https://doi.org/10.15407/dopovidi2024.01.058 УДК 548.312.3

W.O. TitoB¹, https://orcid.org/0000-0001-9900-3751

М.С. Слободяник¹, https://orcid.org/0000-0003-2684-9806

B.B. Чумак², https://orcid.org/0000-0001-5892-3703

¹Київський національний університет ім. Тараса Шевченка, Київ, Україна ²Житомирський державний університет ім. Івана Франка, Житомир, Україна E-mail: titov1952@ukr.net

Закономірності впливу ізовалентних заміщень атомів на будову фаз на основі сполук типу А^{II}Ln₂B₂^{III}O₇

На підставі аналізу структурних даних фаз (A^{II} , A^{II*})(Ln, Ln^*)₂ $B_2^{III}O_7$ ($A^{II} = Ba$, Sr, $A^{II*} = Sr$, Ca, Ln = La, Nd, $Ln^* = Sm$, Dy, $B^{III} = In$, Sc) визначено закономірності впливу ізовалентних заміщень атомів A^{II} та Ln у шаруватій перовськітоподібній структурі сполук типу $A^{II}Ln_2B_2^{III}O_7$ на її будову. Встановлено, що збільшення ступеня заміщення атомів A^{II} та Ln у шаруватій структурі фаз A_{1-x}^{II} , $A_x^{II*}Ln_2 B_2^{III}O_7$ і $A^{II}Ln_{2-x} Ln_x^*B_2^{III}O_7$ зумовлює зростання ступеня деформації (Δ) міжблокових поліедрів AO_9 та зменшення довжини міжблокових поліедрів AO_9 та зменшення довжини міжблокового відстані A—O. Величини ΔAO_9 і ΔAO_{12} у структурі A_{1-x}^{II} , $A_x^{II*}Ln_2 B_2^{III}O_7$ і $A^{II}Ln_{2-x} Ln_x^*B_2^{IIO}$ залежать від типу сингонії гратки і найвищі в тетрагональних твердих розчинах. Характер розподілу атомів Ba, Sr та рідкісноземельних елементів у структурі (A^{II} , A^{II*})(Ln, Ln^*)₂ $B_2^{III}O_7$ визначається величиною різниці їх радіусів. Її збільшення сприяє впорядкуванню розподілу атомів Ba, Sr та рідкісноземельних елементів у структурі (A^{II} , A^{II*})(Ln, Ln^*)₂ $B_2^{III}O_7$ визначається величиною різниці їх радіусів. Її збільшення сприяє впорядкуванню розподілу атомів Ba, Sr та рідкісноземельних елементів по поліедрах AO_9 і AO_{12} . Виявлено структурі фактори, які впливають на стабільність фаз (A^{II} , A^{II*})(Ln, Ln^*)₂ $B_2^{III}O_7$ з шаруватою перовськітоподібною структурою.

Ключові слова: фази типу (A^{II}, A^{II}*)(Ln, Ln*)₂ B^{III}O₇, шарувата перовськітоподібна структура, ізоморфні заміщення.

Шарувата перовськітоподібна структура (ШПС) сполук загального складу $A_{n+1}B_nO_{3n+1}$ (A = Ca, Sr, Ba, Ln, Na, K, B = Ti, Zr, Hf, Pb, Sn, Mn, Al, Ga, Cr, Fe, Ni, Co, Sc, In) складається з двовимірних (нескінченних в одній площині) перовськітоподібних блоків завтовшки в n (n = 1 - 3) шарів сполучених вершинами октаедрів BO_6 [1]. Безпосереднього зв'язку між октаедрами суміжних перовськітоподібних блоків немає, вони розділені шаром поліедрів AO_9 , а їх "зшиття" відбувається через зв'язки -O-A-O-. Такий тип будови ШПС сполук

Цитування: Тітов Ю.О., Слободяник М.С., Чумак В.В. Закономірності впливу ізовалентних заміщень атомів на будову фаз на основі сполук типу А^{II}Ln₂B₂^{III}O₇. *Допов. Нац. акад. наук Укр.* 2024. № 1. С. 58—63. https://doi. org/10.15407/dopovidi2024.01.058

[©] Видавець ВД «Академперіодика» НАН України, 2024. Стаття опублікована за умовами відкритого доступу за ліцензією СС BY-NC-ND (https://creativecommons.org/licenses/by-nc-nd/4.0/)

типу $A_{n+1}B_nO_{3n+1}$ обумовлює наявність у них широкого спектра фізико-хімічних властивостей (діелектричні та резистивні властивості, значний магнітоопір, іонна провідність, люмінесцентні та іонообмінні властивості, фотокаталітична активність та інші) [1—8].

