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Function Optimization Based
on Higher-Order Quantum Genetic Algorithm

Quantum genetic algorithms (QGA) are typically built using the traditional representation of the
quantum chromosome in the form of system of independent qubits. This makes it impossible to
use a very powerful quantum calculations mechanism, namely quantum state entanglement. In
this paper we implement a higher-order QGA and illustrate efficiency of the algorithm on the ba-
sis of example of optimization problem solved for a test functions set. An adaptive quantum gate
operator, which does not require a lookup table is also proposed. In comparison to traditional
QGA, the transition to higher (more than two) orders in the algorithm implementation shows
much better results in terms of the running time, convergence speed and solution precision.

K e y w o r d s: function optimization, quantum state entanglement, quantum genetic algorithm,
quantum computation, quantum register.

Introduction. Quantum genetic algorithm is a relatively new evolutionary algo-
rithm, which combines quantum computation ideas and the technology of classi-
cal genetic algorithms (cGA) [1, 2]. The probabilistic mechanism of the quan-
tum computations, combined with the traditional evolutionary algorithm, pro-
vides the global search ability with good convergence speed and small popula-
tion size. If the operators of the classical genetic algorithm are commonly known
and have a clear physical interpretation by analogy with the biological mecha-
nisms of the evolution, the quantum operators require a more detailed examina-
tion, physical interpretation and a mathematical formalization during the imple-
mentation [3, 4].

QGA does not require a quantum computer for implementation and is effec-
tive for an extensive range of scientific and engineering problems, which require
approximate solutions with the minimized search time [5—9].
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To enhance the effectiveness of the algorithm, we can supplement it with the
genetic operators, inherent in the traditional GA [2, 10—12]. Taking into con-
sideration the small size of the population, a quantum disaster operation can also
be used in QGA to widen the search area and escape the local minimums [13].

The main QGA concepts were proposed by Narayanan and Moore [14].
During the quantum computations implementation the basic unit of information
is a qubit — a quantum system, which may be in the 0 basis state or the 1 basis
state. Quantum nature of the qubit lies in the superposition principle, under
which the qubit generally is in a state, which is a linear combination of basis
states:

| | |q � �� �0 10 1

with a normalization constraint:

� �0
2

1
2 1� � .

The quantum part of the information is in� 0
2 and�1

2: values� 0
2,�1

2 are the
probability amplitudes of the qubit being in the states |0 and |1 , respectively. The
capacity of the quantum computations is caused by two accounts: quantum
parallelization, which is based on the superposition principle, and states entang-
lement. The conventional QGA implementation utilizes the superposition prin-
ciple only. The quantum chromosome is formed as a structured set of independ-
ent qubits. For example, if it consists of N = 16 qubits, it can be schematically il-
lustrated as follows:

|q1 |q2 |q3 |q4 |q5 |q6 |q7 |q8 |q9 |q10 |q11 |q12 |q13 |q14 |q15 |q16

Higher-order QGA. A higher-order QGA algorithm was proposed in [15],
where its efficiency for combinatorial optimization problems was proven. Paper
[16] illustrates its application for Topology Control of wireless sensor network
problem. The overall ideology of the algorithm is similar to the regular QGA,
and the difference lies in the quantum operators implementation, which take into
account the quantum chromosome representation as a quantum register set with
entangled states.

Structure of Quantum Chromosomes. If each two qubits are entangled,
then the chromosome can be represented as follows:

R1 R2 R3 R4 R5 R6 R7 R8

|q1 |q2 |q3 |q4 |q5 |q6 |q7 |q8 |q9 |q10 |q11 |q12 |q13 |q14 |q15 |q16

where each quantum register Ri consists of two qubits (r = 2), which are in a su-
perposition state. The number of all possible states n of such register is:

n r� � �2 2 42 ,
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and the quantum register has four basis states:

|00 , |01 , |10 , |11 .

There classical equivalent to the majority of the possible quantum register
values simply does not exist. Unlike the classic register, these basis states are not
the limit of all the possible values of the quantum register because of the super-
position principle, according to which the entangled system of two qubits can be
in the state, which is a linear combination of the basis states:

| | | | |q � � � �� � � �0 1 2 300 01 10 11 .

