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Constructing the Nonlinear Regression Models
on the Basis of Multivariate Normalizing Transformations

The techniques to build the models, equations, confidence and prediction intervals of nonlinear
regressions on the basis of multivariate normalizing transformations for non-Gaussian data are
considered. The examples of application of the techniques for the four-dimensional non-Gaussi-
an data set for two cases such as: univariate and multivariate normalizing transformations are
given. The values of the multiple coefficient of determination such as: the mean magnitude of rel-
ative error and the percentage of prediction which are given are better for the nonlinear regression
model for the Johnson multivariate transformation compared to the univariate one. The widths of
the prediction interval of non-linear regression on the basis of the Johnson multivariate transfor-
mation are less than following Johnson univariate transformation for 26 of 30 rows of data. Ap-
proximately the same results are obtained for confidence intervals of nonlinear regression. In
general, when constructing the models, equations, confidence and prediction intervals of non-lin-
ear regressions for multivariate non-Gaussian data, one should use multivariate normali- zing
transformations. Normalizing data with univariate transformations instead of multivariate one
may lead to increasing of width of the confidence and prediction intervals of non-linear regression.

K ey words: non-linear regression model, prediction interval, normalizing transformation,
multivariate non-Gaussian data.

Introduction. A normalizing transformation is often a good way to build mo-
dels, equations, confidence and prediction intervals of nonlinear regressions
[1—7]. However, well-known techniques for building models, equations, confi-
dence and prediction intervals of non-linear regressions are based on the univa-
riate normalizing transformations (such as log and Box-Cox transformations)
which do not take into account the correlation between random variables in the
case of normalization of multivariate non-Gaussian data. This leads to the need
of using the multivariate normalizing transformations, which take into account
the correlation to build models, equations, confidence and prediction intervals of
nonlinear regression.
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In this paper we demonstrate that there may be data sets for which the results
of building the models such as confidence and prediction intervals of non-linear
regressions depend on which normalizing transformation is applied, univariate
or multivariate. We consider the techniques to build the models, confidence and
prediction intervals of non-linear regression for multivariate non-Gaussian data.
As and in [5] the techniques consist of three steps. In the first step a set of
multivariate non-Gaussian data is normalized using a multivariate normalizing
transformation. In the second step, the models, confidence and prediction inter-
vals of linear regression for the normalized data are built. In the third step, the
models, confidence and prediction intervals of non-linear regressions for multi-
variate non-Gaussian data on the basis of the models, confidence and prediction
intervals of linear regression for the normalized data and the normalizing trans-
formation are constructed.

Nonlinear regression model. In reference [2] authors define a nonlinear re-
gression model as «a model for the relationship between a response and predic-
tor(s) in which at least one parameter does not enter linearly into the model». Ac-
cording to [1—3, 6—8] the general nonlinear regression model may be repre-
sented as

Y =f(x,0)+e, (1)

where f'is a nonlinear function; x is a vector of regressors (independent vari-
ables); @ is a vector of parameters; ¢ is the error term that has the same properties
as in linear regression, i.e. the Gaussian random variable which defines residu-
als,e ~ N (0, cﬁ).

We have additive error term in the model (1). According to [7, 8] the nonlin-
ear regression model with multiplicative error term may be represented as

Y=1(x,0)¢, (2)

where e ~ N (1, csi).

Duncan [8] considered two models for the error structure: the additive form
(1) and the multiplicative form (2) and simulated three distributions for € — the
normal, the scale-contaminated normal, and the double exponential. In practice
we will generally not know the form of the error term, but an additive error term
undoubtedly is more common than multiplicative one. Bates and Watts [1]
pointed out that the assumption of the additivity of the error is closely tied to the
assumption of constant variance of the disturbances (residuals). It may be the
case that the residuals can be considered as having constant variance, but as en-
tering the model multiplicatively. In either case, one of the corrective actions is
to take a transformation of the response (dependent variable). If the error is
multiplicative, we can treat the nonlinear regression model as intrinsically linear
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and use the normalizing transformation [4]. That is, we define the nonlinear re-
gression model as ¥ = f(x,0,¢), whereg ~ N (O,Gg).

