VK 004.04, 004.6

A.V. Valialkin

VertaMedia Company

(224 West 35th St., Suite 1102-5, New York, NY 10001, USA,
a.valialkin@vertamedia.com),

O.l. Konashevych, post-graduate

Pukhov Institute for Modelling in Energy Engineering

(15, General Naumov St., Kyiv, 03164, Ukraine,
a.konashevich@gmail.com)

Real-time Method of Accurate Unique IPs Counting
Across High Number of Distinct Dimensions
and distinct Time Frames for Big Data Systems

The article describes a method which allows counting unique IP addresses within 10 bln of sys-
tem events per day across high number of distinct dimensions (tuples). Log-based and probabi-
lity-based methods showed unsatisfactory results. The proposed method allows avoiding exces-
sive resource usage (RAM, CPU and persistent storage) as it appeared in a raw logs method and a
probability method of counting. The method also avoids high statistic error for low cardinality as
it appeared in a probability method. The main idea is to count unique IP addresses in distinct
tuples in real time using RAM for short data interval processing, then flushing it to persistent
storage, using merge algorithms to process and store unique IP counts in ordinary database from 5
minute, hourly, daily, weekly and monthly interval files.

Onycan MeTOJ|, TO3BOJISIIONIMK ITOJICYUTATh YUCIIO YHUKaNbHBIX [P aapecoB u3 6oibiioro
KOJIMYECTBA Pa3IMYHBIX HAOOPOB TaHHBIX (KOpTEXkeit). MeToIbl, 0CHOBAaHHBIC HA CKAHUPOBAHHUH
JIOTOB ¥ BEPOATHOCTHOM MOACYETE, IPUBEIIH K HEYAOBJICTBOPUTEIILHBIM pe3yibTaTtam. [Ipeaso-
JKEHHBIM METOJ I03BOJIAET U30eXaTb UYPEe3MEPHOIO HCIOJIB30BAHUS PECypcoB (Ipoleccopa,
OIIEPAaTHBHOM U MTOCTOSHHON MaMSTH), KaK IPH UCIOIE30BaHIH METO/1a CKAaHHPOBaHUs HeoOpa-
OOTaHHBIX JIOTOB M BEPOSTHOCTHOTO METOAA TO/ICUETa, a TAKKe M30eKaTh OOJBIION CTaTUCTH-
YECKOH MOTPEIIHOCTH, KaK IPH UCTIOIb30BaHUH BEPOSTHOCTHOTO METO/IA HA MaJIbIX KOJIMYECT-
BaxX YHMKAJbHbBIX 3HaueHU. OCHOBHAA UEs METO/1a COCTOUT B TOM, YTO IOJICYET YHUKAIBHBIX
IP angpecoB B pa3nUyHBIX KOPTEKaX B PEATLHOM BPEMEHH NMPOBOAUTCS B OIIEPATHBHOMN ITaMSITH.
O0paboTKa DaHHBIX BBIIOJHIETCS Ha KOPOTKUX MHTEPBajax M 3aT€M OHM IEPealoTcs B IO-
CTOSIHHYIO MaMsTh C MOMOIIbI0 anroputMma ciausHusi. OOpabortanHble cueTuuku [P anpecos
MOCTYMAlOT B OOBIYHYIO 0a3y NaHHBIX U3 (ailloB ¢ MATHMHHYTHBIM, YaCOBBIM, CYTOYHBIM,
HeJIeNIbHBIM MM MECSYHBIM HHTEPBAJIOM.

K eywo rds: probability method, statistics, information technologies, queueing theory, big
data, statistical process control.

© A.V. Valialkin, O.I. Konashevych, 2016

ISSN 0204-3572. dnekTpoH. moaenupoBaHue. 2016. T. 38. Ne 3 63

A.V. Valialkin, O.l. Konashevych

Demand Side Platforms
(DSPs)
A X

Exchange systems

VertaMedia™
SSP

A
0,7-1bln

WEB Sites/3rd party ad networks
(‘publishers’)

1-3 m@vé:ic?umr day

IP addresses

Scheme of requests statistics

The Problem. Ten billion network events across distinct dimensions per
day caused VertaMedia™ company to search for suitable methods of statistics op-
erating. As a glossary there are some words about professional sphere where the
discussed methods were applied.