Here� 0
2,�1

2,� 2
2 and� 3

2 represent the probabilities of the quantum register being

in the corresponding state. When using the quantum states entanglement, the size
of the matrix M, which is required for the quantum chromosome representation for
r = 2, remains the same. During the implementation on a regular computer, for a one
qubits representation we need two elements of the matrix, so:

M N
N Nr� � � � � � �2
2

2
2

4 32.

It is convenient to use the following structure for representing one indivi-
dual during the QGA implementation. It consists of k N r� / quantum registers,
as demonstrated in the table below (Table 1).

Plurality { , , , }� � � �0 1 2 3
i i i i determines the state of the quantum register Ri

with n = 4 basis states, and the set of k registers forms one individual in the popu-
lation. The initial state of the qubit does not contain information about the prob-
lem or any of the characteristics of its solution. Therefore, the state of the quan-
tum register does not contain the information too. So, the easiest way to initialize
it is to set all the amplitudes� n

i (n�0 1 2 3, , , ) to be equal to one another [1]. This
means that after the initialization each register will be in the following state:

| | | | |q � � � �
1

4
00

1

4
01

1

4
10

1

4
11 .
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After the transition to the higher-order quantum registers, or with the num-
ber of entangled qubits r > 2, the M matrix will be:

M
N

r
Nr� � � �2 2 .

This means that for the quantum chromosome representation we addition-
ally need to enlarge the size of the matrix in this case, both for representation of
one individual and the population in general. Let us consider the quantum chro-
mosome to consist of four quantum registers ( , , , )R R R R1 2 3 4 and to be repre-
sented as follows:

R1 R2 R3 R4

|q1 |q2 |q3 |q4 |q5 |q6 |q7 |q8 |q9 |q10 |q11 |q12 |q13 |q14 |q15 |q16

The total number of basis states for such register is equal to 2 164 � . Namely,
we have the following set:

| , | , | , ..., |0000 0001 0010 1111 .

According to the superposition principle, state of the register can be repre-
sented as follows:

| | | | ... |q � � � � �� � � �0 1 2 160000 0001 0010 1111 .

The size of the matrix M for the quantum chromosome representation in this
case equals:

M
N

Nr� � � � � � � �
2

2
16

4
2 64 2 324 .

During the QGA implementation, the size of the quantum chromosome N is
determined by solution precision 	, the search area [ , ]min maxx x and the number
of quantum register r basis states:

N
x x

r�



��
�



�
�
�log max min

2
1

	
.

The relation between the size of the matrix M and the size of the quantum
register for search area [ , ]
1 1 and 	 � 
10 6 is shown in Fig. 1.

Quantum Chromosome Measurement. The solution of the problem is de-
termined by the ending state of the quantum chromosome and can be obtained
using the quantum measurement. The outcome of such measurement is the clas-
sical binary representation of the quantum chromosome. The quantum measure-
ment operator is implemented in accordance to [15, 17].
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The algorithm for measuring the state of the quantum chromosome, which
consists of k quantum registers of size r, can be implemented in the following
way:

A l g o r i t h m 1. Quantum register state measurement

1 for i k�1,..., do

2 rand � random number in the area [ , ]0 1

3 Sum � 0

4 for j r� 
0 2 1,..., do

5 Sum � Sum � [ ]� j
i 2

6 if rand < Sum then

7 p W j�
8 end if

9 end for

10 end for

Here the i index is responsible for going through the quantum registers Ri,
and the j index determines the number of the state inside the quantum register it-
self. An auxiliary matrix W used during the algorithm implementation is listed in
Table 2 for the case r = 3. It is used to convert the index number of the register
state to the corresponding classical representation. In this case, classical repre-
sentation of the register is just the state index number j in binary representation.

The result of applying the algorithm is its classical representation in accor-
dance to the table of probabilities�� 0

2i ) , ��1
2i ) , �� 2

2i ) ,..., ��
2 1

2
r

i



) listed earlier.
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Fig. 1. Relation between the size of the matrix M, which is used for representing one individual of
the population, and the quantum register size r



Quantum Rotating Gates. For determining the solution, QGA changes the
initial superposition of basis states by consecutively applying the quantum ope-
rators as the evolution progresses in time. All the information about the problem
and its solution lay in the quantum gate, so its algorithm is the most important in
the process of building any QGA. It takes the amplitudes of the quantum states to
ensure that the normalization conditions are satisfied.