The techniques. Consider bijective multivariate normalizing transforma-
tion of non-Gaussian random vector P={Y, X, X,,.., X, }T to Gaussian ran-
dom vector T={Z, ,Z,,Z,,..,Z,}" is given by

T=y(P) 3)
and the inverse transformation for (3)
P=y (T). (4)

The linear regression model for normalized data according to (3) will have the
form [6]

Zy=Zy+e =2y + (L) b+e, (5)

where 2 is prediction linear regression equation result for values of compo-
nents of vector z y ={Z,,2,,..,Z; }; 7, is the matrix of centered regressors that
contains the values Z; -7, Z, ~Zyy o Z, ¥, -7, b is estimator for vector of linear
regression equation parameters b= {b1 ,bz, b, }'; ¢ is the Gaussian random
variable which defines residuals, € ~ N(0,1).

The nonlinear regression model will have the form

Y =yy' [Zy+(Zy ) brel, ©)

where y,, is the first component of vectory, W ={yy , ¥, W,,.., ¥ 7. The tech-
nique to build a prediction interval of non-linear regression is based on a pre-
diction interval of linear regression for normalized data, transformations (3)
and (4):

1/2
-1 % + + + - + 7
wy{zyita/z,vszy{1+;v+(zX)T (Z) ' Z3 ] 1(zX)} j ™

where S —*Z(ZY ~Zy ), v=N—-k-1L(Z})" Z% is the kxk matrix

Szlz1 Szlz2 Szlzk

(Z+ )T A Slez S2222 SZZZk
X - >

SZIZk Szzzk SZka

N
where S, ;. => 12, -2,112, -Z,1,q,r =12, ...k.
i1
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A confidence interval of nonlinear regression is defined like (7) with the
only difference that in the sum in curly brackets (7) there will not be 1:

-1 % 1 +\T +\T g+ -1+ "2
v; Zyita/z,vszr{NﬂzX) (Z5) 2] (zX)} O ®

Examples. We consider the examples of building the models, equations,
confidence and prediction intervals of nonlinear regressions for multivariate
non-Gaussian data for two cases: univariate and multivariate normalizing trans-
formations.

Table 1 contains the data on metrics of software for open-source Java-based
system [9, 10]. Recall that the first metric Y involves actual software size in the
thousand lines of code, the second X |, third X', and fourth X ; metrics determine
respectively the total number of classes, the total number of relationships and the
average number of attributes per class in conceptual data model. Table 1 also
contains the lower bounds (LB) and upper bounds (UB) of the prediction inter-
vals of nonlinear regressions, which calculation is considered below.

For normalizing the multivariate non-Gaussian data from Table 1, we use the
Johnson univariate and multivariate transformations (the Johnson translation sys-
tem) for S ; family. In our case the Johnson normalizing translation is given by [11]:

T=y+nh[A'(P-¢)]~ N,(0,,.E), ©)

where h [(yy, v, Vi)1=1hy Yy ), (V1) s By (Vg N h;(-)1s one of the trans-
lation functions

In(y), for S, (log normal) family;
In[y/(1-y)], for S5 (bounded) family;

) Arsh(y), for §;; (unbounded) family; (10)
Y, for § ,y (normal) family.

Here y =(X—¢)/A; Arsh (y) =1n(y ++/y %+ 1). In our case X equals Y, X,,X,or

X ; respectively.

Parameters of Johnson univariate and multivariate transformations for S,
family were estimated by the maximum likelihood method. Estimators for pa-
rameters of the univariate transformation (10) for metric Y are: ¥, =0,46387;
fly = 050326, ¢, =2817; % =89930. Estimators for parameters of the multiva-
riate transformation (9) for metric Y are: ¥, =9.6309; 1, =105243;¢ , =—1,4568;

A

Ay =1531026. Estimators for other parameters of the Johnson univariate and
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Table 1. Metrics of software and the prediction intervals of software size regressions

The bounds of the prediction intervals
No Y X, X, X5 Univariate Multivariate
LB UB LB UB