VertaMedia™ is a company which provides services for Internet video ad-
vertising with its own originally developed software as a supply side platform.
Clients of the company are multiple ‘Publishers’. Demand Side Platforms (DSP)
with Advertisers (these names are professional language) are partners, who use
Publishers’ resources to promote advertisement. ‘Publishers’ are owners of ad-
vertising spaces on sites (‘spaces’ are usually called as ‘Inventory’); they can be
owners of sites or professional ad operators.

Advertisers and Demand Side Platforms are companies which promote on-
line video advertisement and are represented in VertaMedia'" system as a set of
advertisement campaigns (‘campaign_id’). Advertisers represent the interests of
initial clients, who are owners of promoted goods and services. Advertisers and
Publishers deal with intermediaries who sell and buy Advertisement/Invento-

64 ISSN 0204-3572. Electronic Modeling. 2016. V. 38. Ne 3

Real-time Method of Accurate Unique IPs Counting Across High Number of Distinct Dimensions

ries. ‘Users’ are sites visitors. They are those whom advertisements are shown,
while they are navigating web pages.

VertaMedia faced with issues of arranging arrays of data to get accurate sta-
tistics. Statistical data structure consists of unique IP addresses traffic coming to
Publishers’ sites and related with such IPs requests. The scheme of requests and
scope of structure array is shown on Figure.

Figure shows that up to 3 mln unique IP addresses generate daily up to 1 bin
requests to VertaMedia'™ ad servers and cause these servers to operate up to 10
bln inquiries and replies to/from DSP.

Collecting and operating the traffic statistics of 10 bln events per day ap-
pears as a nontrivial task as it required notable resources of CPUs, RAM and per-
sistent storage. Statistics collecting was of business interest of the company
since it allowed its managers to make more accurate decisions and to control the
quality of services.

The number of unique IP addresses each publisher sends to each DSP is an
important metric used by traffic analysts in VertaMedia™™". This allows optimiz-
ing traffic flows for maximizing company’s and customers’ profits.

Body Section. Company’s researchers formulated the initial task: to create
a system algorithm that can quickly and accurately with minimum resources ex-
penditure respond to the question: “How much unique IP addresses caused the
events in the ad network with a specific period of time (the last 5 minutes, hour,
day, week and month) for given tuples: (country, publisher id', source id*,
campaign_id®), (country, publisher id, source_id), (country, publisher_id, cam-
paign_id), (country, publisher id), (country, campaign_id); within the number
of events of 10 billion per day”.

Speed processing requirements were identified in the range of a couple of
seconds. At the first stage of developing statistics results were processed by
managers, therefore time of processing was not critical. However, company con-
siders to add automation. The developed methods show good processing time
and could be applied for further autoprocessing.

The first research activities showed that the obvious solution was less ac-
ceptable. The idea was to store logs of values (time, publisher id, source id,
campaign_1id, ip) and count the required data ‘on the fly’. This approach required
too much recourses of disk space to store — about 1 Tb per day.

Another tested method — probabilistic counting [1] — did not fit mostly be-
cause of lack of accuracy and high requirements to RAM. The probabilistic

! Publisher’s ID.
? Publisher’s sub-ID which belongs to some web site under publisher’s control.
3 Advertiser’s ID.

ISSN 0204-3572. dnekTpoH. moaenupoBaHue. 2016. T. 38. Ne 3 65

A.V. Valialkin, O.l. Konashevych

method is one of fundamentals of Queueing theory. Company’s researchers con-
sidered that some of methods could give acceptable results. M. Harchor-Balter
emphasizes that queueing theory is built on a much broader area of mathematics
called stochastic modeling and analysis [2, 3]. Markovian assumptions [4], such
as assuming exponentially distributed service demands or a Poisson arrival
process [3], greatly simplify the analysis; hence much of the existing queueing
literature relies on such Markovian assumptions [2, 3]. However, in some cases
Markovian assumptions are very far from reality [2, 3]. After theoretical analysis it
was decided to make express experiments with HyperLogLog which is most close
to initial tasks and the program implemented in open libraries in GitHub [5].

HyperLoglog is an algorithm for the count-distinct problem, approxima-
ting the number of distinct elements in a multiset [6]. Calculating the exact cardi-
nality of a multiset requires an amount of memory proportional to the cardina-
lity, which is impractical for large data sets with high cardinality. Probabilistic
cardinality estimators, such as the HyperLoglLog algorithm, use significantly
less memory than this, at the cost of obtaining only an approximation of the car-
dinality. The HyperLoglLog algorithm is able to estimate cardinalities of >10"9
with a typical error rate of 2%, using 1.5 kB of memory [6].