A change of one of the states influences all its other probabilities within the
quantum register. This characteristic of the entangled states provides the paral-
lelism of evaluations, which gives QGA an advantage over the regular quantum
genetic algorithm.

The operator is applied to each of the registers Ri in two phases. In the first
phase the probability amplitude of the selected quantum state b is enlarged:

�� � � �i
b

i
b

i
b� � � 
) [ ] ( )2 1 ,

where � — is a parameter in range [ , ]0 1, which is determined based on the results
of previous research. State b is determined by the representation of a fragment of
the population’s best chromosome, which corresponds to the quantum register Ri

in the binary system. Expression also provides the fact that probability ampli-
tude� i

b can’t be greater than 1. During the QGA implementation one fixed rota-
tion angle is not enough for providing a good convergence speed of the algo-
rithm, so adaptive behavior is also used for this purposes.

In the second phase, all the remaining probability amplitudes of the quan-
tum register need to be decreased for preserving the normalization condition. To
sum up, the algorithm of applying the operator to the quantum chromosome,
which consists of k quantum registers of size r, can be represented as follows:

A l g o r i t h m 2. Quantum gate operator

1 for i k�1,..., do

2 bestamp � b

3 Sum � 1 – [ ]�
i

bestamp 2

4 � � � ��
�
i

bestamp

i

bestamp

i

bestamp� �[ ] )2

5 M
Sum

i

bestamp

�

1 2[ ]�

6 for amp r� 
{ , , ,..., }0 1 2 2 1 do

7 if amp bestamp� then

8 � �
i

amp

i

ampM� �

9 end if

10 end for

11 end for
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Therefore, in each next generation we increase the probability of generating
the classical individuals most similar to the best one in the result of the measure-
ment. It is also important that during the building of the quantum gate we do not
require a lookup table, which is one the significant disadvantages of the QGA.

Simulation Test. QGA with adaptive quantum gate operator (aQGA) and
higher-order quantum register system is implemented using C++ programming
language, and the simulations are performed on an Intel Celeron CPU G1840
2.80GHz, 4.0 Gb RAM. A number of numerical optimization problems were ana-
lyzed to illustrate the algorithm design. The following test functions, taken from vir-
tual library of Simulation Experiments in Simon Fraser University, were used:

Rosenbrocks valley—

F x x x x x x i1 1 2 1
2

2
2

1
2100 1 2048 2048( , ) ( ) ( ), , ,� 
 � 
 
 � � , i �1 2, .

Coldstein Price function —

F x x x x x x x x x x2 1 2 1 2
2

1 1
2

2 1 21 1 19 14 3 14 6 3( , ) [ ( ) (� � � � 
 � 
 � � 2
2 )]�

� � � 
 � � 
 �[ ( ) ( )] ,30 2 3 18 32 12 48 36 271 2
2

1 1
2

2 1 2 2
2x x x x x x x x


 � �20 20, ,x i , i �1 2, .

Schaffer function —

F x x
x x

x x
3 1 2

2
1
2

2
2

1
2

2
2

05
0 5

10 0001
( , ) ,

sin ( ) ,

[ , , ( )
� �

� 


� � ]2
,


 � �1000 1000, ,x i , i �1 2, .

Mono-pole and six-peak camelback function —

F x
x

x
4 2

10
1

01 016
( )

sin ( / )

, ( , )
� �

� 

,

0 0 10, ,� �x i .

Dual-pole and six-peak camelback function —

F x x x x x x x x x5 1 2 1
2

1
4

1
2

1 2 2
2

24 21
1

3
4 4( , ) , ( )� 
 ��

�



�
�
� � � 
 � 2,


 � �30 30, ,x i , i �1 2, .

Multi-peak positive function —

F x e xx
6

0 001 2 08( ) cos ( , ),� 
 , 
 � �20 50, ,x .
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Trid function —

F x x x x x xd

i

d

i

i

d

i i7 1 2
1

2

2
11( , ,..., ) ( )� 
 


� �

� � , 
 � �d x di , i d�1 2, ,..., .

