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Stochastic Model Predictive Control
for Hybrid Energy Systems

Microgrids are a promising approach for the integration of renewable energy sources in existing
networks and the energy supply of rural areas. A cost effective option for a microgrid is given by
a hybrid energy system, which combines e.g. diesel generators, photovoltaic panels and batteries
as considered in this paper. However, the interaction of the components and uncertainties in the
load demand and photovoltaic power make the controller design challenging. This paper dis-
cusses a Stochastic Model Predictive Control approach which yields promising results regarding
effectiveness and reliability as shown in a simulation study.

Hcnonb30BaHKe 3JICKTPOIHEPTETHUCCKUX MUKPOTPUA-CUCTEM SIBIISICTCS TIEPCIICKTUBHBIM TTO/T-
XOZIOM K MHTErpallii BO30OHOBIISIEMbIX HCTOYHUKOB B CYILIECTBYIOIIUE CETH U dHEprooodecrie-
YEHHUE CEeJIbCKOW MECTHOCTU. DKOHOMHYECKast 3(p(HEeKTHBHOCTH 3JIEKTPOIHEPTETHUECKUX MUKPO-
IPUI-CHCTEM 3aBUCHUT OT FHOPUIHOM S3HEPrOCUCTEMBI, 00BETMHSIONICH TU3CIIbHBIC TEHEPATOPHI,
(dorosnekrpuueckre naHeau u Oaraped. OIHAKO B3aMMOJICHCTBUE COCTABIISIFONIIMX W HEOII-
peneneHHocTh rpaduka Harpy3ku U (POTOIICKTPHUUECKON IHEPTUU O0YCIIOBIMBAIOT HEOOXOAH-
MOCTh CO3/1aHMsl OJI0Ka yrpaBiieHHus. PaccMOTpeHO NPUMEHEHHE CTOXAaCTUYEeCKOH MOAEIH JIJIs
MHTEJUICKTYaJIbHOTO YIPABJICHHUS, YTO MO3BOJIUT 0OecnednTh 3)(HEKTUBHOCTh M HAJCKHOCTh
9HEPrOCHCTEMBI.

Keywords . microgrid, hybrid energy system, optimal energy dispatch, Stochastic Model Pre-
dictive Control.

Introduction. Global warming, a rising energy demand in developing countries
and the energy supply of rural areas represent challenges for the energy supply
of the future. To reduce carbon dioxide emission against global warming, the in-
tegration of renewable energy sources into the energy grid is essential. However,
renewable energy sources like photovoltaic energy only provide temporary and
fluctuating power affecting the reliability of the energy supply. In order to meet
this challenge, decentralized energy generation with microgrids gained popula-
rity. Furthermore, they provide the possibility to supply rural areas with electri-
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city, which are not connected to the electricity grid. A cost effective option for
microgrids are hybrid solutions, which use for example photovoltaic panels be-
sides a diesel generator for energy generation and a battery for energy storage.

For the calculation of an optimal dispatch strategy for a hybrid energy sys-
tems, future values of the load demand and photovoltaic power are necessary
and predicted by forecast algorithms. Due to the fluctuations in the load demand
and photovoltaic power resulting from varying weather conditions, the forecast
algorithms are not able to predict the future data accurately. This yields uncer-
tainties, which affect the reliable and cost effective operation of the microgrid.
For the consideration of these uncertainties in the control strategy of energy sys-
tems exist robust control [1, 2] or stochastic control approaches [3—5]. Robust
control approaches guarantee an operation for worst case scenarios, but may re-
sult in conservative and more expensive operational strategies. In comparison,
stochastic control approaches provide less conservative operational strategies
since they consider the probability of a scenario and calculate expected values.
The stochastic approaches include Stochastic Model Predictive Control
(SMPC), which recently gained popularity for the control of energy systems, see
[6—11]. The SMPC approaches mainly use two-stage stochastic programming
[8—10], scenario based solution methods [11], dynamic programming with
empirical mean [6] or the evaluation of the chance constraints with the cumula-
tive distribution function [7].