Table 1

stat=> select count(*) from
requests_unique_ip_day campaign id publisher id source id country where time >
now() - interval ‘2 days’; count

587254
(1 row)

Table 2

stat=> select count(*) from

requests_unique_ip_day campaign_id publisher id source id_country where ips_count >
1000 and time > now() - interval ‘2 days’;

count

51720
(1 row)

Table 3

stat=> select count(*) from

requests_unique ip _day campaign id publisher id source id country where ips_count =
1 and time > now() - interval ‘2 days’;

count

96180
(1 row)

66 ISSN 0204-3572. Electronic Modeling. 2016. V. 38. Ne 3

Real-time Method of Accurate Unique IPs Counting Across High Number of Distinct Dimensions

As a result of research it was found that only less than 10% (51,720 of
587,254) of tuples had more than 1000 of unique IP addresses, which is shown in
two SQL requests examples below (Table 1 and Table 2).

It was also found that the number of tuples with one IP address exceeds 20 %
(96,180 of 587,254) (Table 3).

Experiments showed that tuples with numbers of IPs less than 1000 gave
high statistical error which was by an order of magnitude higher than that of an
accurate calculation. Another reason of failure with this approach was that this
method required too much on-line memory.

In order to estimate the number of unique IPs a separate memory object should
be kept for each tuple (time_interval, publisher id, source id, campaign id). The
number of tuples exceeds one million and may increase by several orders at any time

Table 4

stat=> select publisher id, count(*) from requests_day campaign id publisher id source id
country where time > now() - interval ‘2 days’ group by 1 order by 2 desc limit 10;

publisher id | count

________ SR

13346 | 207406

13280 | 67484

12540 59002

11752 45738

12776 | 30929

12046 | 26520

12139 | 21420

13540 13992

12333 13030

12070 | 11980

(10 rows)

Table 5

stat=> select publisher_id, source_id, count(*) from requests_day campaign id publisher id
_source_id_country where time > now() - interval ‘2 days’ group by 1,2 order by 3 desc limit 10;
publisher_id | source id | count

+ +

12540 1918 950
12540 1919 918
12540 1967 899
12540 | 1926 | 899
12540 | 1940 | 871
12540 1966 870
12540 1809 856
12540 1917 855
12540 | 1910 | 853
12540 | 1911 | 841
(10 rows)

ISSN 0204-3572. dnekTpoH. moaenupoBaHue. 2016. T. 38. Ne 3 67

A.V. Valialkin, O.l. Konashevych

when ‘source id’ cardinality increases. The size of each object starts from 1 Kb.
However the more it is, the higher is the resulting accuracy. But this solution does
not scale well for large amounts of memory for tuples.

Consequently research efforts were concentrated on searching of our own
original decision. The hypothesis to keep a list of unique addresses for each tuple
and to store it in operating memory did not work because a large amount of
memory with fast random access was required.

Another hypothesis was to keep a list of unique tuples for each IP. This solu-
tion was similar to the first hypothesis regarding the memory consumption. But
it was easier to count the number of unique IPs for incomplete tuples, for exam-
ple, (publisher id, source id), (publisher id, campaign id) etc.

Finally, it was decided to store the structure of data in a file sorted by IP,
publisher id, source id, campaign id. Sorting is necessary for the subsequent
merging of a new data with the existing data in the file in streaming mode, with-
out use of additional memory and without random I/O.

This approach made it possible to reduce RAM consumption from a couple of
dozens of gigabytes to hundreds of megabytes during merging moments and mo-
ments of counters reset of unique IPs through all tuples. In this way researchers have
obtained the method which can form tuples shown in request examples below.

The number of unique IP counters for each (source id, campaign_id, coun-
try) tuple per Publisher (‘publisher id’) for the current day in Table 4.

The number of unique IP counters for each (campaign_id, country) tuple per
site (‘source id’) in the context of a Publisher (‘publisher id’) for the current
day in Table 5.

Table 6
stat=> select publisher id, source id, campaign_id, count(*) from requests day campaign
id_publisher id source id_country where time > now() - interval ‘2 days’ group by 1,2,3 order
by 4 desc limit 10;

publisher_id | source id | campaign_id | count

+ + toem

12540 | 1918 | 1024 | 181

12540 | 1918 | 968 | 181

12540 | 1918 | 1073 | 180

12540 | 1926 | 968 | 180

12540 | 1919 | 968 | 179

12540 | 1918 | 1015 | 178

12540 | 1970 | 1015 | 177

12540 | 1967 | 1024 | 175

12540 | 1919 | 1073 | 175

12540 | 1967 | 1073 | 174

(10 rows)

68 ISSN 0204-3572. Electronic Modeling. 2016. V. 38. Ne 3

Real-time Method of Accurate Unique IPs Counting Across High Number of Distinct Dimensions

The number of unique IP counters for each country per Advertiser’s Cam-
paign (‘campaign id’) in the context of some Publisher’s site (respectively -
‘publisher id’ and ‘source id’) for the last day in Table 6.

