C’[*-H oC , where C is the inverse conformal mapping
C=c':D>D. L

We are able to say more in Theorem 2 for the case of Re n({)v({) >0, where n({) is the in-
ner normal to dD at the point {. Indeed, n({)v(€) is ascalar product of n=n({) and v=v({)
interpreted as vectors in R? and it has the geometric sense of projection of the vector v onto
n. In view of (16), since the limit @({) is finite, there is a finite limit U ({) of U (z) as z >
in D along the straight line passing through the point { and parallel to the vector v because
along this line,

1
U(z)=U (20)—-[88—(\{(20 +1(z —2,))dT. (19)
0

Thus, at each point with condition (16), there is the directional derivative

O @t DT E g, (20)
t—0 t
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In particular, in the case of the Neumann problem, Re n({)v({)=1>0, where n=n({) de-
notes the unit interior normal to D at the point {, and we have by Theorem 2 and Remark 3 the
following significant result.

Corollary 1. Let D be a_Jordan domain in C with the quasihyperbolic boundary condition, the
unit inner normal n(8), Ce dD , belong to the class CBV (D), and ¢:9dD — R be measurable with
respect to logarithmic capacity.

Suppose that H :D - R isin L? (D), p > 2, with compact support in D. Then one can find a
generalized harmonic function U :D — R with a source G € LP (D) satisfying equation (15) such
that, q.e. on oD , there exist:

1) the finite limit along the normal n(Q)

U(©)= liI%U @),

2) the normal derivative

U C+t-n()-U(©)
t

%—U@:: lim — (0
n t—0

3) the angular limit

LU U
lf% ™ (2)= o ©).

4. The Poincaré problem in physical applications. The first circle of such applications is
relevant to reaction-diffusion problems. Problems of this type are discussed in [7, p. 4] and, in
detail, in [8]. A nonlinear system is obtained for the density U and the temperature T of the re-
actant. Upon eliminating 7, the system can be reduced to equations of type (15), AU =c-Q U )
with 6 > 0 and, for isothermal reactions, Q (U )=U B B > 0. It turns out that the density of
the reactant U may be zero in a subdomain called the dead core. A particularization of results
in Chapter 1 of [7] shows that a dead core may exist just if and only if Be (0,1) and o is large
enough, see also the corresponding examples in [9]. In this connection, the following statements
may be of independent interest.

Corollary 2. Let D be a_Jordan domain with the quasihyperbolic boundary condition, 0D have
atangent q. e., v:0D — C,:|v|=1, be in CBY(dD), and ¢:9D — R be measurable with respect to
logarithmic capacity.

Suppose that H :D — R is a function in the class LP (D) for p > 2 with compact support in
D. Then there is a solution U : D — R in the class Wli'c” D)HNnc ]103 (D) with a.=(p-2)/p of the
semilinear Poisson equation

AU (&)=H &) UPE), 0<p<1, ae.inD (21)
satisfying the Poincaré boundary condition on directional derivatives

in 2 ©=0@  qeondD (22)
E—o E)v
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in the sense of the angular limits. Moreover, U is a generalized harmonic function with a source
G e L” (D), whose support is in the support of H, and the upper bound of ||G ||, depends only on
\|H ||, , the function Q, and the domain D.

Corollary 3. In particular, in the case of Neumann problem, i. e., if v(Q) is the unit interior nor-
mal n({) to 0D at the point C, one can find a solution U : D — R in the class Wli’cp D)H)Nc 1102‘ (D)
with oo=(p—2)/p of the semilinear Poisson equation (21) that satisfies the conclusions 1-3 of
Corollary 1 q. e. on oD .

Note that certain mathematical models of the thermal evolution of heated plasma also
lead to nonlinear equations of type (15). Indeed, it is known that some of them have the form
Ay (u)=f(u) with W (0)=e and W (u)>0 if . as, for instance, y(u)=|ul""u under
0<g<1,seee.g. [7]. With the replacement of the function U =y () =|u|? - signu, we have that
u=|U 2 -signU , Q=1/q, and, with the choice f(u)=|u |q2 -signu , we come to the equation
AU =|U [ - signU =y (U).

Corollary 4. Let D be a_Jordan domain with the quasihyperbolic boundary condition, dD have
a tangent q. e., v:0D — C,|v|=1, bein CBY(dD), and ¢:0D — R be measurable with respect to
logarithmic capacity.

Suppose also that H : D — R is a function in the class L? (D) forp > 2 with compact support in
D. Then there is a solution U : D — R in the class Wli’cp D)Nnc 1102‘ (D) with oo=(p-2)/p of the
semilinear Poisson equation

AU @& =HEUEP'UE), 0<B<1, aeinD (23)

satistying the Poincaré boundary condition on directional derivatives (22). Moreover, U is a generali-
zed harmonic function with a source G € LP (D) whose support is in the support of H, and the upper
bound of ||G ||, depends only on ||H ||, , the function Q, and the domain D.

Corollary 3. In particular, in the case of Neumann problem, i. e., if v(Q) is the unit interior nor-
mal n({) to oD at the point {, one can find a solution U : D — R inthe class ng’c rHnce 1103‘ (D)
with o.=(p—2) / p of the semilinear Poisson equation (23) that satisfies the conclusions 1-3 of Corol-
lary 1 q. e. on dD . Moreover, U is a generalized harmonic function with a source G € LP (D) whose
support is in the support of H, and the upper bound of || G ||, depends only on ||H ||, , the function Q,
and the domain D.