Цілеспрямований пошук і синтез нових сполук та ізоморфно заміщених фаз типу А_{n+1}B_nO_{3n+1} з ШПС потребує встановлення взаємозв'язків між складом і особливостями будови ШПС та виявлення факторів, які визначають можливість утворення нових представників цього сімейства.

Проте для двошарових представників сімейства сполук типу $A_{n+1}B_nO_{3n+1}$ складу $A^{II}Ln_2B_2^{III}O_7$ загальні закономірності впливу ізовалентного заміщення атомів лужноземельних металів та рідкісноземельних елементів (РЗЕ) на будову їх ШПС досі залишалися не визначеними.

Мета роботи — узагальнення закономірностей впливу складу на будову ШПС ізовалентно заміщених двошарових фаз типу (A^{II} , A^{II*})(Ln, Ln*)₂ $B_2^{III}O_7$ (A^{II} = Ba, Sr, A^{II*} = Sr, Ca, Ln = La, Nd, Ln* = Sm, Dy, B^{III} = In, Sc). Об'єктами дослідження були синтезовані нами тверді розчини з двошаровою ШПС: $Ba_{1-x}Sr_xLa_2In_2O_7$ [9], $Ba_{1-x}Sr_xNd_2In_2O_7$ [10], $Sr_{1-x}Ca_xLa_2Sc_2O_7$ [11], $BaLa_{2-x}Sm_xIn_2O_7$ [12], $BaNd_{2-x}Sm_xIn_2O_7$ [13], $BaLa_{2-x}Dy_xSc_2O_7$ [14], $SrLa_{2-x}Dy_xSc_2O_7$ [15].

Порівняльний аналіз даних [9—15] про зміни в будові ШПС у рядах твердих розчинів $A_{1-x}^{II}A_x^{II*}Ln_2B_2^{IIO}O_7$ та $A^{II}Ln_{2-x}Ln_x^*B_2^{IIO}O_7$ (таблиця, рисунок) виявив низку загальних взаємозв'язків між складом і особливостями будови їх ШПС (типом сингонії ШПС, ступенями деформації поліедрів AO_9 , AO_{12} і довжинами міжблокового зв'язку А—О), зокрема:

• збільшення ступеня заміщення як атомів Ln у поліедрах AO₉, так і атомів A^{II} у поліедрах AO₁₂ ШПС (A^{II}, A^{II}*)(Ln, Ln*)₂ B₂^{III}O₇ на менші за розміром атоми типу A^{II}* і Ln* підвищує ступінь деформації (Δ) міжблокових поліедрів AO₉ незалежно від типу сингонії ШПС ізовалентно заміщених твердих розчинів (див. таблицю, рисунок, *a*);

• величина ступеня деформації міжблокових поліедрів ΔAO_9 у твердих розчинах (A^{II} , A^{II*})(Ln, Ln*)₂ $B_2^{III}O_7$ з тетрагональною ШПС (пр. гр. $P4_2/mnm$) значно (у рази) пере-

Залежності ступеня деформації міжблокових поліедрів AO₉ (*a*) і довжини міжблокового зв'язку A—O (*б*) від величини середнього іонного радіуса атомів металів у поліедрі AO₉: $1 - \text{BaNd}_{2-x}\text{Sm}_x\text{In}_2\text{O}_7$, $2 - \text{BaLa}_{2-x}\text{Sm}_x\text{In}_2\text{O}_7$, $3 - \text{BaLa}_{2-x}\text{Dy}_x\text{Sc}_2\text{O}_7$

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2024. № 1

вищує значення ΔAO_9 у твердих розчинах з менш високосиметричною ромбічною ШПС (пр. гр. *Fmmm*) (див. таблицю). Слід відзначити, що величина ступеня деформації Δ міжблокових поліедрів (Nd,Sm)O₉ в ШПС фази BaNd_{0,2}Sm_{1,8}In₂O₇ з максимальним ступенем заміщення атомів неодиму (338 · 10⁻⁴) близька до максимально відомих значень ΔAO_9 для сполук типу A_{n+1}B_nO_{3n+1} з ШПС;