The number of distinct (country, publisher id) tuples per month in Table 7.

The number of distinct (country, publisher id, source id) tuples per month
in Table 8.

The number of distinct (country, publisher id, source id, campaign id)
tuples per month in Table 9.

The number of distinct (country, campaign_id) tuples per month in Table 10.

Top unique IP counters (‘ips_count’) for the tuple (campaign id, pub-
lisher id, source id, country) for a current day in Table 11.

A sample of the minimum number of unique IPs (‘ips_count’) for the tuple
(campaign_id, publisher id, source id, country) for a current day in Table 12.

Other combinations are possible, as it works as an ordinary SQL database.

Table 7

3%

stat=> select count(distinct country || , || publisher id) from
requests_unique_ip month campaign id publisher id source id country where time >
now() - interval ‘60 days’;

count
1568
Table 8
stat=> select count(distinct country | °,” || publisher id || > || source id) from

requests_ unique ip month campaign id publisher id source id country where time >
now() - interval ‘60 days’;
count

129516
(1 row)

Table 9

stat=> select count(distinct country || *,” || publisher id || *,” || source id || ¢,” || campaign_id)
from requests_unique ip_month_campaign_id publisher id source id country where time >
now() - interval ‘60 days’;

count

2684197
(1 row)

ISSN 0204-3572. dnekTpoH. moaenupoBaHue. 2016. T. 38. Ne 3 69

A.V. Valialkin, O.l. Konashevych

The mentioned tuples are stored in RAM for the period of 5 minutes and
then merged with the file containing unique IP data for the current hour. ‘Hour’
file is merged with ‘Day’ file every hour, while ‘Day’ file is merged into ‘Week’
and ‘Month’ file every day.

Table 10

3K

stat=> select count(distinct country | , I campaign_id) from
requests_unique ip_month _campaign id publisher id source id country where time >
now() - interval ‘60 days’;

count

Table 11

stat=> select * from
requests_unique ip_day campaign id publisher id source id country = where time >
now() - interval ‘2 days’ order by ips count desc limit 10;

time |campaign _id| publisher id| source id | country |

ips_count
+ + + + +

2016-04-05 00:00:00+00 | 272 | 12392 | 11278 | US | 502561
2016-04-05 00:00:00+00 | 217 | 12392 | 11278 | US | 497580
2016-04-05 00:00:00+00 | 1209 | 12392 | 11278 | US | 494679
2016-04-05 00:00:00+00 | 552 | 12392 | 11278 | US | 491190
2016-04-05 00:00:00+00 | 992 | 12392 | 11278 | US | 485995
2016-04-05 00:00:00+00 | 1177 | 12392 | 11278 | US | 485951
2016-04-05 00:00:00+00 | 1026 | 12392 | 11278 | US | 478815
2016-04-05 00:00:00+00 | 272 | 12392 | 10604 | US | 456033
2016-04-05 00:00:00+00 | 217 | 12392 | 10604 | US | 450713
2016-04-05 00:00:00+00 | 1026 | 12392 | 10604 | US | 448131
(10 rows)

Table 12

stat=> select * from
requests_unique_ip day campaign id publisher id source id country ~where time >
now() - interval ‘2 days’ order by ips_count limit 10;

time | campaign_id| publisher id | source_id | country | ips_count
+ + + + +
2016-04-05 00:00:00+00 | 21 11752 37718 AU |
2016-04-05 00:00:00+00 | 21 11752 30649 AU |
2016-04-05 00:00:00+00 | 21 11752 30653 AU
2016-04-05 00:00:00+00 | 21 11752 35207 CA |
2016-04-05 00:00:00+00 | 21 11752 19011

| | | 1
| | | 1
| | | 1
| | | 1
| | | us |1
2016-04-05 00:00:00+00 | 21 | 11752 | 22799 | CA | 1
| | | 1
| | | 1
| | | !
| | | 1