This paper discusses an effective SMPC approach presented in a previous
work [12], which is based on an analytical formulation of the chance constraints.
This formulation is used for the evaluation of the cumulative distribution func-
tion of normal distributed photovoltaic power and load demand, in which the
physical limits are considered by a set-based approach. This method is applied to
a hybrid energy system, which is represented by a nonlinear mixed-integer
model.

In the following, the model of the hybrid energy system as well as the fore-
cast of the load demand and photovoltaic power is presented. Afterwards the sto-
chastic optimization problem and the analytical formulation including the set-
based approach are formulated, before the SMPC scheme is presented. Finally
the effectiveness of the SMPC is illustrated in a simulation study with a real
world scenario.

System modeling. The hybrid energy system consists of photovoltaic (PV)
panels, lead-acid batteries and a diesel generator as described in [13]. The sche-
matic diagram is illustrated in Fig. 1.

The load demand is covered by a diesel generator, PV panels and batteries.
The load demand and diesel generator are connected to the PV panels and batte-
ries through an AC/DC converter. The batteries are equipped with a battery
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Fig. 1. Schematic diagram of the hybrid energy system according to [1]

charger (BC) and the PV panels are equipped with a converter, which includes a
maximum power point tracker (MPPT). By the principle of conservation of en-
ergy, the power of the PV panels Py, ,, the power of the diesel generator Py ,
and the power of the battery P, , at time step k are related according to

Neoad Proad,k T NoePo.k —NaciocPoc.x ~Mmpprr Ppyv,x =0, (1)

where the efficiencies of the load 0, ,; , the battery charger 1., the AC/DC con-
verter M 4, pc and the converter with MPPT n,,ppr are considered. The efficien-
cies of the power electronics for the different energy flows are represented by
nonlinear efficiency curves n(2,, ) dependent on the input power of the compo-
nent P,,.

The dynamics of the different components are explained in [13]. The electri-
cal power generated by the PV panels depends on the type of mounting, the num-
ber of modules and strings as well as the irradiation data according to [14]. The
dynamical behavior of the battery is described by the state of charge (SOC),
which is described by the differential equation

2
OX 50,k _Voc+ \/ Voc +4P, i Reey (2)
ot 2RcenC o

where C,; is the nominal cell capacity. The open circuit voltage V. =

= Voo (xg0c) and internal resistance R,; =R, (X goc ) are given as nonlinear
functions of the SOC, see [15]. The diesel generator is represented by a simpli-
fied, static model using continuous and discrete states. The operational state
(on/off) of the diesel generator is described by 6, € {0,1} and the off time of the
diesel generator by the discrete counter variable 8, €1{0,1,..,8 5 1y J- The off
time is necessary for the consideration of the switch on/shut down time of the
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Fig. 2. Real and forecasted load demand and PV power for one day

generator. The generated power is described by the continuous variable
Ppe.i €10, Ppg, max J» Which is used to define the off time at time step k+1as

_ Sk +1 1 Ppg g1y =0, 3)
eI 0 if Ppg a1 >O0.
The integer variables 8, , and 8, , are introduced for the consideration of the
start up/shut down of the generators. They are given by

8u,k :63t,k (1—8“,](,1 )’
Sd,k =5sz,k—1 (1_8st,k )

Load and PV power forecast. The calculation of an optimal dispatch stra-
tegy is based on future values of the load demand and PV power. For real world
applications, this future data is uncertain and needs to be predicted online.
Therefore a combination of a seasonal auto regression integrated moving aver-
age model (SARIMA) and exponential smoothing is used, see [16, 17]. The fore-
cast algorithm uses a linear combination of exponentially weighted past load and
PV data to predict future values.

Fig. 2 shows an example of the real load demand and PV power as well as
forecasted values resulting from the forecast algorithm for one day.