• збільшення ступеня заміщення атомів типу A^{II} та Ln як у поліедрах AO_9 , так і AO_{12} ШПС (A^{II} , A^{II*})(Ln, Ln*)₂ $B_2^{III}O_7$ на менші за розміром атоми замісників A^{II*} і Ln* зменшує відстань між суміжними перовськітоподібними блоками (довжину міжблокового зв'язку A-O) незалежно від типу сингонії ШПС ізовалентно заміщених твердих розчинів (див. таблицю, рисунок, δ);

• величина ΔAO_{12} у твердих розчинах (A^{II} , A^{II*})(Ln, Ln^*)₂ $B_2^{III}O_7$ з ромбічною ШПС (пр. гр. *Fmmm*) набагато (як правило, в рази) менша за значення ΔAO_{12} у твердих розчинах з більш високосиметричною тетрагональною (пр. гр. $P4_2/mnm$) ШПС;

• аналіз одержаних нами результатів про розподіл атомів лужноземельних елементів та атомів РЗЕ в поліедрах ШПС твердих розчинів (A^{II} , A^{II*})(Ln, Ln^*)₂ $B_2^{III}O_7$ виявив певні закономірності в характері їх локалізації по кристалографічних позиціях ШПС. Зокрема, ступінь заповнюваності атомами лужноземельних елементів і атомами РЗЕ міжблокової (поліедр AO_9) та внутрішньоблокової (поліедр AO_{12}) позицій у ШПС (A^{II} , A^{II*})(Ln, Ln^*)₂ $B_2^{III}O_7$ визначається величиною різниці їх розмірів (див. таблицю). Великі атоми Ва

Деякі кр	оисталогра	фічні характе	ристики тве	рдих розчині	в типу А ^{II}	$A_r^{II} Ln_2 B_2^{III} O_7$
i A ^{II} Ln ₂	$_{r}Ln_{2}^{*}B_{2}^{III}O_{7}$	(A = Ba, Sr, A)	* = Sr, Ca, Ln	= La, Nd, Ln*	= Sm, Dy, B	$III^{x} = In, Sc) \exists IIIIIC$

Склад	Область існування ШПС (пр. гр.)	Склад міжблокових поліедрів АО ₉ та ступінь їх деформації (Δ · 10 ⁴)	Склад внутрішньоблокових поліедрів АО ₁₂ та ступінь їх деформації ($\Delta \cdot 10^4$)	Міжблокова відстань, нм
Ba _{1-x} Sr _x La ₂ In ₂ O ₇	$0 \le x \le 0.75$ (x = 0, P4 ₂ /mnm) (x = 0,20.75, Fmmm)	LaO ₉ 234 ($x = 0, P4_2/mnm$) 74—90 (<i>Fmmm</i>)	(Ba,Sr)O ₁₂ 72 (P4 ₂ /mnm) 4—2 (Fmmm)	0,230(2) (P4 ₂ /mnm) 0,238(2)—0,215(2) (Fmmm)
$Ba_{1-x}Sr_xNd_2In_2O_7$	$0 \le x \le 0,2 (P4_2/mnm)$	NdO ₉ 279—287	(Ba,Sr)O ₁₂ 32—35	0,223(2)—0,214(1)
$\operatorname{Sr}_{1-x}\operatorname{Ca}_{x}\operatorname{La}_{2}\operatorname{Sc}_{2}\operatorname{O}_{7}$	$0 \le x \le 0,15 (Fmmm)$	(Sr,La)O ₉ 68—72	(Sr,La,Ca)O ₁₂ 3—5	0.222(2)—0.215(1)
BaLa _{2-x} Sm _x In ₂ O ₇	$0 \le x \le 1,8 (P4_2/mnm)$	LnO ₉ 234—250	BaO ₁₂ 72—95	0,230(2)—0,214(1)
BaNd _{2-x} Sm _x In ₂ O ₇	$0 \le x \le 1,8 (P4_2/mnm)$	LnO ₉ 279—338	BaO ₁₂ 32—108	0,223(2)—0,206(2)
BaLa _{2-x} Dy _x Sc ₂ O ₇	$0 < x \le 1,0 (P4_2/mnm)$	LnO ₉ 208—247	BaO ₁₂ 60—65	0,231(2)—0,214(1)
SrLa _{2-x} Dy _x Sc ₂ O ₇	0 ≤ <i>x</i> ≤ 1,6 (<i>Fmmm</i>)	$(Sr,La)O_{9} (x = 0)$ $(Sr,La,Dy)O_{9} (x = 0,5-1)$ $(La,Dy)O_{9} (x = 1,5)$ 68-147	$(Sr,La)O_{12} (x = 0-1)$ SrO ₁₂ (x = 1,5) 3-34	0,222(2)—0,200(1)

ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2024. No. 1

в ШПС $A^{II}Ln_{2-x}Ln_2^*B_2^{III}O_7$ розташовуються лише у внутрішньоблокових поліедрах AO_{12} , у випадку більш близьких за розмірами атомів Sr і La має місце їх одночасне розміщення в поліедрах AO_9 та AO_{12} (системи $Sr_{1-x}Ca_xLa_2Sc_2O_7$ та $SrLa_{2-x}Dy_xSc_2O_7$, x = 0 - 1) із переважною локалізацією атомів стронцію у внутрішньоблокових поліедрах. А збільшення вмісту меншого за розміром атома РЗЕ (збільшення різниці в розмірах атомів Sr і РЗЕ) в системі $SrLa_{2-x}Dy_xSc_2O_7$ (x = 1,5) призводить до повного витіснення атома стронцію в поліедр AO_{12} (система $SrLa_{2-x}Dy_xSc_2O_7$ з x = 1,5). Встановлені закономірності розподілу атомів лужноземельних металів та атомів РЗЕ обумовлені, очевидно, як неможливістю входження великих атомів Ba у невеликі поліедри AO_9 , так і послідовним зменшенням міжблокової відстані в рядах фаз (A^{II} , A^{II*})(Ln, Ln*) $_2 B_2^{III}O_7$, що зумовлює поступове витіснення атомів Sr із міжблокового простору (поліедрів AO_9) у кубооктаедричні пустоти перовськітоподібного блока (поліедри AO_{12});

• збільшення ступеня деформації міжблокових поліедрів АО₉ зі збільшенням ступеня заміщення атомів типу A^{II} і Ln обумовлює зростання напруженості в міжблоковому просторі ШПС твердих розчинів A^{II}_{1-x}A^{II}_xLn₂B^{III}₂O₇ і A^{II}Ln_{2-x}Ln^{*}_xB^{III}₂O₇, а зменшення відстані між двовимірними перовськітоподібними блоками в ШПС цих ізовалентно заміщених твердих розчинів наближує будову двовимірної ШПС (A^{II}, A^{II}*)(Ln, Ln^{*})₂ B^{III}₂O₇ до будови термодинамічно значно стабільнішої тривимірної структури перовськіту. Одночасна сумарна дія цих обох факторів поступово дестабілізує ШПС і обмежує область її існування в рядах твердих розчинів (A^{II}, A^{II}*)(Ln, Ln^{*})₂ B^{III}₂O₇. Підтвердженням такого механізму руйнації ШПС твердих розчинів (A^{II}, A^{II}*)(Ln, Ln^{*})₂ B^{III}₂O₇ є поява фази з тривимірною структурою типу перовськіту за перевищення межі ізовалентного заміщення атомів A^{II} та Ln.

Отже, аналіз одержаних нами результатів про особливості будови ШПС ізовалентно заміщених двошарових фаз типу $A_{1-x}^{II}A_x^{II*}Ln_2B_2^{III}O_7$ і $A^{II}Ln_{2-x}Ln_x^*B_2^{III}O_7$ ($A^{II} = Ba$, Sr, $A^{II*} = Sr$, Ca, Ln = La, Nd, Ln* = Sm, Dy, B^{III} = In, Sc) дав можливість узагальнити особливості впливу ізовалентного заміщення атомів A^{II} та Ln в ШПС сполук типу $A^{II}Ln_2B_2^{III}O_7$ на її будову. Одержані дані становлять безсумнівний інтерес для цілеспрямованого пошуку нових матеріалів на основі сполук сімейства $A_{n+1}B_nO_{3n+1}$ і регулювання їх структурно чутливими (люмінесцентними, електропровідними та іншими) властивостями.

Дослідження виконано за фінансування Міністерства освіти і науки України (№ держреєстрації проєкту 0122U001959).

