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МАТЕМАТИКА
MATHEMATICS

We consider a multiplicity problem, namely evaluating the minimal number of the critical orbits 
of a functional :f F R→  which is invariant under the action of a discrete subgroup G of a Fré chet 
spaces F. In [1], it was proved that if a functional :f F R→  of the Keller class 1

cC  is bounded from 
below and satisfies the Palais—Smale condition at the level c = inf f, then c is a critical value for f. 
Our goal is to significantly improve this result. To this end, we consider functionals which are 
invariant under a discrete subgroup action. To evaluate the minimal numbers of critical points of 
such functionals, we employ the Lyusternik–Schnirelmann method. 

1. A compactness condition. The initial point of our approach is to introduce a compactness 
condition of the Palais—Smale type for G-invariant functionals.

We denote by F a Fré chet space whose topology is defined by an increasing sequence of semi-
norms ( )

n
⋅ . Moreover, the complete translation-invariant metric

1

1
( , )

12
n

n
n n

x y
d x y

x y

∞

=

−
=

+ −∑

induces the same topology on F. We denote by B (x, r) an open ball with center x and radius r > 0 
with respect to this metric. 

In what follows, we consi der only Fré chet spaces over the field R of real numbers. Let E be 
another Fré chet space, C (E,  F) the set of all co ntinuous linear mappings from E to F. A bornology βE on E is a covering of E satisfying the following:

1. βE is stable under finite unions;
2. if EA ⊆β  and B A⊆ , then EB ⊆β .
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This note serves to announce a multiplicity result for Keller 1
cC -functionals on Fréchet spaces which are invariant 

under the action of a discrete subgroup. For such functionals, we evaluate the minimal number of critical points by 
applying the Lyusternik—Schnirelmann category.
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The compact bornology on E is the family βEC of relatively compact subsets of E having the set 
of all compact subsets of F as a base, in the sense that every ∈βECB  is contained in some compact 
set. We endow the vector space C (E,  F) with the ECβ -topology which is the topology of uniform 
convergence on all compact subsets of E. This is a Hausdorff locally convex topology which can be 
defined by the family of all seminorms obtained as follows:

{ }= ∈
,

sup ( ) :
B n n

L L e e B
 

where ∈βECB  and n N∈ . Let U be an open subset of E and :f E F→ be a mapping. If the direc-
tional derivatives

0

( ) ( )
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t

f x th f x
f x h
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+ −=

exist for all x U∈  and all h E∈ , and the induced map : ( , )df U C E F→ is continuous for all 
x U∈ , then we say that f is a Keller 1

cC -mapping (see [2]).
Let L be a topological group with the identity element e. A continuous action of L on F is a 

mapping :A F F× →L , A (l, m) written as l · m , such that e · m = m  and  (l1 * l2) · m = l1 · (l2 · m) 
for all 1 2,l l ∈L and all m F∈  (here, * denotes the operation of L). A set A F∈  is called L-in-
va riant, if ·l m A∈  for all m A∈  and all l ∈L. A functional :f F R→  is called L-invariant, 
if f (l · m) = f (m) for all l ∈L and m F∈ . A mapping :h F F→  is called L-equivalent, if 
h (l · m) = l · h(m) for all m F∈  and all l ∈L. Let G be a discrete subgroup of a Fré chet space F, and 
let : /q F F G→  be the canonical surjection. A subset A F⊆  is called q-saturated, if –1 ( )A q q A=  . 
Suppose the space F1 generated by G has the dimension n. Let F2 be a topological complement 
of F1, such that F is isomorphic to 1 2F F× . Let Tn be the n-torus, then nG Z  and 2( ) nq F Z F× . 
Let c be critical point of f. We call the set –1 ( )( )q q c  consisting of the critical points of f, a critical 
orbit of f through c.

Definition 1. Let :f F R→  be a G-invariant functional of the Keller class 1
cC . We say that f 

satisfies the Palais—Smale condition, PSG-condition for short, if, for every sequence ( )nx F⊂  for 
which ( )nf x  is bounded and ( ) 0f x′ → , the sequence ( )nq x  contains a convergent subsequence.

2. A multiplicity theorem. To locate critical points, we will apply the strong version of the 
Ekeland variational principle (see [3]). It states the existence of a certain minimizing sequence 
on a complete metric space along which we reach the infimum value of the minimization problem.