Levy function —

F x x xd d d8 1 2
2

1
2 21 1 2( , , ..., ) sin ( ) ( ) [ sin ( )]� � 
 � ��� � ��

� 
 � �
�
�
i

d

i i

1

2 21 1 10 1( ) [ sin ( )]� �� ,

here�i
ix

� �



1
1

4
, 
 � �36 36x i , i d�1 2, , ..., .

Schwefel function —

F x x x d x xd

i

d

i i9 1 2
1

4189829( , , ..., ) , sin ( | |)� 

�
� ,


 � �500 500x i , i d�1 2, , ..., .

Ackley function —

F x x x e ed
d

x
di

d

i
i

d

10 1 2

0 2
1 1

20 1

2

1( , , ..., )
, cos (

� 
 � 


 � �

� �
2

22 71828
�xi )

,� ,


 � �32 768 32 768, ,x i , i d�1 2, , ..., .

Rastrigin function —

F x x x d x xd

i

d

i i11 1 2
1

210 10 2( , , ..., ) [ cos ( )]� � 
 
 �
�
� � ,


 � �512 512, ,x i , i d�1 2, , ..., .

Optimization and Results. Optimization of the above-mentioned eleven
functions using GA, QGA and aQGA with different quantum register sizes is
performed for the simulation test of the proposed algorithm. For the QGA imple-
mentation the following simulation parameters were used: the size of the popula-
tion s = 50 in case if the number of parameters of the studied function d = 6; and
s = 10 in case d does not exceed two; the number of evolution iterations over time
t = 500; precision	 � � 
1 10 6, which are the same as those taken in aQGA. The pa-
rameters used for GA are identical to [18]: precision 	 � � 
1 10 6, population
size s = 50, crossover probability pc = 0,8, mutation probability pm = 0,01 and
total generations of iteration t = 500.
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To determine the optimal� value, we have analyzed its influence on the ave-
rage fitness of the best population individual. The parameters are evaluated as an
averaging result after 1000 runs of aQGA, if not specified otherwise. It is impor-
tant that the size of the quantum register has very little effect on the optimal �
value for this function. Taking into account the Favr weak dependency on � in
the optimal values area, the values� �0015, for d = 6 and � �0004, for d � 2can
be considered acceptable for all studied functions.

aQGA effectiveness evaluation. The effectiveness evaluation is performed
based on two main parameters. The first is the running time for the standard set
of the input parameters. For illustrative purposes, we will limit the quantum re-
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Fig. 2. Average algorithm running time tavr as a function of quantum register size r for function F7

Fig. 3. Average fitness of the best population individual Favr as a function of quantum register
size r for function F7
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Fig. 4. Standard deviation Fsd of the average fitness in dependency of quantum register size r for
function F7

Fig. 5. Average for 100 runs population evolution of the population in time for F7 for different
values of the quantum register length r
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gisters to r = 6 inclusive. There are no principal restrictions on the implementa-
tion of aQGA with r > 6. Taking into account the fact that the algorithm is imple-
mented on a classical computer, the only principal constraint is the fast increase
of the running time caused by the increase of the matrix size, which is required
for the population individuals representation (see Fig. 1).

Fig. 2 illustrates the dependency between the average aQGA running time
tavr and the quantum register size r on the example of F7 function optimization. It
must be noted, that the algorithm running time almost does not depend on the test
function, and is determined by the search area size with all the other simulation
parameters values fixed (see Tab. 3).

Statistical results of optimization of test functions F1— F6, including the ave-
rage value of the best population individual Favr, its standard deviation, best re-
sult Best and worst result Worst, retrieved during the optimization of the
lower-orders test functions, are listed in Tab. 4.
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Fi cGA QGA
aQGA

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

F1 0,0362 0,0202 0,0168 0,0101 0,0097 0,0094 0,0106 0,0117

F2 0,0497 0,0254 0,0208 0,0134 0,0126 0,0114 0,0104 0,0115

F4 0,0175 0,0118 0,0079 0,0047 0,0042 0,004 0,0054 0,0058

F6 0,0193 0,0121 0,0092 0,0058 0,0049 0,0044 0,0052 0,0056

F8 0,872 0,51 0,322 0,215 0,179 0,181 0,206 0,241

F11 0,773 0,491 0,273 0,168 0,143 0,14 0,16 0,199

Table 3
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0
1 2 3 4 5 6 7 8 9 r