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Schaak R.E., Mallouk T.E. Perovskites by design: a toolbox of solid-state reactions. *Chem. Mater.* 2002. **14**, № 4. P. 1455—1471. https://doi.org/10.1021/cm010689m
- 2. Nirala G., Yadav D., Upadhyay S. Ruddlesden—Popper phase A₂BO₄ oxides: Recent studes on structure, electrical, dielectric and optical properties. *J. Adv. Ceram.* 2020. **9**, № 2. P. 129—148. https://doi.org/10.1007/s40145-020-0365-x
- 3. Xiao H., Liu P., Wang W., Ran R., Zhou W., Shao Z. Ruddlesden—Popper perovskite oxides for photocatalysisbased water splitting and wastewater treatment. *Energy Fuels.* 2020. **34**, № 8. P. 9208—9221. https://doi. org/10.1021/acs.energyfuels.0c02301
- 4. Ding P., Li W., Zhao H., Wu C., Zhao L., Dong B., Wang S. Review on Ruddlesden—Popper perovskites as cathode for solid oxide fuel cells. *J. Phys.: Mater.* 2021. **4**, № 2. 022002. https://doi.org/10.1088/2515-7639/abe392
- 5. Kato S., Ogasawara M., Sugai M., Nakata S. Synthesis and oxide ion conductivity of new layered perovskite La_{1-x}Sr_{1+x}InO_{4-d}. Solid State Ion. 2002. **149**, № 1–2. P. 53–57. https://doi.org/10.1016/S0167-2738(02)00138-8

- Prado F., Manthiram A. Synthesis, crystal chemistry, and electrical and magnetic properties of Sr₃Fe_{2-x}Co_xO_{7-δ} (0 ≤ x ≤ 0.8). *J. Solid State Chem.* 2001. **158**, № 2. P. 307—314. https://doi.org/10.1006/jssc.2001.9111
- 7. Kim I.-S., Kawaji H., Itoh M., Nakamura T. Structural and dielectric studies on the new series of layered compounds, strontium lanthanum scandium oxides. *Mat. Res. Bull.* 1992. **27**, № 10. P. 1193—1203. https://doi. org/10.1016/0025-5408(92)90227-Q
- 8. Kamimura S., Yamada H., Xu C.-N. Strong reddish-orange light emission from stress-activated Sr_{n+1}Sn_nO_{3n+1}:Sm³⁺ (n = 1, 2, ∞) with perovskite-related structures. *Appl. Phys. Lett.* 2012. **101**. 091113. https://doi.org/10.1063/1.4749807
- 9. Тітов Ю.О., Білявина Н.М., Слободяник М.С., Чумак В.В. Кристалічна структура ізовалентно заміщених шаруватих індатів Ва_{1-х}Sr_xLa₂In₂O₇. Допов. Нац. акад. наук Укр. 2016. № 6. С. 95—102. https://doi. org/10.15407/dopovidi2016.06.095
- 10. Titov Y.A., Belyavina N.N., Slobodyanik M.S., Nakonechna O.I., Strutynska N.Yu. Synthesis and crystal structure of two-slab Ba_{1-x}Sr_xNd₂In₂O₇ indates. *Phys. Chem. Solid State.* 2022. **23**, № 2. P. 375—379. https://doi. org/10.15330/pcss.23.2.375-379
- 11. Titov Y., Belyavina N., Slobodyanik M., Nakonechna O., Strutynska N. Effect of strontium atoms substitution on the features of two-slab structure of Sr_{1-x}Ca_xLa₂Sc₂O₇ scandates. *Fr.-Ukr. J. Chem.* 2021. **9**, № 1. P. 44—50. https://doi.org/10.17721/fujcV911P44-50
- Titov Y., Belyavina N., Slobodyanik M., Nakonechna O., Strutynska N., Tymoshenko M. Effect of isovalent substitution on the crystal structure and properties of two-slab indates BaLa_{2-x}Sm_xIn₂O₇. *Open Chem.* 2020. 18, № 1. P. 1294–1303. https://doi.org/10.1515/chem-2020-0090
- Titov Y.A., Belyavina N.M., Slobodyanik M.S., Nakonechna O.I., Strutynska N.Yu., Chumak V.V. Effect of isovalent substitution on structure of the two-slab BaNd_{2-x}Sm_xIn₂O₇ indates. *Phys. Chem. Solid State.* 2022. 23, № 4. P. 801–808. https://doi.org/10.15330/pcss.23.4.801-808
- 14. Тітов Ю.О., Чумак В.В., Тимошенко М.В. Синтез та кристалічна структура двошарових скандатів BaLa_{2-x}Dy_xSc₂O₇. Допов. Нац. акад. наук Укр. 2022. № 3. С. 68—76. https://doi.org/10.15407/ dopovidi2022.03.068
- 15. Тітов Ю.О., Білявіна Н.М., Слободяник М.С., Чумак В.В., Наконечна О.І. Синтез та кристалічна структура ізовалентнозаміщених шаруватих скандатів SrLa_{2-x}Dy_xSc₂O₇. *Вопросы химии и химической технологии*. 2019. № 6. С. 228—235. https://doi.org/10.32434/0321-4095-2019-127-6-228-235