1 11,717 8 6 4,25 5,679 22,412 7,536 19,277

2 47,52 23 19 9,565 32,573 75,467 36,600 68,504

3 84,01 26 40 11,462 71,136 91,114 73,863 96,264

4 26,999 15 14 8,933 17,436 58,472 21,814 48,847

5 41,72 20 15 5,9 20,726 63,360 25,763 54,772

6 13,015 5 6 12,4 5,559 24,105 7,061 19,398

7 30,402 18 7 6,611 11,701 46,283 14,924 36,873

8 29,159 23 10 6,957 18,875 61,455 22,764 51,145

9 53,443 28 25 4,179 40,607 80,655 45,398 77,523
10 18,694 13 9 6,615 10,693 42,556 14,102 34,502
11 26,384 16 5,125 9,052 37,791 11,900 30,337
12 38,721 19 16 6,579 21,431 64,236 26,458 55,673
13 75,643 26 30 6,154 49,028 83,854 52,398 82,637
14 46,72 21 24 6,048 32,094 74,958 37,508 69,345
15 6,413 7 5 4,143 4,920 18,108 6,290 15,899
16 79,534 20 37 4,85 51,026 85,596 52,840 84,458
17 36,343 18 17 5,333 20,068 62,454 25,536 54,455
18 59,684 22 31 6,182 43,924 81,998 48,094 79,560
19 50,454 15 20 11,6 25,246 70,052 29,796 61,411
20 3,055 4 1 7 3,009 4,748 2,516 4,443
21 63,257 34 17 3,971 45,506 84,384 44,137 78,697
22 91,28 35 28 13,571 78,586 91,334 74,127 97,180
23 32,707 11 17 7,545 15,088 54,334 19,782 45,949
24 11 5 5 3,6 4,077 13,054 4,988 12,419
25 5,543 6 4 3,833 4,203 13,643 5,062 12,421
26 22,686 12 11 6,667 11,471 44,858 15,245 36,852
27 3,911 3 2 6,667 3,048 5,105 2,834 5,520
28 20,841 14 7 3 6,446 29,640 9,577 26,119
29 9,269 6 5 3,5 4,360 14,963 5,483 13,826
30 7,732 7 2 11,143 4,206 14,773 4,601 11,617
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Table 2. Estimators for parameters

Univariate transformation Multivariate transformation
J A -

Y n; U 7‘,‘ Y n; ?; x/

1 0,38093 | 0,62689 | 2,634 | 33,711 | 15,5355 1,58306 —-1,8884 | 243051,0
2 0,60545 | 0,62215 | 0,700 | 41,428 | 25,4294 | 2,54714 —6,9746 | 311229,5
3 0,65592 | 0,72789 | 2,839 | 11,780 | 0,72801 | 0,54312 3,2925 13,90

multivariate transformations are in Table 2. The sample covariance matrix S ,, of
the T is used as the approximate moment-matching estimator of

1,0000 0,9514 0,9333 0,1574
10,9514 1,0000 0,9006 0,1345
10,9333 10,9006 1,0000 0,0554 |

0,1574 0,1345 0,0554 1,0000

N

For detecting the outliers in the data from Table 1 we use the technique
based on multivariate normalizing transformations and the squared Mahalanobis
distance (MD) [12, 13]. There are no outliers in the data from Table 1 for 0,005
significance level and the Johnson multivariate transformation (9) for S ; family.
In [9, 10] it was also assumed that the data contains no outliers. The values of
squared MD for normalized data by the Johnson univariate transformation (10)
for S ; family from Table 1 indicate the data of system 22 is multivariate outlier,
since for this data row the squared MD equals to 17,73 is greater than the value
of the quantile of the Chi-Square distribution, which equals to 14,86 for 0,005
significance level. Although note that without using normalization the data of
system 11 is multivariate outlier since for this data row the squared MD equals
to 15,44.

After normalizing the non-Gaussian data, the linear regression model (5) is
built

Parameters of the linear regression model (11) were estimated by the least
square method. Estimators for parameters of the model (11) for the Johnson
univariate and multivariate transformation are: b, =0; b, =0,46976; b, =0,53539;
by =0,11397 and b, =0; b, =0,56085; b, =0,42491; b; =0,05846 respectively.

Next, the non-linear regression model (6) is built

Y =y +hy [lre Greiniv L, (12)
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where

Xi=%,

Z-=yj+njln
¢ j+h; X,

f ,(pj<Xj<(|)j+7\.j,j=1,2,3.

The model (12) becomes a nonlinear regression equation when there is no
error term €. A mean magnitude of relative error (MMRE) and percentage of pre-
diction (PRED(0,25)) are accepted as standard evaluations of prediction results
by regression models and equations. The acceptable values of MMRE and
PRED(0,25) are not more than 0,25 and not less than 0,75 respectively. The ac-
ceptable value of multiple coefficient of determination R* is approximately the
same as for PRED(0,25). The values of R?, MMRE and PRED(0,25), which
equal 0,9672, 0,1389 and 0,8667 respectively, are better for the model (12) for
the Johnson multivariate transformation in comparison with univariate one, for
which these values are 0,9574, 0,1579 and 0,8000 respectively.

