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The best least square solution of the boundary value problem is constructed via modified QR al-
gorithm and also RQ algorithm. As a result of this work one has a choice of effective methods for
finding solutions to two point boundary value problems in the non invertible case. Further these
results are exemplified with suitable examples to highlight the modified OR and RQ algorithms.
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MEHEHUS MOTU(UIHPOBAHHEIX OR 1 RO aNropuTMOB.
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Introduction. In this paper we shall be concerned with the boundary value prob-
lem (BVP) associated with first order matrix differential equation of the form

y'=A@) y+f (1), a<t<b, My(a)+Ny(b)=g, (M
where 4 is an (n x n) matrix whose components are continuous functions on
a<t<h, fisan(n x 1) vector and is continuous. M and N are constant matrixes
of order (m x n) (m > n). Usually one assumes that general differential equations
can be written as a first order system y' = f (¢, y), a < t < b, where fis continuous
on [a, b] x R and y is a column matrix with components (y,, ¥, .., v, ) . The
interval ends @ and b are finite or infinite constants. For linear problems, the or-
dinary differential equation takes the form

y' =4 y+f (). 2)
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The linear homogeneous system associated with (2) is
y'=A(1)y. (€)
If Yis a fundamental matrix of the homogeneous system (3), then any solution of
(3) is of the form y (¢) =Y (#) C where C'is a constant (nx 1) vector. If y is any so-
lution of (2) and y is a particular solution of (2), then (y —y ™) is a solution (3).
Thus[1] y—y =Y (¢)C ory(¢t)=y (¢)+Y (¢)C. A particular solution y (¢)of (2)
is given by
t

F(O=Y (O Y7(5) [ (s)ds.

Thus

Y(6)=Y(1)C+Y(7) j Y (s) f(s)ds. (4)

Substituting the general form of y (¢) in the boundary condition matrix in
(1), we get

[MY (a)+ NY (b)]C +NY (b) } Y (s) f(s)ds=g.
If we denote the characteristic matrix D by l; =MY(a)+NY(b), then
DC =-NY (b)? YN (s) f(s)ds+g.
If D is non-singular, then C can be d(:termined uniquely, and in this case

b
C =—D’1NY(b)j Y'(s) f(s)ds+D'g.

Substituting the general form of C in (4), we get

b t
y(t):—Y(t)D_lNY(b)I Y7'(s) £(s) ds+Y(t)I Y7'(s) f(s)ds+D g =

b
:J.G(t,s)f(s) ds+D7'g,

where G is the Green’s function for the homogeneous BVP and is given by
Y()D'MY(a)Y N(s), a<t<s<b
Gr.s | TOD MY @Y (0), asess<h |
—Y()D'MY(a)Y '(s), a<s<t<b
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If D is an (mxn) matrix and rank (D) = r < m, then the system
DC = b, (5)

where
b
b=—NY(b)J'Y’1(s)f(s) ds+g (1)

possesses a solution only in the least square sense.

Least Square Solution of Over Determine Systems. If D is an (mxn) ma-
trix with rank (D) = r < m, then the system of equations (5) is called an overdeter-
mined system. We now attempt to solve the system by the method of least
squares i.e., determine C to minimize ||DC —b||,. If rank of D is n (i.e., columns
of Dare L1.),then D" DC =D” b . Note that DT D is positive definite matrix and
C=(D"D)"'D"b.

However, the algorithm resulting from forming and solving (5) is not as nu-
merically stable as the alternating way of using QU decomposition [2, 3]. If ¥ <n,
then D’ D is singular and (5) cannot be solved directly. In this case, the solution
is not unique. A solution of (5) in this case is given by C =D b, where D" is the
psuedo inverse of D. The unique distinction of the above equation is that C'is the
unique solution of (5) in the least square sense.

Example 1. Consider the linear system of equations:

X, —x,+x5=10,
x; —0.5x,+025x5 =05,
x; —00x,+00x; =00,
x; +0.5x,+025x5 =05,
X;+x,+x5=20.

The above system of equations can be put in the form

1 -10 10 107
1 -05 025([x,] |05
1 00 00|[x,|=]00],
1 05 025||x;| |05

1 10 10 20

DC = b, (6)
Since D is 5x3 matrix of rank 3 .We multiply the equation (6) by D” and get
D'DC = D"b and hence C = (D'D)'D’b, and C is unique. In general, if the mat-
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rix D is rectangular (or singular), then the equation (6) can have either an infinite
number of solutions or no solution. If D is singular and R (D) and N (D) represent
the range and null space of D, respectively, then (6) will have solutions if
be R (D). In this case, if C is any n vector in N (D) and C, is any solution of (6),
then the vector C +C, will also be a solution. If b ¢ R (D), then the system (6)
will not have a solution.