Надійшло до редакції 20.09.2023

REFERENCES

- 1. Schaak, R. E. & Mallouk, T. E. (2002). Perovskites by design: a toolbox of solid-state reactions. Chem. Mater., 14, No. 4, pp. 1455-1471. https://doi.org/10.1021/cm010689m
- Nirala, G., Yadav, D. & Upadhyay, S. (2020). Ruddlesden-Popper phase A₂BO₄ oxides: Recent studes on structure, electrical, dielectric and optical properties. J. Adv. Ceram., 9, No. 2, pp. 129-148. https://doi.org/10.1007/s40145-020-0365-x
- Xiao, H., Liu, P., Wang, W., Ran, R., Zhou, W. & Shao, Z. (2020). Ruddlesden—Popper perovskite oxides for photocatalysis-based water splitting and wastewater treatment. Energy Fuels, 34, No. 8, pp. 9208-9221. https:// doi.org/10.1021/acs.energyfuels.0c02301
- Ding, P., Li, W., Zhao, H., Wu, C., Zhao, L., Dong, B. & Wang, S. (2021). Review on Ruddlesden—Popper perovskites as cathode for solid oxide fuel cells. J. Phys.: Mater., 4, No. 2, 022002. https://doi.org/10.1088/2515-7639/abe392
- Kato, S., Ogasawara, M., Sugai, M. & Nakata, S. (2002). Synthesis and oxide ion conductivity of new layered perovskite La_{1-x}Sr_{1+x}InO_{4-d}. Solid State Ion., 149, No. 1-2, pp. 53—57. https://doi.org/10.1016/S0167-2738(02)00138-8
- Prado, F. & Manthiram, A. (2001). Synthesis, crystal chemistry, and electrical and magnetic properties of Sr₃Fe_{2-x}Co_xO_{7-δ}(0≤x≤0.8). J. Solid State Chem., 158, No. 2, pp. 307-314. https://doi.org/10.1006/jssc.2001.9111
- Kim, I.-S., Kawaji, H., Itoh, M. & Nakamura, T. (1992). Structural and dielectric studies on the new series of layered compounds, strontium lanthanum scandium oxides. Mat. Res. Bull., 27, No. 10, pp. 1193-1203. https:// doi.org/10.1016/0025-5408(92)90227-Q
- Kamimura, S., Yamada, H. & Xu, C.-N. (2012). Strong reddish-orange light emission from stress-activated Sr_{n+1}Sn_nO_{3n+1}:Sm³⁺ (n = 1, 2, ∞) with perovskite-related structures. Appl. Phys. Lett., 101, 091113. https://doi. org/10.1063/1.4749807