The quality of the forecast depends on the fluctuations in the PV power and
load demand of different days. Due to similar load demand every night and zero
energy output of the PV panels, the forecast values in the night are accurate. Du-
ring the day, different weather conditions on different days influence the PV
power and energy consumption making them difficult to predict with past data.
Hence, it follows a deviation between the real and forecasted data especially for
the fluctuating PV power.

4)
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Uncertainty description. For the consideration of the forecast error in the
operational strategy, the uncertainty in the forecast needs to be quantified. For
this reason, the forecasted variables of load demand and PV power are summa-
rized to the net power, which represents a disturbance on the system and is de-
fined as wy =P, , =Ppouasc —Ppy -

The disturbance is assumed as a normal distributed random variable

~ N(w/* o2 ;) with forecasted value w/*and variance 6, ;. The variance at
time step k is calculated by an exponentially weighted sum of the squared fore-
cast error of past days

real 2
Zq (Wk 14407 — Prer, k1420 )"

where d is the number of past days, P,,e,, r_1440; the real net power 7 days ago,
w-,{fl 440; the forecasted disturbance 7 days ago and ¢; are normalized weighting
factors given by

. d d . d
=e'” /Ze’f .
i-1

The variance is calculated for every time step of the forecasted data yielding a
time dependent function of the variance for the forecast horizon.

Stochastic optimization problem. The control strategy aims to minimize
the expected operational cost of the hybrid energy system to cover the load de-
mand in compliance with the operational constraints. The optimization variable
is the trajectory of the diesel generator power represented by u = [Ppg, ..

s Ppg. v 1" with time horizon N. As presented in [12], the stochastic optimiza-
tlon problem with the expected operational cost £,, is given by

N-1
rrLinEW{JN (xy )+ Z(SJk(xk U s Wy ))}

k=0
s.t. (1)—(4)
max
tOﬁ’,k —Swﬁ;k’ 0<PDGk <Pp;, %)
Pmm<P <P min - Pbak < max
bk b, k > rate,k =1, L T “ratek>
bat~ N

min max —
Pr(xsoc,k SxSOC)SEka Pr(xsoc,k 2 Xsoc) < P

As presented in [16], the operational cost is represented by the transition cost

=C et (U )+¢,8, 1 €40 4k +C300,(Ug ) +ConOsr & +Chae| By il
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where ¢ 4, (1, ) is the fuel cost as a function of the diesel generator power, ¢,
are the start up/shut down costs of the diesel generator, c_,, is a cost function
for a diesel generator operation below 30%, c,,, is the operation and mainte-
nance cost and ¢, is the battery usage cost. Moreover, a terminal stage cost is
defined to penalize a deviation of the SOC between the initial and end value

Jy= |xSOC,N - xsoc,o| Voc,pcC cenrCpars

where Vi pc 1s the open circuit voltage of the DC circuit. The constraints of the
optimization problem (5) consider the energy balance by equation (1), the bat-
tery dynamics of equation (2) as well as the integer variables of the diesel gene-
rator given by equations (3) and (4). Furthermore, a minimum off time of the die-
sel generator & mm}}‘ « heeds to be fulfilled due to the start up and shut down time of
the diesel generator. The operation of the diesel generator is limited by the maxi-
mum power Py’ . The battery needs to fulfill the charge/discharge power limits
P,V ™ and charging rate C mnl;g,f’ax. The chance cons‘[raintrsv consider the proba-

bility of a violation of an lower/upper limit of the SOC x soc , which needs to
be below a specified probability p/ p.