Fig. 6. Average fitness of the best population individual Favr as a function of quantum register
size r for function F8

Fig. 7. Standard deviation Fsd of the average fitness as on Fig. 6 in dependency of quantum regis-
ter size r for function F8
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Variable cGA QGA
aQGA

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

F1

Favr 0,149 0,0155 0,00225 0,00185 0,00204 0,0035 0,0081 0,0105

Fsd 0,251 0,038 0,00322 0,00366 0,00421 0,0078 0,0146 0,0168

Best 0,052 0 0 0 0 0 0 0

Worst 2,139 0,583 0,0577 0,0513 0,0845 0,1201 0,133 0,0144

F2

Favr 3,752 3,013 3,0136 3,0029 3,0012 3,0004 3,0005 3,0003

Fsd 0,824 0,0451 0,0333 0,0056 0,0039 0,0007 0,0016 0,0007

Best 3,001 3 3 3 3 3 3 3

Worst 5,24 3,972 3,485 3,059 3,066 3,008 3,015 3,006

F3

Favr 0,134 0,0081 0,019 0,0102 0,0093 0,0088 0,0089 0,0111

Fsd 0,087 0,0093 0,0066 0,0056 0,0057 0,0035 0,0044 0,0086

Best 0 0 0 0 0 0 0 0

Worst 0,562 0,0329 0,0516 0,0379 0,0373 0,0372 0,0286 0,0299

F4

Favr 19,792 19,82 19,8949 19,8949 19,8949 19,8949 19,8949 19,8949

Fsd 6,9�10
� 1,3�10
� 2,5�10
� 0 0 0 0 0

Best 19,8944 19,8949 19,8949 19,8949 19,8949 19,8949 19,8949 19,8949

Worst 19,476 19,537 19,8941 19,8949 19,8949 19,8949 19,8949 19,8949

F5

Favr –1,021 –1,03 –1,0303 –1,315 –1,315 –1,315 –1,316 –1,316

Fsd 5,1�10
 3,5�10
 3,6�10
 6,0�10
! 8,0�10
! 7,0�10
! 0 0

Best –1,0315 –1,0316 –1,0316 –1,0316 –1,0316 –1,0316 –1,0316 –1,0316

Worst –1,097 –1,018 –1,0081 –1,0196 –1,0194 –1,0196 –1,0316 –1,0316

F6

Favr –0,997 –1 –1 –1 –1 –1 –1 –1

Fsd 2,2�10
 0 0 0 0 0 0 0

Best –1 –1 –1 –1 –1 –1 –1 –1

Worst –0,994 –1 –1 –1 –1 –1 –1 –1

Table 4



Quantum state entanglement provides a higher level of variable correlation,
and as a result, the efficiency of the algorithm increases [19]. This is illustrated
by the results of the multipa- rameter test functions F7 — F11 optimization.

The influence of the different size of the quantum register (quantum state
entanglement) on the aQGA efficiency can be evaluated using the average fit-
ness of the population best individual Favr and the standard deviation of the aver-
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Variable cGA QGA
aQGA