Finally, we recall that in the combustion theory, see e. g. [10, 11] and the references therein, we
met the nonlinear sources of the exponential type. Note that the corresponding equation of type
(15) appears here after the replacement of the function u by —u, with the function Q (u)=e™ that
is bounded at all.

Corollary 6. Let D be a_Jordan domain with the quasihyperbolic boundary condition, dD have
atangent q. e., v:0D — C,:|v|=1, be in CBV(dD), and ¢:9D — R be measurable with respect to
logarithmic capacity.

Suppose also that H : D — R is a function in the class L? (D) forp > 2 with compact support in
D. Then there is a solution U : D — R in the class Wl(z)’cp D)H)Nnc 1103 (D) with a.=(p-2)/p of the
semilinear Poisson equation

AU E)=H &)-¢® | ae.inD (24)
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satisfying the Poincaré boundary condition on directional derivatives (22). Moreover, Uis a general-
ized harmonic function with a source G € L? (D) whose support is in the support of H, and the upper
bound of ||G ||, depends only on ||H ||, the function Q, and the domain D.

Corollary 7. In particular, in the case of Neumann problem, i. e., if v(Q) is the unit interior nor-
mal n() to 0D at the point §, one can find a solution U :D — R inthe class W >? (D)NCL*(D)

loc loc

with o.=(p—-2)/p of the semilinear Poisson equation (24) that satisfies the conclusions 1-3 of
Corollary 1 q. e. on dD . Moreover, U is a generalized harmonic function with a source G € L? (D)

whose support is in the support of H, and the upper bound of || G ||, depends only on ||H ||, , the func-
tion Q, and the domain D.

This work was partially supported by grants of Ministry of Education and Science of Ukraine,
project number is 0119U100421.
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SAJIAYA ITYAHKAPE 3 BUMIPHUMU JIAHUMI
JIJIA HATIIBJIHIMHUX PIBHAHD [TIYACCOHA HA TLJIONIMHI

Kpaiiosa 3agaua ['ib6epra HaJesKUTh 0 HAMBasKIUBINIMX 3 OMVISAY Ha il YHMCJIEHHI 3aCTOCYBaHHS, 30KpeMa, J0
kpaitoBux 3anau Jipixue, [Tyankape ta Hefimana B rigpomexaniii. Ileprmuii miaxia no ii poss’sizanis 6ys 3anpo-
moHoBaHuH camuM [inb6epToM i 3acHOBaHUIT Ha T€Opii CHHTYISPHUX IHTErPATbHUX PiBHSAHD. Ha mbomy misixy
JIOBEJIEHO iICHYBaHH4 ii PO3B’s13KiB J171s1 HenlepepBHUX 3a [esbiepoM rpaHnyHUX fanuXx. JIysin ymepiie BCTaHOBUB
iCHyBaHHS PO3B’sA3KiB 3a/1a4i /lipixire mpw TOBITBHUX BUMIPHUX JAHWX /I TAPMOHIYHIX (DYHKITIH B OTNHUIHOMY
KPYy3i B TepMiHax KyTOBUX (HEAOTHYHUX ) TPAHUIIb M. B. HA OJMHIUYHOMY KoJii. Panine Hamu Gyiin chopMyiboBa-
Hi TeopeMu icCHYyBaHHsI pO3B’sI3KiB KpaitoBoi 3aaui [1n6epTa pH JOBITLHIX BUMIPHUX JaHUX JIJIST y3aTaTbHEHIX
rapMOHiYHMX (HDYHKIIH 3 [pkepesaMiu. 3HaiieHi po3s’ss3ku He OyJIi KJIaCHYHUMU, OCKIJIbKN HAIIl THIXIA IPYHTY-
BaBCs Ha iHTepIIpeTarlii TpaHNYHNX 3HAYeHDb Y CEHCi KyTOBUX (HEIOTHYHNUX) TPAHUIID, IO CTAJIO TPAAUIIHHIM
IHCTPYMEHTOM reoMeTpuyHOi Teopii dhyHkKIIiH, ane He PDE.

IIpexcraBiena cTaTTs MiCTUTH aHAJIOTIYHI TeOPeMHU iCHYBaHHS PO3B’A3KiB 3a1aui [Tyankape mpo moxiaHi 3a
HapsIMKaM¥ Ha MeXi i, 30Kkpema, 3aa4i Helimana rnpu I0BUIBHUX TPAaHUYHUX JTAHUX BUMIPHUX BiIHOCHO JioTa-
pUGbMITHOI EMHOCTI Y37I0BK HETOTUIHIX MIJISAXIB /7T HAMiBAIHIHNX piBHSHb [lyaccona. HaBeaeno 3actocyBan-
HS 1IUX Pe3yJbTaTiB 10 JeSIKUX HAIlIBIIHIHUX PIBHSIHb MaTeMaTUUHOI (hi3UKH, 1110 MOJENIO0Th Pi3Hi (isuuHi
MpoIlecH, Taki K Audy3isa 3 abcopOIliero, IPoIec CTallioHapHOTO TOPIHHS Ta CTAHK TIA3MHU.

Kantouosi caosa: kpaiiosi sadaui Ilyanxape i Hellmana, 6umipni zpanuuni dami, 10zpaudmivna emmicmy, Hanieui-
nitini pisnsmns muny Iyaccona, neninitini oxrcepena, Kymogi panuiyl, HeOOmuuHi WiAXU.
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