The Lyusternik—Schnirelmann category CatT A of a subset A of a topological space T is 
the minimal number of closed sets that cover A and each of which is contractible to a point 
in T. If CatT A is not finite, we write CatT A = ∞. Let Co (F) be the set of compact subsets of F. 
Define the sets 

( ){ : Co( ), Cat ( ) }i q FA A F A T q A i= ⊂ ∈  .

From [4, Proposition 2.2], it follows that each iA  is a deformation invariant class of subsets of 
F. The i-th Lyusternik—Schnirelmann minimax value of f is defined by

inf sup ( ).
i

i
A A x A

f x
∈ ∈

μ =
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The proofs of the following two lemmas are based on the standard arguments, see, for ex-
ample [4, Lemma 3.2, Lemma 3.3]. Let CB (F) be the family of all nonempty closed and bounded 
subsets of F. We define the Hausdorff metric on CB (F) by

∈ ∈

⎧ ⎫= ⎨ ⎬
⎩ ⎭

( , ) max sup ( , ), sup ( , ) .H
a A b B

d A B d a B d b A
 

Lemma 1. The space (Ai, dH) is a complete metric space.
Proof. The space ( ( ), )HCB F d  is complete since F is complete (cf. [5]). Thus, we only need 

to prove that Ai is closed in CB (F). Let ⊂( )k iA A . Suppose ( )A CB F∈  and ( , ) 0H kd A A → . By [6, 
Corollary 1.2.13] and [6, Proposition 1.2.14], the space 1

2 2(( ) )n nq F F F× ×T S   is an ANR. So, 
by [7, Theorem 6.3], there exists a closed neighborhood U of A such that ) ( )( )C C(at ( ) atq F q Fq A U= . 
As –1( )q U  is a closed neighborhood of the compact set A, there exists k such that kA U⊂ . There-
by, ( ) ( ) ( )Cat ( ) Cat Cat (( ) )(q F q F q F kq A U q A i=   . Therefore iA A∈ .

Lemma 2. Let :f F R→  be a G-invariant functional of the Keller class 1
cC . Then, the function  

Ψ →iA R:  defined by 
∈

Ψ =( ) max ( )
x A

A f x  is lower semicontinuous.

Proof. Let ( )k iB A⊂ . Suppose iB A∈  and →( , ) 0H kd B B . For each 0x B∈ , there exists 
a sequence ⊂( )j kx B  such that 0jx x→ . Thus, 

→∞ →∞
= Ψ0( ) ( ) ( )lim limj k

j k
f x f x B

 

and, as 0x B∈  is arbitrary, we have 
→∞

ψ Ψ( ) ( )lim k
k

B B .

Theorem 1. Let G be a discrete subgroup of a Fré chet spaces F. Assume that the dimension 
of the space generated by G is a finite number n. Let :f F R→  be a G-invariant functional of the 
Keller class 1

cC . If f is bounded from below and satisfies the Palais—Smale condition, then f  has  
n + 1 critical orbits.

Proof. Consider the increasing sequence of the Lyusternik—Schnirelmann minimax values 
, 1 1i i nμ +  . Define the sets 

μ ′∈ = = μ= : ( ) 0, ( ) .{ }
i iS x F f x f x  

We claim that if i kμ = μ = μ for some , 1,k i k n +   then μi
S  contains 1k i− +  critical orbits. 

This concludes the proof of the theorem. 
We prove the claim by contradiction. Suppose that μS  contains m distinct critical orbits 

1( ), , ( )mq x q x  and 1m k − . Pick the positive number 0r  so that, on the balls 0( , 2 ),1jB x r j m   
the canonical surjection q is injective. Define the set

= ∈
+=  

0 1
( , ).

m

r j
j g G

B B x g r  

We show that there exists ε ,    0 < 2ε  < 2
0r   such that 

( ) , FCB
f x B′ ε ∀ ∈β>  (1)
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if 
0

–1 2 2([ , ]) \ rx f B∈ μ−ε μ+ ε . Because, if (1) is not vali d, then there exists a sequence 
0

( ) \j rx F B⊂  
such that 

( ) 1jf x jμ+   and  ,( ) 1 , , FCB n
f x j n N B′ ∀ ∈ ∈β .

Since f satisfies the PSG-condition, we may assume that ( ) ( )jq x q x→  for some x F∈ . Since f and 
f ′ are G-invariant, we may suppose that 2[0,1] .n

jx F∈ ×
Whence, jx x→  yields 

0
\ rx F B∈  and ( )f x = μ and ( ) 0f x′ =  which is impossible, because 

0r
B  

is a neighborhood of Sμ. There exists iA A∈  such that

2( ) .max
A

A fΨ = μ+ ε

This is achievable by the definition of μk. Let =
0

0 2
\

r
A A B . By [4, Proposition 2.2], we obtain

00
0 0 22( ) ( ) ( ) ( )cat ( ) cat ( ( ) ( )) cat ( ) cat ( )rrq F q F q F q Fk q A q A q B q A q B+   

0 0( ) ( )cat ( ) cat ( )q F q Fq A m q A k i+ + −  . 