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

F7

Favr –22,7 –35,3 –42,17 –45,24 –47,38 –46,88 –47,34 –46,6

Fsd 50,3 20,7 13,37 10,1 5,004 4,2 3,61 5,07

Best –45,4 –50 –50 –49,997 –50 –49,99 –50 –49,99

Worst 31,4 20,3 5,01 4,07 –3,38 –30,7 –30,1 –12,33

F8

Favr 2,53 1,02 0,585 0,329 0,207 0,125 0,111 0,056

Fsd 1,76 0,93 0,534 0,274 0,215 0,14 0,136 0,059

Best 0,52 0,15 0,016 1,6�10-3 3,3�10-4 5,0�10-4 1,4�10-4 5,1�10-4

Worst 6,44 2,32 2,82 0,981 0,961 0,721 0,77 0,402

F9

Favr 50,7 46,03 39,1 12,82 0,78 9,08 2,79 0,61

Fsd 86,7 74,2 53,6 21,45 3,91 17,45 8,28 1

Best 3,91 0,984 0,072 8,0�10-3 2,6�10-3 1,3�10-3 2,6�10-4 9,0�10-4

Worst 401,6 388,5 374,1 230,07 5,56 106,7 62,9 29,6

F10

Favr 1,05 0,138 0,174 0,064 0,112 0,227 0,288 0,559

Fsd 0,79 0,624 0,484 0,107 0,172 0,373 0,208 0,691

Best 0,92 1 0 10 3, � 
 1 6 10 3, � 
 1 5 10 3, � 
 7 5 10 4, � 
 2 1 10 3, � 
 5 0 10 3, � 
 4 9 10 3, � 


Worst 6,42 1,97 3,3 1,61 1,77 2,29 1,38 3,23

F11

Favr 7,55 2,831 3,51 2,57 1,2 2,79 0,31 0,33

Fsd 3,12 2,725 2,16 1,23 1,69 1,15 0,42 0,49

Best 0,561 1 8 10 3, � 
 1 9 10 3, � 
 1 7 10 3, � 
 5 9 10 5, � 
 6 2 10 3, � 
 2 0 10 4, � 
 6 2 10 5, � 


Worst 31,67 9,23 12,16 5,65 7,04 5,99 2,53 3,11

Table 5



age fitness Fsd over 1000 algorithm runs. Fig. 3 and Fig. 4 list these values on the
example of F7 function optimization.

The advantages of the transition to higher orders in the QGA implementa-
tion are confirmed by the results in Fig. 5. The examples given in this paper
prove that the bigger is the size of the quantum register with entangled states, the
faster is the relaxation of the population to the optimal value, especially on the
early stages.

We can observe a similar pattern when optimizing the function F8, on Fig. 6
and Fig. 7.

Statistical results retrieved during the optimization of higher-order test
functions F7 — F11 of large dimension (d = 6) are listed in Tab. 5.

Conclusions

We proposed and implemented a new approach to solving numerical optimiza-
tion problems. The approach uses the genetic algorithms technology and the
quantum computations ideology, based on the higher-order quantum registers.
The results of the simulation using a set of test functions illustrate better perfor-
mance and efficiency of the suggested approach.

The performed simulations allow us to determine the optimal size of the
quantum register to be equal to 3—5 qubits by analyzing the ratio of effi-
ciency/performance. Because of the quantum registers state entanglement the al-
gorithm running time has been almost halved, and in the same time the results
were improved and the convergence of the algorithm was faster.

The quantum gate operator adopts the adaptive behavior of the quantum
state rotation angle and does not require a lookup table.
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ÊÂÀÍÒÎÂÈÉ ÃÅÍÅÒÈ×ÍÈÉ ÀËÃÎÐÈÒÌ ÂÈÙÈÕ ÏÎÐßÄÊ²Â
Â ÇÀÄÀ×ÀÕ ÔÓÍÊÖ²ÎÍÀËÜÍÎ¯ ÎÏÒÈÌ²ÇÀÖ²¯

Ïðè ïîáóäîâ³ êâàíòîâèõ ãåíåòè÷íèõ àëãîðèòì³â (QGA) òðàäèö³éíèì º ïðåäñòàâëåííÿ
êâàíòîâî¿ õðîìîñîìè ó âèãëÿä³ ñèñòåìè íåçàëåæíèõ êóá³ò³â. Öå íå äîçâîëÿº âèêîðèñòàòè
òàêèé ïîòóæíèé ìåõàí³çì êâàíòîâèõ îá÷èñëåíü, ÿê çàïëóòàí³ñòü êâàíòîâèõ ñòàí³â. Ó
ðîáîò³ ðåàë³çîâàíî QGA âèùèõ ïîðÿäê³â òà ïðî³ëþñòðîâàíî éîãî åôåêòèâí³ñòü íà ïðèê-
ëàä³ çàäà÷³ ÷èñëîâî¿ îïòèì³çàö³¿ ç âèêîðèñòàííÿì ðÿäó òåñòîâèõ ôóíêö³é. Òàêîæ çàïðî-
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ïîíîâàíî îïåðàòîð êâàíòîâîãî ãåéòó ³ç àäàïòèâíèì õàðàêòåðîì ðîáîòè, ùî íå âèìàãàº
âèêîðèñòàííÿ òàáëèö³ ïîøóêó. Ó ïîð³âíÿíí³ ³ç òðàäèö³éíèì QGA ïåðåõ³ä äî âèùèõ
(á³ëüøå äâîõ) ïîðÿäê³â ïðè ðåàë³çàö³¿ àëãîðèòìó ïîêàçóº çíà÷íî êðàù³ ðåçóëüòàòè ÿê ïî
÷àñó âèêîíàííÿ, òàê ³ ïî øâèäêîñò³ çá³æíîñò³ òà òî÷íîñò³ çíàéäåíîãî ðîçâ’ÿçêó.