- Titov, Y. A., Belyavina, N. M., Slobodyanik, M. S. & Chumak, V. V. (2016). Crystal structure of isovalent substituted slab indatesBa_{1-x}Sr_xLa₂In₂O₇. Dopov. Nac. akad. nauk Ukr., No. 6, pp. 95-102 (in Ukrainian). https://doi.org/10.15407/dopovidi2016.06.095
- Titov, Y. A., Belyavina, N. N., Slobodyanik, M. S., Nakonechna, O. I. & Strutynska, N. Yu. (2022). Synthesis and crystal structure of two-slab Ba_{1-x}Sr_xNd₂In₂O₇ indates. Phys. Chem. Solid State, 23, No. 2, pp. 375-379. https://doi.org/10.15330/pcss.23.2.375-379
- Titov, Y., Belyavina, N., Slobodyanik, M., Nakonechna, O. & Strutynska, N. (2021). Effect of strontium atoms substitution on the features of two-slab structure of Sr_{1-x}Ca_xLa₂Sc₂O₇ scandates. Fr.-Ukr. J. Chem., 9, No. 1, pp. 44-50. https://doi.org/10.17721/fujcV911P44-50
- Titov, Y., Belyavina, N., Slobodyanik, M., Nakonechna, O., Strutynska, N. & Tymoshenko, M. (2020). Effect of isovalent substitution on the crystal structure and properties of two-slab indates BaLa_{2-x}Sm_xIn₂O₇. Open Chem., 18, No. 1, pp. 1294-1303. https://doi.org/10.1515/chem-2020-0090
- Titov, Y. A., Belyavina, N. M., Slobodyanik, M. S., Nakonechna, O. I., Strutynska, N. Yu. & Chumak, V. V. (2022). Effect of isovalent substitution on structure of the two-slab BaNd_{2-x}Sm_xIn₂O₇ indates. Phys. Chem. Solid State, 23, No. 4, pp. 801-808. https://doi.org/10.15330/pcss.23.4.801-808
- Titov, Y. A., Chumak, V. V. & Tymoshenko, M. V. (2022). Synthesis and crystal structure of two-slab scandates BaLa_{2-x}Dy_xSc₂O₇. Dopov. Nac. akad. nauk Ukr., No. 3, pp. 68-76 (in Ukrainian). https://doi.org/10.15407/ dopovidi2022.03.068
- Titov, Y. A., Belyavina, N. M., Slobodyanik, M. S., Chumak, V. V. & Nakonechna, O. I. (2019). Synthesis and crystal structure of isovalently substituted slab SrLa_{2-x}Dy_xSc₂O₇ scandates. Voprosy khimii i khimicheskoi tekhnologii, No. 6, pp. 228-235 (in Ukrainian). https://doi.org/10.32434/0321-4095-2019-127-6-228-235

Received 20.09.2023

*Y.A. Titov*¹, https://orcid.org/0000-0001-9900-3751 *M.S. Slobodyanik*¹, https://orcid.org/0000-0003-2684-9806 *V.V. Chumak*², https://orcid.org/0000-0001-5892-3703 ¹Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

²Zhytomyr Ivan Franko State University, Zhytomyr, Ukraine

E-mail: titov1952@ukr.net

REGULARITIES OF ISOVALENT ATOM SUBSTITUTION INFLUENCE ON THE STRUCTURE OF $A^{II}Ln_2B_2^{III}O_7$ TYPE COMPOUNDS

Based on the analysis of the structural data of phases $(A^{II}, A^{II*})(Ln, Ln^*)_2 B_2^{IIO}O_7 (A^{II} = Ba, Sr, A^{II*} = Sr, Ca, Ln = La, Nd, Ln^* = Sm, Dy, B^{III} = In, Sc), the regularities of the influence of isovalent substitutions of A^{II} and Ln atoms in the slab perovskite-like structure of A^{II}Ln_2B_2^{III}O_7-type compounds on its structure were determined. It was obserbed that an increase in the degree of substitution of A^{II} and Ln atoms in the slab structure of A_{1-x}^{II}A_x^{II*}Ln_2B_2^{III}O_7$ and A^{II}Ln_{2-x}Ln_x^*B_2^{III}O_7 type phases leads to an increase in the degree of deformation (Δ) of interblock polyhedra of AO₉ and to a decrease in the length of the interblock distance A — O. It was found that the values of ΔAO_9 and ΔAO_{12} in the structure of $A_{1-x}^{II}, A_x^{II*}Ln_2 B_2^{III}O_7$ and $A^{II}Ln_{2-x}Ln_x^*B_2^{IIO}O_7$ depend on the type of syngonia of lattice and are highest in tetragonal solid solutions. The distribution of Ba, Sr, and REE atoms in (A^{II}, A^{II*})(Ln, Ln^*)₂ $B_2^{III}O_7$ structures is determined by the value of difference in their radii, with an increase contributing to the ordering of the distribution of Ba, Sr, and REE atoms in AO₉ and AO₁₂ polyhedra. Structural factors affecting the stability of (A^{II}, A^{II*})(Ln, Ln^*)₂ B_2^{IIO} , phases with a slab perovskite-like structure have been identified.

Keywords: phases of $(A^{II}, A^{II*})(Ln, Ln^*)_2 B_2^{III}O_7$ type, slab perovskite-like structure, isomorphic substitutions.