Further, if D is an (mx n) matrix, then for a given D € C"™" and b € C", the
linear system (6) is consistent if and only if b€ R (D). Otherwise the residual
vector

r=b-DC (7)

is non-zero for all C € C", and it may be desired to find an appropriate solution of
(6), by which we mean a vector C, making the residual vector in (7) very close to
zero in some sense. The following theorem shows that||DC —b|| is minimized by
choosing C = D" b, where D" is such that

D'DD"=D", (8)

DD'D =D, )

(DD")" =DD", (10)

(D" D) =D'D (11)

such a D"isunique. If D" satisfies conditions (9) and (10), then D" need not

be unique.
Theorem 1. Let D e C™" and be C"™. Then ||DC —b|| is the smallest when

C =D"bwhere D" satisfies (9) and (10). Conversely, if D" has property that for
all b, ||[DC —b]| is the smallest when C = Db, then D" satisfies (9) and (10).

Proof. If P p is the projection matrix on R (D), then write DC—b =
=(DC =P (pyb) +(Pr(pyb—b). Then

IDC = b]|*=||DC =Py bl *+ || Pa oy b= . (12)

Since (DC —Py(pyb) € R(D) and — (1 —Py(py) be R(D), it follows that (12) as-
sumes minimum value if, and only if

DC = PR(D)b, (13)

which certainly holds, if C=D"b for any D" satisfying (9) and (10). Hence
DD = Pyp). Conversely, if D" is such that for all b, || DC — b||is the smallest when
C = D" b, then by (13), we have DD b =Py ,,bv b, and hence DD* =Py p,).
Thus, D" satisfies (9) and (10). Suppose D * satisfies (8) and (11), then we have the
following theorem.
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Theorem 2. Let D e C™" and be C". If DC = b has a solution for C, the
unique solution for which||C||is the smallest is given by C =D b, where D™ sat-

isfies conditions (8) and (11). Conversely, if D" e C™", C"™ is such that,
whenever DC = b has solution C = Db is the solution of minimum norm, then
D" satisfies (8) and (11).
P r oo f. The proof'is similar to the proof of the Theorem 1.
Theorem 3. Let De C™" and b C"™. If DC = b has a solution for C, then
the unique solution of DC = bis C = D"'b, where D" satisfies (8)-(11).
Lemma. Let D e C™". Then D is one—one mapping of R (D) onto R (D).
Corollary. Let D e C™", b € R (D) . Then there is a unique minimum norm
solution of

DC =b, (14)

which lies in R (D).

P ro o f. By lemma, the equation (14) has a unique solution C, in R (D").
Now the general solution is given by C = Cy + C, forsome C, € N (D). Clearly,
ICol*=1ICol*+]|¥]l proving that ||C||*> ||C,[* and equality holds, only if
C=C,.

Non-invertible BVP occur in a natural way in the study of bifurcation, in
singular perturbation theory, and in nonlinear eigenvalue problems. A similar
situation arises in some identification problems, which often leads to undeter-
mined two-point BVP. In such situations one normally seeks solutions which
satisfy the boundary conditions exactly and solve the differential equation in
some least square sense.

Definition 1. For a given / € C"[a, b], the set of all least square solutions of
(1) is defined as

s, =frepii—ri= " Ly
={xe x—f]= —flIt,
! yedw)
where D (L) is the domain of the operator L and is given by D (L)=BC""[a, b],
BC'"[a,b]is the subspace of C'" [a, b] satisfies the boundary conditions in (1).

Definition 2. The best least square solution (1) is denoted by y" and is defined to
be an element of S; of minimum norm (if such exists) i.e., ||y ||=min|| x .
xeSy

We now present an algorithm for computing the minimal norm least square so-
lution of the general system of equations Ax = b, where A is an (mx n) matrix and x is
column matrix with components (x,, X, .., x, )" and b=(b,, b, .., b,)".

Q-R Decomposition. In this section we first present QR algorithm and then
present our main result on modified QR algorithm, when the matrix A is of rank
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p =min(m, n). The algorithm presented here depends upon the rank factorization
of the form AP = QR , where P is an (n x m) permutation matrix such that the first
p columns of AP are linearly independent. Q is an (mxn) matrix with ortho-
normal columns (Q'Q =I') and R is an upper trapezoidal matrix of rank p. We
shall denote /m (4)={4Ax € R"|x € R"} the column space of A4 and Ker (A4)=
={x e R"| Ax =0}. We first present QR-algorithm.