Analytical reformulation of chance constraints. For the formulation of
the chance constraints, the relationship between the uncertainty P, , and the
SOC is determined analytically as presented in [12]. A linear differential equa-
tion is used to described the battery dynamics given by

0x goc (1) _ Mpay (6)
Zsocd?) bat (p . _p )
ot Q ( DG,k net,k)

where Q is the battery capacity. Using the explicit Euler method, the SOC of the
next time step is given by the linear relationship

(7

_ 1»lbat
X50C, k+1 _7Q (Ppg.i —Bret.k ) ts X s50C.k5

which represents an affine and invertible function xgoc 1, =g(P,,, ;) of the
SOC respect to the random normal distributed variable P, , with probability
density function (pdf) f» . Under these conditions, the pdf of the SOC follows
from the integral substitution rule as

1

|g'(g_l (xSOC,kH )

kaH (Xs0c,k+1) Zanet,k (g_l(xSOC,kH )

Hence, the pdf of the SOC is given by
1 (x )’
S x,., (Xsoc k) = QXP(— sockd Tk

2 2
NGy 265 1
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- - 2 2 2,12 :
with the variance of the SOC G.;=0,,l; /0" and mean p, = (w,{c -
—Ppg i) ts /Q+x,. For increasing the robustness of the method, these results
are transferred for a longer time horizon. The SOC trajectory for a time horizon /
is represented by

- _ T
Xsoc _[xSOC,kH’ XS0C, k+2> > xSOC,k+h] .

According to equation (7), the mean value of the SOC trajectory follows as

1 0 -~ 0 1

_ 1 1 - = = fe 1

Xsoc =Y|. . . 0 (Ppg —Pret )+ | X s0C,k (8)
1 -~ 1 1 1

withy =n,,t, /0. The diesel generator power trajectory and the trajectory of the
forecasted net power is defined by

_ r p _ T
PDG - [PDG,k ’PDG,k+1 > ""PDG,k+h—l ] 4 Pnet - [Pnet,k ’Pnet,k+l k4 ""Pnet,k+h—1 ] :

Based on the pdf of the SOC, the probability of SOC limit violations at time step
k+mwith me{l,2,..., h} are evaluated by the cumulative density function (cdf)

o e
Pr (X go¢ k4m S Xs00) = I I xo., Ksoc) 4% soc, kem> )
—00
o0
PI‘(XSOCJH_m ZxénOaé’ = .[ ka+m(fgoc)deOC,k+m' (10)
X560

For the investigated system, the values of the load demand and PV power
are limited which is not considered in the probabilities of equations (9) and (10).
These limits are given by physical restrictions and the dimensioning of the PV
panels. For the consideration of the limits, the formulation is extended by a set
based approach as described in [12]. Therefore, the limits in the load demand and
PV power are transferred to the net power, which is assumed to be in the set
Pk €[Poet > Prer. |, Where Pnrent‘fz " is the minimum/maximum limit of the net
power. From equation (6) is concluded, that the SOC xgyc 441 (2, P, ;) 18 @
monotonically decreasing function of the net power and the cdf is monotonically
decreasing/increasing with respect to the lower/upper bound. Hence, the proba-
bilities for the set-based approach follow as
Pr' (Cgociom <X500)= [ S, Tsoc) Psochem (1)

7 max
Xs0C k+m (Fpet )
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Fig. 3. Illustration of the set-based probability
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where P"/™* is the trajectory of the minimum/maximum limit of the net

power.

Fig. 3 shows an example of a SOC trajectory, where the probability of the
set-based approach in equation (11) is illustrated for one time step.

Stochastic Model Predictive Control. Similar to common Model Predic-
tive Control (MPC) approaches, the idea of the Stochastic Model Predictive
Control (SMPC) is to repeatedly solve the stochastic optimization problem (5).
The calculated optimal solution of the input trajectories for the first time steps
are used to control the hybrid energy system. The battery SOC is measured after
each iteration and considered in the initial value of the stochastic optimization
problem. Furthermore, the forecast is updated in every iteration, which limits the
influence of the forecast error.

In this paper, the stochastic optimization problem (5) is solved with discrete
dynamic programming [18]. The sampling time of the load demand, the PV
power as well as the optimal input trajectories is one minute. The horizon of the
stochastic optimization problem is 24 hours and it is repeatedly solved every ten
minutes. Due to the update interval of ten minutes, the normal distribution of the
SOC in equation (8) is considered after ten time steps in which the diesel genera-
tors power is assumed to be constant.