2016-04-05 00:00:00+00 | 21 11400 222831 CA |
2016-04-05 00:00:00+00 | 21 11400 89986 CA |
2016-04-05 00:00:00+00 | 21 11752 44925 CA |
2016-04-05 00:00:00+00 | 21 11752 38779 CA

(10 rows)

70 ISSN 0204-3572. Electronic Modeling. 2016. V. 38. Ne 3

Real-time Method of Accurate Unique IPs Counting Across High Number of Distinct Dimensions

Processing Algorithms. The basic data structure is a map keyed by IPs with
values containing a set of distinct (publisher id, source id, campaign id) tuples.
Each incoming event updates the map unless the map contains data (pub-
lisher id, source id, campaign_id) for the corresponding IP. The map contains
data for the last 5 minutes. Limiting in-memory map to a short period of time (5
minutes in this case) allows limiting RAM usage (to 200MB in our case). The
map size is proportional to the number of distinct (ip, publisher id, source id,
campaign_id) tuples for the given time interval. Map update speed is O(1), i.e. it
does not depend on the map size.

Flushing in-memory map into a file. The output is sorted by IP, then by
(publisher _id, source id, campaign_id). This opens the possibility for the next
step. Flushing requires only a small constant amount of RAM.

Merging two files (Smin -> hourly, hourly -> daily, daily -> weekly, daily ->
->monthly). Merge is similar to the merge pass used in merge sort [7]. Merging
step requires only a small constant amount of RAM.

Counting unique IPs per (country, publisher id, source id, campaign_id),
(country, publisher id), (country, publisher id, source id), (country, campaign_id)
by linear scan of the files. The counting occurs every hour for hourly statistics,
every day for daily statistics etc. Counting step requires RAM size proportional
to the number of unique (publisher id, source id, campaign_id) tuples (O(di-
mensions count)).

Scalability. Algorithms mentioned above have good scalability:

Per-1P in-memory maps may be populated concurrently by arbitrary number
of worker processes (threads).

Files to be merged may be split into arbitrary number of IP ranges, so ranges
may be merged concurrently.

Unique IPs’ counting may run concurrently on distinct [P ranges.

For example, in-memory maps can be divided into a few independent parts and
updated independent of each other in different threads (processes, machines). This
also makes the algorithm suitable for MapReduce-like processing [8].

Performance.

Currently the implementation processes up to 200K events per second on a
single CPU core.

RAM usage does not exceed 200MB during per-IP in-memory map upda-
ting. RAM usage does not exceed 1GB during unique IPs counting step.

Files are merged by a single thread (CPU core) at the speed of 40K unique
IPs per second.

Given the perfect scalability of the algorithm, it should be able to process up
to 200K*40=8M events per second on a single machine containing 40 CPU cores
(which is typical datacenter hardware). This results in 8M*3600*24 = ~700G

ISSN 0204-3572. dnekTpoH. moaenupoBaHue. 2016. T. 38. Ne 3 71

A.V. Valialkin, O.l. Konashevych

events per day per a single machine. The processing will require only
200MB*40 = 8GB of RAM, since unique IPs counting step (which requires 1GB
of RAM per CPU core) may be performed serially across CPU cores.

Conclusion. As a summary it is noted that the method which was developed
by VertaMedia™ researchers can be applied to similar tasks in different spheres,
that it is interesting from the methodological point of view. In particular it could
be applied for data processing in Statistical process control, which uses check-
lists to help to distinguish the “special” causes from the variations of the “usual”
reasons to provide quality control [9].

Let us name key positions research outputs:

+ neither logs nor probability could not satisfy the needs for accurate statis-
tics of unique IPs in the range of 10 bln events daily because of high demands for
resources and too remarkable statistical error;

+ the main point of the method is to distinct wanted tuples and to operate them
in RAM within 5 minutes and then to store the results in a persistent memory;

» processed data set is stored in files in selected periods of time (ex. 5 mi-
nutes, hourly, daily, weekly, monthly);

« DB statistics files (by periods) is updating according to the merging algorithm;

+ flushing unique IP counters to db after linear scan of files.

Developed methods have shown high efficiency in daily 10 bln system
events flow in resources usage (CPUs, RAM and persistent memory) compared
to methods of logs counting and probability methods. Finally, developed me-
thods are high scalable as could be used in distributed systems and process even
more data in several independent threads with minimum resources usage.