Theorem 4. Let 4 be an (mxn) matrix with rank n (m > n) then there exists a
unique (mx n) orthogonal matrix Q (O Q =1In) and a unique (nxn) upper trian-
gular matrix R with positive diagonal elements (r; > 0) such that 4 = OR.

P r o o f. It may be noted that the theorem is a restatement of the Gram-
Schmidt orthogonalization process. If we apply Gram-Schmidt to the columns
of A=[a,,a,,..,a,] from left to right, we get a sequence of orthonormal vectors
q: through ¢, spanning the same space and these orthogonal vectors are the co-
lumns of Q. Further, Gram-Schmidt also computes coefficient 7, = qJT.a,. ex-

pressing each column ¢; as a linear combination of ¢; through ¢;: ai= Zrﬁq e
j=1
These r; are the just entries of R.
We shall now present the classical Gram-Schmidt and modified Gram-
Schmidt algorithms for factoring of 4 = OR:
For i =1 to n /* compute the ith column of O and R*/

qi =~ ai
for j=1toi— 1 /*subtract component in g; direction from a;*/
ri = qJT-aiCGS
i :qJT"L’MGS
q4; =49; —T;4;
end for
i =119l
If v, =0/* a; is linearly independent of a,,a,,...,a;_;,*/
quit
end if
q; =4
Tii
end for.

We further need the following results for construction of the least square al-
gorithm and the best least square algorithm.

Result 1. Let 4 be given (mxn) matrix of rank p. Then there exists a
factorization AP = QR with the following properties:
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(1) p is an (nx n) permutation matrix with first p columns of 4P form a basis
for Im (4) and

(i1) Q is an (mx p) matrix with orthogonal columns and R is a (pxn) up-
per-trapezoidal matrix of the form R = [R, R,],where R, is non-singular (px p)
upper triangular matrix and R; is a (pxn— p) matrix [4].

Result 2. Let 4 be an (mxn) matrix with rank p = min{m, n}.Write
A=[ay,a,,..,a,], wherea ;€ R™and p be an (nx n) permutation matrix such that

AP = QOR, where Q is an (mx p) matrix with orthonormal columns and R is an
(pxn) upper trapezoidal of rank p. Then the first p columns of 4P are linearly
independent and all the least square solutions of the system Ax = b can be ob-

tained by solving the consistent system: RPT x=Q*b. If we write R=[R|, R»], R,
p}

u
is (px p) upper triangular, then x =P[ } ,where V € R"™? is arbitrary and
1%
n—p}
u=R;"(a" b—R,v)are the least square solutions of Ax = b. A basic least square
solution is obtained by taking v = 0.
Let A be an (mxn) matrix and be R™ be given. Let rank of 4 be

p <min{m, n}.The following is the algorithm to compute the least square solu-
tion. We use the following notation
a;: = b; means a; becomes b for alli =1 tom and j = 1 to n.
Algorithm:
q;=a;, i=1tom; j=1ton;
ry=0,i=ltom; j=Iton +

s;i=J, j=1ton;
p=mn
for k=1to n;

m
2 2 .
o, =lq;l", E lg;1°, i=k,..,n,
i=1

compute index ¢, k < ¢ <n such that dc =max3 ;,
if 8¢=0go to 20, 1<
20:p: k-1 goto 30,

interchange column K of Q with column C of Q,

interchange column K of R with column C of R

interchange number &k with number dc,

interchange index s; with index C

Qe =9q; Ty

Ty =459, J=k+l,...n
q;=9; —rkiqk,]=k+l,...,n
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rk,n+i :qzb
30: forj=p+1ton
=0

Back solve the system of equations
Xy et ,X , =10
PX g+t X , =1 0
PopX p =T pnl
to determine x,,x,,...,X
forj=n,n-1,...,1
k=s;.
If k#j x, <>x;, x=[x;,x;,..,x, ]is the least square solution of Ax = b.
Algorithm for MINLS.Ifp =n STOP, the least square solution al-
ready found is the minimal norm least square solution of Ax = b:
elsev:=n—p
by:=x,j=1ton
x:=0,j=p+lton
fork=p+1ton

P

X+ = 1
Back solve the equation systems Rx = 0 to determine x,x,,...,x »
J:=k-p
a;:=x;fori=1ton
X+ = 0
for i=ntol
k::S,',

if k # iinterchange a;; and a; forj=1tov.