To guarantee feasibility of the SMPC, the chance constraints are considered in the
cost function by an additional transition cost

* min * max
0J o, :Jpen (Pr (xSOC,k+10 <Xgoc)+(Pr (x50c5k+10 > X50c )
with the penalty cost parameter J ,,,,.
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Fig. 4. SOC trajectory of the benchmark, MPC and SMPC for a horizon of one day
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Fig. 5. Diesel generator power trajectory of the benchmark, MPC and SMPC for a horizon of one day

Simulation results. The effectiveness of the presented SMPC approach is
illustrated by a simulation study with real world data from a village in Asia.

Fig. 4 shows an extract of the simulation results for the SOC over one day
with a penalty cost parameter of J = 0.04. The results include a benchmark so-
lution, which uses a MPC with perfect knowledge of future data and represents
the optimal solution, the solution with a regular MPC without chance constraints
and the SMPC, which allows constraint violations of the SOC.

The MPC and SMPC are based on forecasted load and PV data from the
SARIMA algorithm. In the beginning of the SOC trajectory, the uncertainties
are small but increase in the afternoon due to the uncertain PV power and load
demand in the evening. This yields differences in the SOC trajectory between
the MPC and the SMPC since the latter considers the probability distribution of
the forecasted PV power and load demand. As a result, the SOC of the SMPC ap-
proach moves closer to the optimal solution of the benchmark.

In Fig. 5 the corresponding trajectory of the diesel generator power is illus-
trated.
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Comparison of control strategies

Parameter Benchmark MPC SMPC
Fuel consumption [l/year] 40.894 42.878 41.348
LCOE [$/kWh] 0.5735 0.5809 0.5785
Computation time [s] 16.72 16.84 22.73

The trajectories of the diesel generator power are similar for the MPC and
SMPC if the SOC is not in a critical region. If critical situations in the SOC oc-
cur, the MPC needs to utilize the diesel generator to avoid the violation of the
SOC constraints. At around 9 and 15 hours the MPC switches on the diesel gene-
rator to avoid constraint violations. In comparison, the SMPC utilizes the diesel
generator at around 9 hours less frequent. Furthermore, it activates the diesel
generator at 15 hours slightly later since it takes the probability of violating the
SOC constraints into account.

The Table shows the corresponding operational costs and computation time
for the different control strategies. The costs include the fuel consumption of the
diesel generator and the levelized cost of energy (LCOE). The illustrated costs
are projected on a period of one year.

The SMPC approach yields cost reductions but still provides robustness for
the illustrated example. The cost reductions are caused by a significant decrease
in the fuel consumption due to the less frequent use of the diesel generator, which
also affects the LCOE. In general, the reduction of the cost and robustness are con-
tradictory objectives, which can be adjusted by the penalty cost parameterJ/ ,,,. Due
to the higher computational complexity of the SMPC approach, its computation
time exceeds the computation time of the MPC by 35 %. Since the computation time
is still far below the update time of ten minutes and below the sampling time of one
minute, the SMPC approach guarantees real-time capability.

Conclusion. This paper discusses an effective SMPC approach for the con-
trol of hybrid energy systems considering stochastic and set-based uncertainties.
The approach is based on an analytical relationship between the uncertain load
demand as well as PV power and battery SOC, which is used to formulate
chance constraints. The chance constraints are further limited by set-based con-
straints given by physical limitations of the load demand and PV power. The ap-
proach is used for the calculation of the optimal power dispatch strategy of a hy-
brid energy system using discrete dynamic programming. It is shown that the
SMPC approach yields better approximations of the optimal SOC trajectory for
uncertain forecast data compared to a common MPC approach. This leads to sig-
nificant reductions in the fuel consumption of the diesel generator but still pro-
vides robustness towards uncertainties, which is adjusted by a penalty cost pa-
rameter.
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