OnucaHo METoH, KU TO3BOJISIE MAPaxyBaTH KUIbKICT yHiKaIbHUX [P anpec i3 BeMKoi KilnbKOCTI
pi3HUX HaOOpiB JaHMX (KopTexiB). MeToau, 6a3oBaHI HAa CKaHYBaHHI JIOIIB Ta IMOBIPHICHOMY
MiIpaxyHKy IPUBEIH 0 He3aJOBUIBHIX PEe3y IbTaTiB. 3alPONOHOBAHII METO/ I03BOJISIE YHUKHYTH
HaJIMiPHOTO BUKOPHCTAHHSI PecypciB (Iporiecopa, ONepaTUBHOI Ta MOCTIHHOT mam’siTi), SIK 1e Bif0y-
BA€THCS MPHU BUKOPUCTAHHI METOJA CKAHyBaHHS HEOOPOOJIEHUX JIOTiB Ta IMOBIPHICHOIO METOLY
MIIPaxXyHKY, a TAKOXK YHUKHYTH BEJIHKOI CTATHCTHYHOI MOXHUOKH, K MPY BUKOPUCTAHHI IMOBIpHIiC-
HOTO METO/[a Ha MaIMX KITbKOCTAX YHIKaIbHHUX 3HaueHb. OCHOBHA 171651 METOT MOJIATAE B TOMY, IO
IipaxyHOK yHikaiabHuX [P anpec B pi3sHUX KOpTEXkax B peabHOMY 4aci IPOBOAUTHCS B OIIEPaTHB-
Hiit mam’sti. OO6poOKa TaHUX BHKOHYETHCS Ha KOPOTKHX IHTEpBaJIax i MOTIM BOHH IEPEHAIOTECS Y
MOCTIHHY Mam’sITh 3TiHO 3 anropuT™oM 3mutTst. OOpobneHi miuwibHukK [P aapec HaIXosTh 3
(aiiniB y 3BuyaiiHy 0a3y JaHHX 3 1T’ ITHXBUIMHHUM, TOJJUHHUM, TOOOBUM, TH)KHEBUM 200 MICSIYHUM
IHTEPBAJIOM.

REFERENCES

1. Erdos, P. (1959), available at: http://cms.math.ca/10.4153/CIM- 1959-003-9 (accessed April 4,
2016).

2. Harchol-Balter, M. (2013), Performance Modeling and Design of Computer Systems.
Queueing Theory in Action, Cambridge University Press, New York, USA.

72 ISSN 0204-3572. Electronic Modeling. 2016. V. 38. Ne 3

Real-time method of accurate unique IPs counting across high number of distinct dimensions

3. Cox, D.R. and Isham, V.I. (1980), Point Processes, Chapman & Hall, London, UK.

4. Durrett, R. (2010), Probability: Theory and Examples (4th ed.) Cambridge University Press,
Camridge, USA.

5. Available at: https://github.com/clarkduvall/hyperloglog (accessed October 21, 2015).

6. Flajolet, P., Fusy, E., Gandouet, O. and Meunier, F. (2007), HyperLogLog: the analysis of a
near-optimal cardinality estimation algorithm, Proceedings of the 2007 International Con-
ference on the Analysis of Algorithm(AOFA °07), available at: http://algo.inria.fr/flajolet/
Publications/FIFuGaMe07.pdf (accessed April 4, 2016).

7. Knuth, D. (1998), “Section 5.2.4: Sorting by Merging”, The Art of Computer Programming
3 (2nd ed.), Addison Wesley, USA Sorting and Searching.

8. Dean, J. and Ghemawat, S. (2004), MapReduce: Simplified Data Processing on Large Clus-
ters, available at: http://static.googleusercontent.com/media/research.google.com/es/us/ar-
chive/mapreduce-osdi04.pdf (accessed April 4, 2016).

9. Shewhart, W. (1931), Economic Control of Quality of Manufactured Product, D.Van
Nostrand Company, New York, USA. ISBN 0-87389-076-0.

Received 20.04.16;
After revision 28.04.16

VALIALKIN Aliaksandr Valerievich, Backend developer, VertaMedia Company, USA. Belarussian
State University of Informatics and Radioelectronics, Automated Control in Technical Systems, 2005.
The field of research — systems design, systems performance optimization, high load systems.

KONASHEVYCH Oleksii Ihorovych is a post-graduate student of the Pukhov Institute for Modeling in
Energy Engineering of NAS of Ukraine; graduated from the National Aviation University in 2005, in
2011 he graduated from Kyiv National Trade and Economic University, Advanced Training Institute.
The field of research — blockchain technology.

ISSN 0204-3572. dnekTpoH. moaenupoBaHue. 2016. T. 38. Ne 3 73