Computation of Pseudoinverse. Algorithm min Ls can be used to find
pseudoinverse of an (mxn) matrix 4. Using min Ls algorithm m times, solve for
a; ofthe problem Ax = e, where ¢, (1< i < m) are the standard Eucledian basis for

R". Then the Pseudoinverse of the matrix 4 denoted by A" is given by
A" ={a, ,a,,..,a, }. To illustrate the results mentioned above, we consider the

system of equations of the form y"=A4(¢) y + f, satisfying

My (0)+ Ny (1)=b, (15)
where
01 ¢ 0
A=10 0 1|, f()=10],
00O 1
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1 2 3 0 0 1 7
1 5 6 1 00 135
M = , N= , b(H)= .
1 8 9 010 19.5
1 11 12 0 1 1] 205
A fundamental matrix of the homogeneous system y’ = A4y is given by
1t ]
Y()=0 1 ¢

0 0 1

Substituting the general form of the solution y (#) = Y (#)C in the boundary
condition matrix My (0) + Ny (1) = g, we get

1
DC =—NY (1)[ Y (s) f(s)ds+g,
0

where
1 2 3
1 5 6
D=
1 8 9
1 11 12

and the right hand side is given by [6, 13, 19,24]" =b or DC =b. Here Dis a (4 x 3)
matrix of rank 2. The minimal norm least squares solution of this system as de-
termined by the algorithm MINLS is given by C =[1 0.5 15]" with the least
square residual equal to 1.

The best least square solution y () of BVP (15) is as follows

2
2

Y O=y(OCy [ y7 O F@ds=| e’
“ 3

2t
L 2 i

Example 2. Consider BVP y'=4y+f. My (0) + Ny (1) = g, where

0100 0

0010 0 4 75 1257
A= af=7g=|:_i|7
000 1 0 3 24 24
0000 1
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Y(n)=

S o O =

S O O 0~

I 0
I 1
2 2

2t

3¢?
6t

, Y (=

0

L
2
0o
6
LA
2
1p
2
—t
!
2
0

Substituting the general form solution Y (#) C in the boundary condition matrix,

we get

Il
o —_—) —

0

S N =

S N

N | —

ds+g =

- o O O

-1

S NI

[

B

3
4

(9}

2
7
2

~

O O = =
S NN =

QWA

75

24
127

L 24 |

This is an underdetermined system and hence algorithm MINLS chooses
the minimal norm solution amongst all the solutions of the problem. The
minimal norm least square solution determined by the MINLS algorithm is

C =[-0.211009174 —0.633027523 0.963302752 0.110091743]". Slight al-
terations of this program will handle the complex case, as the algorithm we pre-

12
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sented is for the real data. Note that we compiled the MINLS incorporating Al-
gorithm of least squares in IBMAT.

OR Factorization via Gram-Schmidt. 4Ax = b, write 4 = OR, where Q is
unitary and R is upper triangular, Q is mxm and R is mxn (m=n). Since m>n
the last m-n rows of R will be zero. We first start with a;. Write

ay=q,r = q, =a;/ny, (16)

a,—r 1
az2971”12“]2’”223%272 lqu, (17)

n
anZ”in‘]o

ay =q 1y, Fqalay F o H Gy Ty = 4, =———, (18)

rl’ll’l

since the columns of a; of 4 are given, we need to determine the columns g; of O
and entries r; of R such that Q is orthonormal, i.e.,

q:q; =5, (19)
and R is upper triangular and 4 = OR . The latter two conditions are already re-

a
171 —150 that
i

flected in the above formulae using (16) in (19) , we get q;‘ q, =

7, =+ @y a; =||a, |, . Note that, we choose arbitrarily the positive square root so

that the factorization becomes unique.
From (18) we have q? q, =0, q; q, =1. Applying (17) we get

Q%M 9

%)

qfq2=

Thus
a, (g ] a,) q;

by

q, =

(since ¢, q, =1, r, =q, a, ). Now to find R normahze llg,ll,=1. Thus
ry =llay =(q; a5) q,|l,- For n=3 wehave ¢, g5 =0, 4545 =0, ¢5¢5 =1. The first
two of the above conditions together with (18) for n = 3 yield

093 "M G 391 92

33

‘IT%:
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Since ¢, ¢, =0and ¢, ¢, =1, we have r; = ¢, a . Similarly ¢, ¢; =0and (18) for
n =3 again yields