Table 1 contains the lower LB and upper UB bounds of the prediction inter-
vals of nonlinear regressions, which calculated by (7) on the basis of the Johnson
univariate and multivariate transformations respectively for 0,05 significance
level. Note, the widths of the prediction interval of non-linear regression on the
basis of Johnson multivariate transformation are less than following the Johnson
univariate transformation for 26 rows of data: 1, 2, 4-19, 21, 23-26, 28-30. Ap-
proximately the same results are obtained for confidence intervals, which calcu-
lated by (8).

Following [14] multivariate kurtosis 3, is estimated for the data from Table 1
and the normalized data on the basis of Johnson univariate and multivariate transfor-
mations for S'; family. The estimator of multivariate kurtosis given by [14]:

v 1Y T a1 12

Bo=— D HZ;,=Z) Sy (Z,-7)}". (13)

N3

In our case, in the formula (13), the vectors Z and Z should be replaced by the
vectors P and P or T and T, respectively, for the initial (non-Gaussian) or nor-
malized data. It is known that 3, =m(m+2) holds under multivariate normality.
The given equality is a necessary condition for multivariate normality. In our
case 3, =24. The estimators of multivariate kurtosis equal 27,17, 32,05 and
24,02 for the data from Table 1, the normalized data on the basis of the Johnson
univariate and multivariate transformations respectively. The values of these es-
timators indicate that the necessary condition for multivariate normality is prac-
tically performed for the normalized data on the basis of the Johnson multiva-
riate transformation for family S ,, it does not hold for other data.
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Conclusions

In general, when constructing the models, equations, confidence and prediction in-
tervals of non-linear regressions for multivariate non-Gaussian data, one should use
multivariate normalizing transformations. Normalizing data with univariate trans-
formations instead of multivariate one may lead to increasing of width of the confi-
dence and prediction intervals of non-linear regression.
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H.B. IIpuxoovko, C.B. IIpuxoovko

[TOCTPOEHUE HEJINHEMHBIX PETPECCUOHHBIX MOJIEJIEN .
HA OCHOBE MHOI"OMEPHbBIX HOPMAJIM3NPYIOIUX ITPEOGPA3OBAHNIA

PaccmoTpeHb! METOIbI TOCTPOCHUST MOAIETIEH, YPaBHEHUH, IOBEPUTEIIbHBIX HHTEPBAJIOB U HH-
TEpBAJIOB MPOTHO3UPOBAHUS HEJIMHEHHBIX PErpeccuil Ha OCHOBE MHOIOMEPHBIX HOPMaJM3H-
pyroumx npeoOpa3oBaHUil 111 HErayCCOBBIX AaHHBIX. [IpUBeeHbI IpUMEphI TPUMEHEHHS Me-
TOJOB ISl HA0Opa YETHIPEXMEPHBIX HErayCCOBBIX JaHHBIX B JIBYX CIydYasX: OJHOMEPHOIO U
MHOTOMEPHOT'O HOPMAITU3UPYIOIIUX MpeoOpa3oBanuii JkoHcOHA. 3HAYECHUST MHOKECTBEHHOTO
Kod(pULIMEHTA IeTePMUHALINH, CPE/IHEI BEIIMYUHBI OTHOCUTENILHON OIIMOKH U ITPOLICHTA POT-
HO3HPOBAHUS ISl HEIMHEHHOW PErpecCHOHHON MOJIENN ITPU MHOTOMEPHOM IpeoOpa3oBaHUH
JI>xoHCOHa myyIIe Mo cpaBHEHHIO ¢ ofHOMepHBIM. [lInprHa nHTepBana npeacka3anns HeJTHHeH-
HOW perpeccuu Ha OCHOBE MHOTOMEpHOTo InpeoOpa3oBaHusi JDKOHCOHA MEHbILE, YeM IOCIIe
oIHOMepHOTO TipeodpazoBanwst Jxorcona st 26 u3 30 crpok nanHbIX. [[pubim3nTensHO Takue
K€ pe3yIIbTaThI MOYIEHBI ISl JOBEPUTEIbHBIX HHTEPBAIOB HEIMHEHHON perpeccuu. B obmem
cilydae NpH MOCTPOCHUU MOAEICH, YpaBHEHMH, JTOBEPUTEIbHBIX MHTEPBAJIOB M HMHTEPBAJIOB
IIPOTHO3MPOBAHUS HEJIMHEHHBIX PErPECCUi [Ii MHOTOMEPHBIX HETrayCCOBBIX JJAHHBIX CIEIyeT
HCIIONB30BaTh MHOTOMEpPHBIE HOpMAU3UPYIONIHe peodpa3zoBanus. [Ipumenenue ogHomep-
HBIX ITPeoOpa30BaHUi BMECTO MHOTOMEPHBIX Ul HOPMaIM3alUKN TAKUX JAHHBIX MOXKET MpU-
BOJMTH K YBEJIMUYEHUIO IIUPHUHBI JTIOBEPUTEIIBHBIX HHTEPBAJIOB U MHTEPBAJIOB INPEICKA3aAHUS
HEJIMHEHHON perpeccuu.