Thus, 0 iA A∈ . By Lemma 1, the space ( , )i HA d  is complete. Also, by Lemma 2, the func-
tion : iA RΨ →  is lower semicontinuous. So, we can employ the Ekeland variational theorem [3, 
Theorem 4.7]. By the latter theorem, there exists iC A∈  such that

(P1) 2
0( ) ( ) ( ) ,C A Aψ ψ ψ μ+ ε  

(P2) 0( , ) ,Hd C A ε

(P3) ( ) ( ) ( , ), , .H iS C d C S S A S Cψ > ψ −ε ∀ ∈ ≠

As 
0

0 2r
A B =∅  and ε0 0( , )Hd C A r  , then 

02r
A B =∅ . Also, the set 2{ : ( )}D s C f s= ∈ μ−ε   

is a subset of 
0

–1 2 2([ , ]) \ rf Bμ−ε μ+ ε . The set D is closed and, as f is continuous, then it is compact. 
By (3) for each y D∈ , there exists ,B yh B∈  such that 

,( ), .B yf y h′〈 〉 < −ε   (2)

Since f ′ is continuous, it follows from (2) that there exists 0yr >  such that, for all g G∈  and all 
h F∈  with yn

h r< , we have

,( ), .B yf y g h h′〈 + + 〉 < −ε

Since D is compact, we can find a subcovering 1, , pD D  defined by

( , ).
ii i yD B y r=  
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Define the functions : [0,1]i FΦ →  by

∈

=
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Fix a G-invariant continuous function : [0,1]FΦ →  such that

μ⎧⎪φ = ⎨
μ−ε⎪⎩

2

1, ( ),
( )

0, ( ) .

f x
x

f x


  

Let =min
1
min

iy
i p

r r
 

. Define the continuous curve : [0,1] F Fλ × →

=
λ = + φ ψ∑min

1
,( , ) ( ) ( )( )

i

p

i B y
i

t x x tr x x h .

For all x F∈ , all g G∈  and all [0,1]t ∈ , we have ( , ) ( , ) .t x g t x gλ + = λ +
It follows from [4, Proposition 2.2] that ( ) ( )cat ( ( (1, ))) cat ( ( )) ,q F q Fq C q C iλ    whence, as 

(1, )Cλ  is compact, (1, ) iC Aλ ∈ . By the mean-value theorem (see [2]) and (P3) for each y D∈ , 
there is (0,1)T ∈  such that 

=
′λ − = λ Φ Ψ =∑min ,

1

( (1, )) ( ) ( ( , )), ( )( )( )
i

p

i B y
i

f C f x f T C r x hx  

= =

⎛ ⎞
′= Φ Ψ + Φ Ψ⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑min min ,
1 1

,( ) ( ) ( ) ( )( ) ,
i i

p p

i i B y B y
i i

r x x f x Tr x x h h   

min ( ).r x−ε Φ  

If x D∈ , then ( ) 0xΦ =  and ( (1, )) ( )f x f xλ = .
Let 0y C∈  so that 0( (1, )) ( )f y Dλ = ψ . Then, 0 0 min( (1, )) ( )f y f y rμ λ − −ε  . So, 0y D∈  and 

0( ) 1yΦ =  which imply that 0 0 min( (1, )) ( )f y f y rλ − −ε . Therefore, 

( ) ( , ) ( ).HS d C S Cψ +ε ψ

However, min( , )Hd C S r  by the definition of S. Hence, ( ) ( , ) ( )HS d C S Cψ +ε ψ  which 
contradicts (P3) and concludes the proof. 
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ТЕОРЕМА КРАТНОСТІ ДЛЯ ПРОСТОРІВ ФРЕШЕ

У статті сформульовано теорему кратності для функціоналів з класу Келлера 1
cC  на просторах Фреше. 

Для таких функціоналів ми даємо мінімальну кількість критичних точок, застосовуючи категорію Люс-
терника–Шнірельмана.

Ключові слова: простори Фреше, категорія Люстерника–Шнірельмана, умова Палаіса–Смейла, дія дис-
кретної групи.