Ê ë þ ÷ î â ³ ñ ë î â à: ôóíêö³îíàëüíà îïòèì³çàö³ÿ, çàïëóòàí³ñòü êâàíòîâèõ ñòàí³â,
êâàíòîâèé ãåíåòè÷íèé àëãîðèòì, êâàíòîâ³ îá÷èñëåííÿ, êâàíòîâèé ðåã³ñòð.

Â.Ì. Òêà÷óê, Í.È. Êîçëåíêî, Í.Â. Êóçü, È.Í. Ëàçàðîâè÷, Ì.Ñ. Äóò÷àê

ÊÂÀÍÒÎÂÛÉ ÃÅÍÅÒÈ×ÅÑÊÈÉ ÀËÃÎÐÈÒÌ ÂÛÑØÈÕ ÏÎÐßÄÊÎÂ
Â ÇÀÄÀ×ÀÕ ÔÓÍÊÖÈÎÍÀËÜÍÎÉ ÎÏÒÈÌÈÇÀÖÈÈ

Ïðè ïîñòðîåíèè êâàíòîâûõ ãåíåòè÷åñêèõ àëãîðèòìîâ (QGA) òðàäèöèîííûì ÿâëÿåòñÿ
ïðåäñòàâëåíèå êâàíòîâîé õðîìîñîìû â âèäå ñèñòåìû íåçàâèñèìûõ êóáèòîâ. Ýòî íå ïîçâî-
ëÿåò èñïîëüçîâàòü òàêîé ìîùíûé ìåõàíèçì êâàíòîâûõ âû÷èñëåíèé, êàê çàïóòàííîñòü
êâàíòîâûõ ñîñòîÿíèé. Â ðàáîòå ðåàëèçîâàí QGA âûñøèõ ïîðÿäêîâ è ïðîèëëþñòðèðîâàíî
åãî ýôôåêòèâíîñòü íà ïðèìåðå çàäà÷è ÷èñëîâîé îïòèìèçàöèè ñ èñïîëüçîâàíèåì ðÿäà
òåñòîâûõ ôóíêöèé. Òàêæå ïðåäëîæåí îïåðàòîð êâàíòîâîãî ãåéòà ñ àäàïòèâíûì õàðàêòå-
ðîì ðàáîòû, íå òðåáóþùèé èñïîëüçîâàíèÿ òàáëèöû ïîèñêà. Â ñðàâíåíèè ñ òðàäèöèîííûì
QGA ïåðåõîä ê âûñøèì, áîëåå äâóõ, ïîðÿäêàì ïðè ðåàëèçàöèè àëãîðèòìà ïîêàçûâàåò
çíà÷èòåëüíî ëó÷øèå ðåçóëüòàòû êàê ïî âðåìåíè ðàáîòû, òàê è ñêîðîñòè ñõîäèìîñòè è
òî÷íîñòè íàéäåííîãî ðåøåíèÿ.

Ê ë þ ÷ å â û å ñ ë î â à: ôóíêöèîíàëüíàÿ îïòèìèçàöèÿ, çàïóòàííîñòü êâàíòîâûõ ñîñ-
òîÿíèé, êâàíòîâûé ãåíåòè÷åñêèé àëãîðèòì, êâàíòîâûå âû÷èñëåíèÿ, êâàíòîâûé ðåãèñòð.
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