_9293 739,91 71239292 _

33

(13‘13

sothatr 23 = ¢, 2" *a;(3)(-.q,2 ¢, 1= 0 and ¢,2"* g, 2=1). Further ¢} q; =
=[g;ll,=1, we get

_ay—(q143) 4 ~(¢:a3) 45

33

q3 , 33 =l a; _(qr%)% —(qzag)%llz-

In general we have the following algorithm r;; = q,a ;@)

J-1 v;
v, =a; _Zrij'Qia T =||vj||2’ q,=—
i=1 Ty

The following is the classical Gram-Schmidt algorithm:

forj=1ton
v, =a;;
fori=1:j-1
Ti=q1a;,V; =V, —T;q;
end
Vi
r =Ml 4, =—
T
end.
1 20 1
Example 3. Consider |0 1 1 |x=b.Firstv, =a, =|0 and”11=||V1||=\f2-
1 01 1
1
This gives ¢, = o1 0|. Next
1= =— |0 ,
Il 2],
2 1 1
. NG
vy =a,—(qa,)q =a,—r; =|1 _E 0= 11.
0 1 -1
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Thus 7, =2/+/2=~/2. Moreover, r,, =||v,|,=+3 and

1
v, 1

q2 = =
lvall 43

-1

In the last iteration we have r, =a, —(q; a,) g, —(¢>a,) q,, where (g, as)q, =rs

and ([¢],a3)q; =ry;. From this we compute ,; =1/+/2 and r,; =0. This gives

0 1 -1
11 1
vy=|1]—— —|0]-0=2] 2
SREAC I
-1
Finally, ry; =||v5]l,=6/2and ¢; =—3 =L | 2 |. Thus
Ivsll G 1
R 1]
o1 1
R I M
NCIN J6
RIS 0o 0 2
V2 V3 e

Generalized QR Factorization. In this section we shall be concerned with
the system of equations Ax = b, where 4 is an (n x m) matrix and x is an (mx1) vec-
tor we assume that n < m. This is an underdetermined system. The QR-facto-
rization of (nxm) matrix A can be written as 4 = QR, where Q is an (nxn)
orthonormal matrix and R = Q"4 is zero below the main diagonal and is given by

R
R= QTA =[ (;1 } , Where Ry is an (nx n) upper triangular matrix. If n < m then the

OR factorization of 4 assumes Q7 4 = [R,;, R;,], where Ry, is an (nxn) upper tri-

angular matrix. However in many practical applications it will be more appropri-
ate to write 4 in the form A =[0 R,,]Q, which is known as RQ factorization. In
fact OR and RQ factorization are the QL and LQ factorization and are in fact or-
thogonal — lower-triangular (QL) and lower triangular — orthogonal factori-
zation (LQ). It is well known in fact that the orthogonal factors of A4 provide in-
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formation about its column and row spaces. If rank of 4 is £ < min {n, m}, then
there exist orthonormal matrix Q and a permutation matrix P such that

Ry Ry,
0o o]
Ry, being kxk, R, being (m—k)xk,

o being kx(n—k)and o being (m—k)x(n—k),

QTAP{

where Ry is a (kx k) upper triangular matrix and R;; is non singular we present
generalized RQ factorization for the system of equations Ax = b.

Let A be an (nx m) matrix and assume that n < m. Then there exists orthogo-
nal matrix Q (nxn) and U (mx m) such that Q"AU = R, where R=[0 R,, ], 0 be-
ing (m—n)xn and Ry, being (nxn) matrix, and further R;,, being upper triangu-
lar, is non-singular. By QR-factorization with column pivoting of 4, we have

R, R

T 11 12
AP = ,
0 [0 0}

Ry being gx g, Ry, being (m—q)xgq,
0 being g x(n—¢g) and o being (m—q)x(n—gq),
where g = rank (4).

OtpumaHo HaifkpaImuii po3s’ 30K KpaifoBoi 3a1a4i METOI0M HafIMCHIIINX KBaJIPATIB 3a JJOIIOMO-
roto moaudikoBaHux QR Ta RQ airopuTMis. 3amporoHOBaHO crocid BUOOpY e(h)eKTHBHOTO Me-
TOMY PO3B’A3yBaHHA ABOXTOYKOBHX KPaHOBHX 3a/a4 y BUMaKy HeoOopoTHOCTI MaTpumi. Hase-
JIEHO IPUKJIAIH 3aCTOCyBaHHs MoandikoBaHUX OR Ta RO anropurMis.
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