Knwuesvie crnoea: H@JluHelZHaﬂpeZpeCCMOHH(l}l MOoeflb, UuHmepeal npocHO3UPO6aArUsl, HOp-
manuszyrmoujee npe06pa306anue, MHO2OMEPHbLE Heeayccoeble oaHnvle.

H.B. Ilpuxoovko, C.B. IIpuxodvko

[TOBYJIOBA HEJIIHIMHUX PET'PECIMHUX MOJIEJIEN
HA OCHOBI BATATOBUMIPHUX HOPMAJII3VIOUUX [TEPETBOPEHD

Po3risiHyTO MeTO M TIOOYA0BH MOJICINICH, PIBHSAHB, JOBIPYMX IHTEPBAIIB 1 IHTEPBAJIIB IPOTHO-
3yBaHHS HEJIHIMHUX perpeciii Ha OCHOBI 0araTOBUMIPHHUX HOPMANi3yIO4HUX IEPETBOPEHD JIJIsS
HerayCoBHX AaHuX. HaBeileHo IpUKIIagy 3aCTOCYBaHHS METOIB Ul HAOOPY YOTHPUBUMIPHUX
HETayCOBUX JAHUX Y JBOX BHIIAJKaX: OJHOBUMIPHOTO i 6araTOBUMipHOTO HOPMATi3ylO9nX Ie-
perBopeHb J)kKOHCOHA. 3HAUCHHS MHOXHMHHOTO Koe(illieHTa JeTepMiHallil, CepeaHbOl BEn-
YUHY BiTHOCHOI IOXMOKH 1 BiZICOTKA IIPOTHO3YBaHHs JIsl HEJIHIMHOI perpeciiinoi Moaeni npu
0araToBUMIPHOMY IlepeTBOpeHHI [I>KOHCOHa Kpalle B IOpiBHAHHI 3 oxHoMipHumu. [Iupuna
IHTepBaly IepeadaYeHHs HEiHIHHOT perpecii Ha OCHOBI 0araTOBUMIPHOTO MEPETBOPCHHS
JIKOHCOHA MEHILe, HiK Micis OJHOBUMIPHOTo nepeTBopeHHs JxkoHcoHa s 26 3 30 psaakis
nanux. ITpuOIu3HO Taki kK pe3ynbTaT OTPUMAHO IS I0BIPUUX iHTEpBaJliB HEiHIHHOT perpecii.
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VY 3araabHOMY BUIAJKy IpU 10OYJOBI MOJelNeH, piBHAHb, JIOBIPUUX IHTEpBAIIB 1 IHTEpBAJIB
MPOTHO3YBaHHsI HENHIHHUX perpeciit s 6araTOBUMIPHMX HErayCOBHX JAHHX CIiJ[ BHKO-
pHUCTOBYBaTH 0araTOBUMIpHI HOPMali3yIodi MEPEeTBOPEHHS. 3aCTOCYBAaHHS OJHOBUMIPHUX IIe-
PETBOPEHB 3aMiCTh 0AaraTOBUMIPHUX JUIS HOpMawi3amii TaKMX JaHUX MOXE IPU3BOAUTHU JIO
30UIBILICHHS IIUPUHH JJOBIPUMX IHTEPBAJIIB 1 IHTEPBaiB NepeadaueHHsI HENIHIHHOT perpecii.

Knwuoei cnoea: neninilina peepecilina mooenb, IHMepeal npoSHO3y8AHHA, HOPMATI3yioUe
nepemeopentsi, 6a2amosuMipHi He2ayCco8i Oani.
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